diff --git a/build/pkgs/configure/checksums.ini b/build/pkgs/configure/checksums.ini index 6adb549c237..738066670a5 100644 --- a/build/pkgs/configure/checksums.ini +++ b/build/pkgs/configure/checksums.ini @@ -1,4 +1,4 @@ tarball=configure-VERSION.tar.gz -sha1=ca26c4f96653636f909240b6e8d94469eb126f6d -md5=207cc9ebb670913345959e823d283436 -cksum=3989786075 +sha1=694ed11a1e402aa7714737ea571ca38845fe425b +md5=35e45f13544608d4e981acee1065ce88 +cksum=98651158 diff --git a/build/pkgs/configure/package-version.txt b/build/pkgs/configure/package-version.txt index a746f7fe836..98aac3a7ccd 100644 --- a/build/pkgs/configure/package-version.txt +++ b/build/pkgs/configure/package-version.txt @@ -1 +1 @@ -f1833cfe2f1b63be4dcb4fffa849464c3a631c6f +47955602029e3ee3ac6477115cbc5d5e72956ee6 diff --git a/src/doc/en/developer/doctesting.rst b/src/doc/en/developer/doctesting.rst index 87ed66c3bdc..f5fec4590f3 100644 --- a/src/doc/en/developer/doctesting.rst +++ b/src/doc/en/developer/doctesting.rst @@ -1010,8 +1010,8 @@ a Python exception occurs. As an example, I modified 152 ainvs = [K(0),K(0),K(0)] + ainvs 153 self.__ainvs = tuple(ainvs) 154 if self.discriminant() == 0: - 155 raise ArithmeticError, \ - 156 -> "Invariants %s define a singular curve."%ainvs + 155 raise ArithmeticError( + 156 -> "Invariants %s define a singular curve."%ainvs) 157 PP = projective_space.ProjectiveSpace(2, K, names='xyz'); 158 x, y, z = PP.coordinate_ring().gens() 159 a1, a2, a3, a4, a6 = ainvs diff --git a/src/sage/algebras/free_algebra_quotient.py b/src/sage/algebras/free_algebra_quotient.py index 13faa60d992..232a5b30f47 100644 --- a/src/sage/algebras/free_algebra_quotient.py +++ b/src/sage/algebras/free_algebra_quotient.py @@ -145,15 +145,15 @@ def __init__(self, A, mons, mats, names): raise TypeError("Argument A must be an algebra.") R = A.base_ring() # if not R.is_field(): # TODO: why? -# raise TypeError, "Base ring of argument A must be a field." +# raise TypeError("Base ring of argument A must be a field.") n = A.ngens() assert n == len(mats) self.__free_algebra = A self.__ngens = n self.__dim = len(mons) - self.__module = FreeModule(R,self.__dim) + self.__module = FreeModule(R, self.__dim) self.__matrix_action = mats - self.__monomial_basis = mons # elements of free monoid + self.__monomial_basis = mons # elements of free monoid Algebra.__init__(self, R, names, normalize=True) def _element_constructor_(self, x): diff --git a/src/sage/algebras/nil_coxeter_algebra.py b/src/sage/algebras/nil_coxeter_algebra.py index 041b9094760..f44039253ac 100644 --- a/src/sage/algebras/nil_coxeter_algebra.py +++ b/src/sage/algebras/nil_coxeter_algebra.py @@ -65,18 +65,16 @@ def __init__(self, W, base_ring = QQ, prefix='u'): self._base_ring = base_ring self._cartan_type = W.cartan_type() H = IwahoriHeckeAlgebra(W, 0, 0, base_ring=base_ring) - super(IwahoriHeckeAlgebra.T,self).__init__(H, prefix=prefix) + super(IwahoriHeckeAlgebra.T, self).__init__(H, prefix=prefix) def _repr_(self): r""" - EXAMPLES :: + EXAMPLES:: sage: NilCoxeterAlgebra(WeylGroup(['A',3,1])) # indirect doctest The Nil-Coxeter Algebra of Type A3~ over Rational Field - """ - - return "The Nil-Coxeter Algebra of Type %s over %s"%(self._cartan_type._repr_(compact=True), self.base_ring()) + return "The Nil-Coxeter Algebra of Type %s over %s" % (self._cartan_type._repr_(compact=True), self.base_ring()) def homogeneous_generator_noncommutative_variables(self, r): r""" diff --git a/src/sage/algebras/rational_cherednik_algebra.py b/src/sage/algebras/rational_cherednik_algebra.py index e551c43c568..7d7e9f7929f 100644 --- a/src/sage/algebras/rational_cherednik_algebra.py +++ b/src/sage/algebras/rational_cherednik_algebra.py @@ -184,11 +184,11 @@ def _reflections(self): d[s] = (r, r.associated_coroot(), c) return d - def _repr_(self): + def _repr_(self) -> str: r""" Return a string representation of ``self``. - EXAMPLES :: + EXAMPLES:: sage: RationalCherednikAlgebra(['A',4], 2, 1, QQ) Rational Cherednik Algebra of type ['A', 4] with c=2 and t=1 diff --git a/src/sage/combinat/sf/hall_littlewood.py b/src/sage/combinat/sf/hall_littlewood.py index f07d133e2f5..e2a2f18f775 100644 --- a/src/sage/combinat/sf/hall_littlewood.py +++ b/src/sage/combinat/sf/hall_littlewood.py @@ -66,7 +66,7 @@ def __repr__(self): - a string representing the class - EXAMPLES :: + EXAMPLES:: sage: SymmetricFunctions(QQ).hall_littlewood(1) Hall-Littlewood polynomials with t=1 over Rational Field @@ -102,7 +102,7 @@ def symmetric_function_ring( self ): - returns the ring of symmetric functions - EXAMPLES :: + EXAMPLES:: sage: HL = SymmetricFunctions(FractionField(QQ['t'])).hall_littlewood() sage: HL.symmetric_function_ring() @@ -123,7 +123,7 @@ def base_ring( self ): The base ring of the symmetric functions. - EXAMPLES :: + EXAMPLES:: sage: HL = SymmetricFunctions(QQ['t'].fraction_field()).hall_littlewood(t=1) sage: HL.base_ring() @@ -532,7 +532,7 @@ def hall_littlewood_family(self): - returns the class of Hall-Littlewood bases - EXAMPLES :: + EXAMPLES:: sage: HLP = SymmetricFunctions(FractionField(QQ['t'])).hall_littlewood(1).P() sage: HLP.hall_littlewood_family() diff --git a/src/sage/combinat/sf/jack.py b/src/sage/combinat/sf/jack.py index daee291d232..514823e82fb 100644 --- a/src/sage/combinat/sf/jack.py +++ b/src/sage/combinat/sf/jack.py @@ -491,7 +491,7 @@ def __init__(self, jack): - ``self`` -- a Jack basis of the symmetric functions - ``jack`` -- a family of Jack symmetric function bases - EXAMPLES :: + EXAMPLES:: sage: Sym = SymmetricFunctions(FractionField(QQ['t'])) sage: JP = Sym.jack().P(); JP.base_ring() @@ -537,7 +537,7 @@ def _m_to_self(self, x): - an element of ``self`` equivalent to ``x`` - EXAMPLES :: + EXAMPLES:: sage: Sym = SymmetricFunctions(QQ) sage: JP = Sym.jack(t=2).P() @@ -565,7 +565,7 @@ def _self_to_m(self, x): - an element of the monomial basis equivalent to ``x`` - EXAMPLES :: + EXAMPLES:: sage: Sym = SymmetricFunctions(QQ) sage: JP = Sym.jack(t=2).P() @@ -596,7 +596,7 @@ def c1(self, part): - a polynomial in the parameter ``t`` which is equal to the scalar product of ``J(part)`` and ``P(part)`` - EXAMPLES :: + EXAMPLES:: sage: JP = SymmetricFunctions(FractionField(QQ['t'])).jack().P() sage: JP.c1(Partition([2,1])) @@ -1029,7 +1029,7 @@ def scalar_jack(self, x, t=None): - ``self`` -- an element of the Jack `P` basis - ``x`` -- an element of the `P` basis - EXAMPLES :: + EXAMPLES:: sage: JP = SymmetricFunctions(FractionField(QQ['t'])).jack().P() sage: l = [JP(p) for p in Partitions(3)] @@ -1234,7 +1234,7 @@ def _self_to_h( self, x ): - an element of the homogeneous basis equivalent to ``x`` - EXAMPLES :: + EXAMPLES:: sage: Sym = SymmetricFunctions(QQ) sage: JQp = Sym.jack(t=2).Qp() @@ -1262,7 +1262,7 @@ def _h_to_self( self, x ): - an element of the Jack `Qp` basis equivalent to ``x`` - EXAMPLES :: + EXAMPLES:: sage: Sym = SymmetricFunctions(QQ) sage: JQp = Sym.jack(t=2).Qp() @@ -1320,7 +1320,7 @@ def __init__(self, Sym): - ``self`` -- a zonal basis of the symmetric functions - ``Sym`` -- a ring of the symmetric functions - EXAMPLES :: + EXAMPLES:: sage: Z = SymmetricFunctions(QQ).zonal() sage: Z([2])^2 @@ -1355,7 +1355,7 @@ def product(self, left, right): the product of ``left`` and ``right`` expanded in the basis ``self`` - EXAMPLES :: + EXAMPLES:: sage: Sym = SymmetricFunctions(QQ) sage: Z = Sym.zonal() @@ -1386,7 +1386,7 @@ def scalar_zonal(self, x): - the scalar product between ``self`` and ``x`` - EXAMPLES :: + EXAMPLES:: sage: Sym = SymmetricFunctions(QQ) sage: Z = Sym.zonal() diff --git a/src/sage/combinat/sf/llt.py b/src/sage/combinat/sf/llt.py index b913114435b..d7e4af8fe94 100644 --- a/src/sage/combinat/sf/llt.py +++ b/src/sage/combinat/sf/llt.py @@ -168,7 +168,7 @@ def symmetric_function_ring( self ): - returns the symmetric function ring associated to ``self``. - EXAMPLES :: + EXAMPLES:: sage: L3 = SymmetricFunctions(FractionField(QQ['t'])).llt(3) sage: L3.symmetric_function_ring() diff --git a/src/sage/combinat/sf/macdonald.py b/src/sage/combinat/sf/macdonald.py index f7c852aeb92..938b09d23dd 100644 --- a/src/sage/combinat/sf/macdonald.py +++ b/src/sage/combinat/sf/macdonald.py @@ -89,7 +89,7 @@ def __repr__(self): - a string representing the Macdonald symmetric function family - EXAMPLES :: + EXAMPLES:: sage: t = QQ['t'].gen(); SymmetricFunctions(QQ['t'].fraction_field()).macdonald(q=t,t=1) Macdonald polynomials with q=t and t=1 over Fraction Field of Univariate Polynomial Ring in t over Rational Field @@ -107,7 +107,7 @@ def __init__(self, Sym, q='q', t='t'): - ``self`` -- a family of Macdonald symmetric function bases - EXAMPLES :: + EXAMPLES:: sage: t = QQ['t'].gen(); SymmetricFunctions(QQ['t'].fraction_field()).macdonald(q=t,t=1) Macdonald polynomials with q=t and t=1 over Fraction Field of Univariate Polynomial Ring in t over Rational Field @@ -144,7 +144,7 @@ def base_ring( self ): - the base ring associated to the corresponding symmetric function ring - EXAMPLES :: + EXAMPLES:: sage: Sym = SymmetricFunctions(QQ['q'].fraction_field()) sage: Mac = Sym.macdonald(t=0) @@ -166,7 +166,7 @@ def symmetric_function_ring( self ): - the symmetric function ring associated to the Macdonald bases - EXAMPLES :: + EXAMPLES:: sage: Mac = SymmetricFunctions(QQ['q'].fraction_field()).macdonald(t=0) sage: Mac.symmetric_function_ring() @@ -187,7 +187,7 @@ def P(self): - returns the `P` Macdonald basis of symmetric functions - EXAMPLES :: + EXAMPLES:: sage: Sym = SymmetricFunctions(FractionField(QQ['q','t'])) sage: P = Sym.macdonald().P(); P @@ -914,7 +914,7 @@ def macdonald_family(self): - the family of Macdonald symmetric functions associated to ``self`` - EXAMPLES :: + EXAMPLES:: sage: MacP = SymmetricFunctions(QQ['q'].fraction_field()).macdonald(t=0).P() sage: MacP.macdonald_family() diff --git a/src/sage/crypto/mq/rijndael_gf.py b/src/sage/crypto/mq/rijndael_gf.py index ad908a0ffcd..eb6119bafe0 100644 --- a/src/sage/crypto/mq/rijndael_gf.py +++ b/src/sage/crypto/mq/rijndael_gf.py @@ -46,7 +46,7 @@ - Thomas Gagne (2015-06): initial version -EXAMPLES +EXAMPLES: We build Rijndael-GF with a block length of 4 and a key length of 6:: @@ -1020,7 +1020,7 @@ def decrypt(self, ciphertext, key, format='hex'): - A string in the format ``format`` of ``ciphertext`` decrypted with key ``key``. - EXAMPLES :: + EXAMPLES:: sage: from sage.crypto.mq.rijndael_gf import RijndaelGF sage: rgf = RijndaelGF(4, 4) @@ -1473,7 +1473,7 @@ def compose(self, f, g, algorithm='encrypt', f_attr=None, g_attr=None): then ``compose`` returns `g(f(A))_{i,j}`, where `A` is an arbitrary input state matrix. - EXAMPLES + EXAMPLES: This function allows us to determine the polynomial representations of entries across multiple round functions. For example, if we diff --git a/src/sage/geometry/hyperbolic_space/hyperbolic_geodesic.py b/src/sage/geometry/hyperbolic_space/hyperbolic_geodesic.py index d8778307934..9ec022099d0 100644 --- a/src/sage/geometry/hyperbolic_space/hyperbolic_geodesic.py +++ b/src/sage/geometry/hyperbolic_space/hyperbolic_geodesic.py @@ -140,13 +140,11 @@ def __init__(self, model, start, end, **graphics_options): r""" See :class:`HyperbolicGeodesic` for full documentation. - EXAMPLES :: + EXAMPLES:: sage: HyperbolicPlane().UHP().get_geodesic(I, 2 + I) Geodesic in UHP from I to I + 2 - """ - self._model = model self._start = start self._end = end diff --git a/src/sage/groups/braid.py b/src/sage/groups/braid.py index 81d09d8e369..a7fc91b1e7b 100644 --- a/src/sage/groups/braid.py +++ b/src/sage/groups/braid.py @@ -2077,7 +2077,7 @@ def mapping_class_action(self, F): A :class:`MappingClassGroupAction`. - EXAMPLES :: + EXAMPLES:: sage: B = BraidGroup(3) sage: B.inject_variables() diff --git a/src/sage/interfaces/maxima_abstract.py b/src/sage/interfaces/maxima_abstract.py index 60de71aa367..3fe2dd7bbab 100644 --- a/src/sage/interfaces/maxima_abstract.py +++ b/src/sage/interfaces/maxima_abstract.py @@ -670,9 +670,11 @@ def function(self, args, defn, rep=None, latex=None): ## represented in 2-d. ## INPUT: -## flag -- bool (default: True) -## EXAMPLES +## flag -- bool (default: True) + +## EXAMPLES:: + ## sage: maxima('1/2') ## 1/2 ## sage: maxima.display2d(True) diff --git a/src/sage/modular/multiple_zeta.py b/src/sage/modular/multiple_zeta.py index d1f1f550247..8b7524a92a5 100644 --- a/src/sage/modular/multiple_zeta.py +++ b/src/sage/modular/multiple_zeta.py @@ -968,7 +968,7 @@ def _element_constructor_(self, x): r""" Convert ``x`` into ``self``. - INPUT + INPUT: - ``x`` -- either a list, tuple, word or a multiple zeta value @@ -1884,7 +1884,7 @@ def _element_constructor_(self, x): r""" Convert ``x`` into ``self``. - INPUT + INPUT: - ``x`` -- either a list, tuple, word or a multiple zeta value @@ -2151,7 +2151,7 @@ def _element_constructor_(self, x): r""" Convert ``x`` into ``self``. - INPUT + INPUT: - ``x`` -- either a list, tuple, word diff --git a/src/sage/rings/padics/padic_generic_element.pyx b/src/sage/rings/padics/padic_generic_element.pyx index 0f6c67a227c..4482e9b1600 100644 --- a/src/sage/rings/padics/padic_generic_element.pyx +++ b/src/sage/rings/padics/padic_generic_element.pyx @@ -4055,7 +4055,7 @@ cdef class pAdicGenericElement(LocalGenericElement): - `Li_n(`self`)` - EXAMPLES :: + EXAMPLES:: sage: Qp(2)(-1)._polylog_res_1(6) == 0 True diff --git a/src/sage/schemes/elliptic_curves/gal_reps.py b/src/sage/schemes/elliptic_curves/gal_reps.py index b1c427c65bf..1f88e23a80c 100644 --- a/src/sage/schemes/elliptic_curves/gal_reps.py +++ b/src/sage/schemes/elliptic_curves/gal_reps.py @@ -728,7 +728,7 @@ def image_type(self, p): - a string. - EXAMPLES :: + EXAMPLES:: sage: E = EllipticCurve('14a1') sage: rho = E.galois_representation() diff --git a/src/sage/schemes/plane_conics/con_field.py b/src/sage/schemes/plane_conics/con_field.py index 823595850b5..04ee419f880 100644 --- a/src/sage/schemes/plane_conics/con_field.py +++ b/src/sage/schemes/plane_conics/con_field.py @@ -922,7 +922,7 @@ def point(self, v, check=True): If no rational point on ``self`` is known yet, then also caches the point for use by ``self.rational_point()`` and ``self.parametrization()``. - EXAMPLES :: + EXAMPLES:: sage: c = Conic([1, -1, 1]) sage: c.point([15, 17, 8]) @@ -961,7 +961,7 @@ def random_rational_point(self, *args1, **args2): If the base field is a finite field, then the output is uniformly distributed over the points of self. - EXAMPLES :: + EXAMPLES:: sage: c = Conic(GF(2), [1,1,1,1,1,0]) sage: [c.random_rational_point() for i in range(10)] # output is random @@ -1130,7 +1130,7 @@ def symmetric_matrix(self): The symmetric matrix `M` such that `(x y z) M (x y z)^t` is the defining equation of ``self``. - EXAMPLES :: + EXAMPLES:: sage: R. = QQ[] sage: C = Conic(x^2 + x*y/2 + y^2 + z^2) diff --git a/src/sage/schemes/plane_conics/con_number_field.py b/src/sage/schemes/plane_conics/con_number_field.py index 611690274c0..fdd9e2c02ad 100644 --- a/src/sage/schemes/plane_conics/con_number_field.py +++ b/src/sage/schemes/plane_conics/con_number_field.py @@ -47,7 +47,7 @@ def __init__(self, A, f): r""" See ``Conic`` for full documentation. - EXAMPLES :: + EXAMPLES:: sage: Conic([1, 1, 1]) Projective Conic Curve over Rational Field defined by x^2 + y^2 + z^2 @@ -364,7 +364,7 @@ def local_obstructions(self, finite=True, infinite=True, read_cache=True): Local obstructions are cached. The parameter ``read_cache`` specifies whether to look at the cache before computing anything. - EXAMPLES :: + EXAMPLES:: sage: K. = QuadraticField(-1) sage: Conic(K, [1, 2, 3]).local_obstructions() diff --git a/src/sage/schemes/plane_conics/con_rational_field.py b/src/sage/schemes/plane_conics/con_rational_field.py index 3eae681ba68..756d92dcab8 100644 --- a/src/sage/schemes/plane_conics/con_rational_field.py +++ b/src/sage/schemes/plane_conics/con_rational_field.py @@ -259,7 +259,7 @@ def local_obstructions(self, finite=True, infinite=True, read_cache=True): Local obstructions are cached. The parameter ``read_cache`` specifies whether to look at the cache before computing anything. - EXAMPLES :: + EXAMPLES:: sage: Conic(QQ, [1, 1, 1]).local_obstructions() [2, -1] @@ -318,7 +318,7 @@ def parametrization(self, point=None, morphism=True): Uses the PARI/GP function ``qfparam``. - EXAMPLES :: + EXAMPLES:: sage: c = Conic([1,1,-1]) sage: c.parametrization()