From 720d10e8a7f7d2bf4038b65c64e73db494106a57 Mon Sep 17 00:00:00 2001 From: Antonio Rojas Date: Sat, 20 Nov 2021 12:41:06 +0100 Subject: [PATCH] Update tests for singular 4.2.1p2 --- src/sage/modular/modform_hecketriangle/abstract_space.py | 4 ++-- src/sage/modular/modform_hecketriangle/readme.py | 4 ++-- .../asymptotics_multivariate_generating_functions.py | 2 +- src/sage/rings/polynomial/hilbert.pyx | 7 ++----- src/sage/rings/polynomial/multi_polynomial_ideal.py | 2 +- src/sage/rings/polynomial/multi_polynomial_libsingular.pyx | 3 ++- 6 files changed, 10 insertions(+), 12 deletions(-) diff --git a/src/sage/modular/modform_hecketriangle/abstract_space.py b/src/sage/modular/modform_hecketriangle/abstract_space.py index e073fc1b42c..ad4307e3936 100644 --- a/src/sage/modular/modform_hecketriangle/abstract_space.py +++ b/src/sage/modular/modform_hecketriangle/abstract_space.py @@ -1161,8 +1161,8 @@ def F_basis_pol(self, m, order_1=ZZ(0)): sage: MF.F_basis_pol(2) x^13*y*d^2 - 2*x^8*y^3*d^2 + x^3*y^5*d^2 - sage: MF.F_basis_pol(1) - (-81*x^13*y*d + 62*x^8*y^3*d + 19*x^3*y^5*d)/(-100) + sage: MF.F_basis_pol(1) * 100 + 81*x^13*y*d - 62*x^8*y^3*d - 19*x^3*y^5*d sage: MF.F_basis_pol(0) (141913*x^13*y + 168974*x^8*y^3 + 9113*x^3*y^5)/320000 diff --git a/src/sage/modular/modform_hecketriangle/readme.py b/src/sage/modular/modform_hecketriangle/readme.py index 29e3ab1d871..b0059725904 100644 --- a/src/sage/modular/modform_hecketriangle/readme.py +++ b/src/sage/modular/modform_hecketriangle/readme.py @@ -757,8 +757,8 @@ General Eisenstein series in some arithmetic cases:: - sage: ModularFormsRing(n=4).EisensteinSeries(k=8) - (-25*f_rho^4 - 9*f_i^2)/(-34) + sage: ModularFormsRing(n=4).EisensteinSeries(k=8) * 34 + 25*f_rho^4 + 9*f_i^2 sage: ModularForms(n=3, k=12).EisensteinSeries() 1 + 65520/691*q + 134250480/691*q^2 + 11606736960/691*q^3 + 274945048560/691*q^4 + O(q^5) sage: ModularForms(n=6, k=12).EisensteinSeries() diff --git a/src/sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py b/src/sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py index 7c308fd2460..be1c70c5767 100644 --- a/src/sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py +++ b/src/sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py @@ -1578,7 +1578,7 @@ def asymptotics(self, p, alpha, N, asy_var=None, numerical=0, (1, [(x*y + x + y - 1, 2)]) sage: alpha = [4, 3] sage: decomp = F.asymptotic_decomposition(alpha); decomp - (0, []) + (-2*r*(1/x + 1) - 1/2/x - 1/2, [(x*y + x + y - 1, 1)]) + (0, []) + (... - 1/2, [(x*y + x + y - 1, 1)]) sage: F1 = decomp[1] sage: p = {y: 1/3, x: 1/2} sage: asy = F1.asymptotics(p, alpha, 2, verbose=True) diff --git a/src/sage/rings/polynomial/hilbert.pyx b/src/sage/rings/polynomial/hilbert.pyx index e33e5e4d5cb..63d22d9ca79 100644 --- a/src/sage/rings/polynomial/hilbert.pyx +++ b/src/sage/rings/polynomial/hilbert.pyx @@ -576,13 +576,10 @@ def hilbert_poincare_series(I, grading=None): sage: hilbert_poincare_series(J).denominator().factor() (t - 1)^14 - This example exceeds the current capabilities of Singular:: + This example exceeded the capabilities of Singular before version 4.2.1p2 sage: J.hilbert_numerator(algorithm='singular') - Traceback (most recent call last): - ... - RuntimeError: error in Singular function call 'hilb': - int overflow in hilb 1 + 120*t^33 - 3465*t^32 + 48180*t^31 - 429374*t^30 + 2753520*t^29 - 13522410*t^28 + 52832780*t^27 - 168384150*t^26 + 445188744*t^25 - 987193350*t^24 + 1847488500*t^23 + 1372406746*t^22 - 403422496*t^21 - 8403314*t^20 - 471656596*t^19 + 1806623746*t^18 + 752776200*t^17 + 752776200*t^16 - 1580830020*t^15 + 1673936550*t^14 - 1294246800*t^13 + 786893250*t^12 - 382391100*t^11 + 146679390*t^10 - 42299400*t^9 + 7837830*t^8 - 172260*t^7 - 468930*t^6 + 183744*t^5 - 39270*t^4 + 5060*t^3 - 330*t^2 + 1 """ cdef Polynomial_integer_dense_flint HP diff --git a/src/sage/rings/polynomial/multi_polynomial_ideal.py b/src/sage/rings/polynomial/multi_polynomial_ideal.py index 70f21387412..2b6c9fb3670 100644 --- a/src/sage/rings/polynomial/multi_polynomial_ideal.py +++ b/src/sage/rings/polynomial/multi_polynomial_ideal.py @@ -154,7 +154,7 @@ which is not 1. :: sage: I.groebner_basis() - [x + y + 57119*z + 4, y^2 + 3*y + 17220, y*z + y + 26532, 2*y + 158864, z^2 + 17223, 2*z + 41856, 164878] + [x + y + 57119*z + 4, y^2 + 3*y + 17220, y*z + ..., 2*y + 158864, z^2 + 17223, 2*z + 41856, 164878] Now for each prime `p` dividing this integer 164878, the Groebner basis of I modulo `p` will be non-trivial and will thus give a diff --git a/src/sage/rings/polynomial/multi_polynomial_libsingular.pyx b/src/sage/rings/polynomial/multi_polynomial_libsingular.pyx index a91ba220c6f..ee90c9d5db6 100644 --- a/src/sage/rings/polynomial/multi_polynomial_libsingular.pyx +++ b/src/sage/rings/polynomial/multi_polynomial_libsingular.pyx @@ -4920,7 +4920,8 @@ cdef class MPolynomial_libsingular(MPolynomial): sage: Pol. = ZZ[] sage: p = -x*y + x*z + 54*x - 2 - sage: (5*p^2).lcm(3*p) == 15*p^2 + sage: q = (5*p^2).lcm(3*p) + sage: q * q.lc().sign() == 15*p^2 True sage: lcm(2*x, 2*y) 2*x*y