diff --git a/src/sage/data_structures/stream.py b/src/sage/data_structures/stream.py index 0a5219ba5b3..37ca2302ac6 100644 --- a/src/sage/data_structures/stream.py +++ b/src/sage/data_structures/stream.py @@ -96,6 +96,7 @@ from sage.rings.integer_ring import ZZ from sage.rings.infinity import infinity from sage.arith.misc import divisors +from sage.combinat.integer_vector_weighted import iterator_fast as wt_int_vec_iter class Stream(): """ @@ -1599,7 +1600,7 @@ def __init__(self, f, g): sage: g = Stream_function(lambda n: n^2, ZZ, True, 1) sage: h = Stream_cauchy_compose(f, g) """ - assert g._approximate_order > 0 + #assert g._approximate_order > 0 self._fv = f._approximate_order self._gv = g._approximate_order if self._fv < 0: @@ -1644,6 +1645,132 @@ def get_coefficient(self, n): return ret + sum(self._left[i] * self._pos_powers[i][n] for i in range(1, n // self._gv+1)) +class Stream_plethysm(Stream_binary): + r""" + Return the plethysm of ``f`` composed by ``g``. + + This is the plethysm `f \circ g = f(g)` when `g` is an element of + the ring of symmetric functions. + + INPUT: + + - ``f`` -- a :class:`Stream` + - ``g`` -- a :class:`Stream` with positive order + - ``p`` -- the powersum symmetric functions + + EXAMPLES:: + + sage: from sage.data_structures.stream import Stream_function, Stream_plethysm + sage: s = SymmetricFunctions(QQ).s() + sage: p = SymmetricFunctions(QQ).p() + sage: f = Stream_function(lambda n: s[n], s, True, 1) + sage: g = Stream_function(lambda n: s[[1]*n], s, True, 1) + sage: h = Stream_plethysm(f, g, p) + sage: [s(h[i]) for i in range(5)] + [0, + s[1], + s[1, 1] + s[2], + 2*s[1, 1, 1] + s[2, 1] + s[3], + 3*s[1, 1, 1, 1] + 2*s[2, 1, 1] + s[2, 2] + s[3, 1] + s[4]] + sage: u = Stream_plethysm(g, f, p) + sage: [s(u[i]) for i in range(5)] + [0, + s[1], + s[1, 1] + s[2], + s[1, 1, 1] + s[2, 1] + 2*s[3], + s[1, 1, 1, 1] + s[2, 1, 1] + 3*s[3, 1] + 2*s[4]] + """ + def __init__(self, f, g, p): + r""" + Initialize ``self``. + + TESTS:: + + sage: from sage.data_structures.stream import Stream_function, Stream_plethysm + sage: s = SymmetricFunctions(QQ).s() + sage: p = SymmetricFunctions(QQ).p() + sage: f = Stream_function(lambda n: s[n], s, True, 1) + sage: g = Stream_function(lambda n: s[n-1,1], s, True, 2) + sage: h = Stream_plethysm(f, g, p) + """ + #assert g._approximate_order > 0 + self._fv = f._approximate_order + self._gv = g._approximate_order + self._p = p + val = self._fv * self._gv + super().__init__(f, g, f._is_sparse, val) + + def get_coefficient(self, n): + r""" + Return the ``n``-th coefficient of ``self``. + + INPUT: + + - ``n`` -- integer; the degree for the coefficient + + EXAMPLES:: + + sage: from sage.data_structures.stream import Stream_function, Stream_plethysm + sage: s = SymmetricFunctions(QQ).s() + sage: p = SymmetricFunctions(QQ).p() + sage: f = Stream_function(lambda n: s[n], s, True, 1) + sage: g = Stream_function(lambda n: s[[1]*n], s, True, 1) + sage: h = Stream_plethysm(f, g, p) + sage: s(h.get_coefficient(5)) + 4*s[1, 1, 1, 1, 1] + 4*s[2, 1, 1, 1] + 2*s[2, 2, 1] + 2*s[3, 1, 1] + s[3, 2] + s[4, 1] + s[5] + sage: [s(h.get_coefficient(i)) for i in range(6)] + [0, + s[1], + s[1, 1] + s[2], + 2*s[1, 1, 1] + s[2, 1] + s[3], + 3*s[1, 1, 1, 1] + 2*s[2, 1, 1] + s[2, 2] + s[3, 1] + s[4], + 4*s[1, 1, 1, 1, 1] + 4*s[2, 1, 1, 1] + 2*s[2, 2, 1] + 2*s[3, 1, 1] + s[3, 2] + s[4, 1] + s[5]] + """ + if not n: # special case of 0 + return self._left[0] + + # We assume n > 0 + p = self._p + ret = p.zero() + for k in range(n+1): + temp = p(self._left[k]) + for la, c in temp: + inner = self._compute_product(n, la, c) + if inner is not None: + ret += inner + return ret + + def _compute_product(self, n, la, c): + """ + Compute the product ``c * p[la](self._right)`` in degree ``n``. + + EXAMPLES:: + + sage: from sage.data_structures.stream import Stream_plethysm, Stream_exact, Stream_function + sage: s = SymmetricFunctions(QQ).s() + sage: p = SymmetricFunctions(QQ).p() + sage: f = Stream_function(lambda n: s[n], s, True, 1) + sage: g = Stream_exact([s[2], s[3]], False, 0, 4, 2) + sage: h = Stream_plethysm(f, g, p) + sage: ret = h._compute_product(7, [2, 1], 1); ret + 1/12*p[2, 2, 1, 1, 1] + 1/4*p[2, 2, 2, 1] + 1/6*p[3, 2, 2] + + 1/12*p[4, 1, 1, 1] + 1/4*p[4, 2, 1] + 1/6*p[4, 3] + sage: ret == p[2,1](s[2] + s[3]).homogeneous_component(7) + True + """ + p = self._p + ret = p.zero() + for mu in wt_int_vec_iter(n, la): + temp = c + for i, j in zip(la, mu): + gs = self._right[j] + if not gs: + temp = p.zero() + break + temp *= p[i](gs) + ret += temp + return ret + ##################################################################### # Unary operations diff --git a/src/sage/rings/lazy_series.py b/src/sage/rings/lazy_series.py index 9b23aaf2dd0..68c5afb2c25 100644 --- a/src/sage/rings/lazy_series.py +++ b/src/sage/rings/lazy_series.py @@ -136,7 +136,8 @@ Stream_shift, Stream_function, Stream_dirichlet_convolve, - Stream_dirichlet_invert + Stream_dirichlet_invert, + Stream_plethysm ) class LazyModuleElement(Element): @@ -723,13 +724,14 @@ def define(self, s): sage: L = LazySymmetricFunctions(m) sage: E = L(lambda n: s[n], valuation=0) sage: X = L(s[1]) - sage: A = L(None, valuation=1); A.define(X*E(A)) - sage: A - m[1] + (2*m[1,1]+m[2]) + (9*m[1,1,1]+5*m[2,1]+2*m[3]) - + (64*m[1,1,1,1]+34*m[2,1,1]+18*m[2,2]+13*m[3,1]+4*m[4]) - + (625*m[1,1,1,1,1]+326*m[2,1,1,1]+171*m[2,2,1]+119*m[3,1,1]+63*m[3,2]+35*m[4,1]+9*m[5]) - + (7776*m[1,1,1,1,1,1]+4016*m[2,1,1,1,1]+2078*m[2,2,1,1]+1077*m[2,2,2]+1433*m[3,1,1,1]+744*m[3,2,1]+268*m[3,3]+401*m[4,1,1]+209*m[4,2]+95*m[5,1]+20*m[6]) - + O^7 + sage: A = L(None); A.define(X*E(A, check=False)) + sage: A[:6] + [0, + m[1], + 2*m[1, 1] + m[2], + 9*m[1, 1, 1] + 5*m[2, 1] + 2*m[3], + 64*m[1, 1, 1, 1] + 34*m[2, 1, 1] + 18*m[2, 2] + 13*m[3, 1] + 4*m[4], + 625*m[1, 1, 1, 1, 1] + 326*m[2, 1, 1, 1] + 171*m[2, 2, 1] + 119*m[3, 1, 1] + 63*m[3, 2] + 35*m[4, 1] + 9*m[5]] TESTS:: @@ -2584,7 +2586,7 @@ class LazyLaurentSeries(LazyCauchyProductSeries): sage: TestSuite(f).run() """ - def __call__(self, g): + def __call__(self, g, *, check=True): r""" Return the composition of ``self`` with ``g``. @@ -2954,16 +2956,18 @@ def __call__(self, g): raise NotImplementedError("can only compose with a lazy series") # Perhaps we just don't yet know if the valuation is positive - if g._coeff_stream._approximate_order <= 0: - if any(g._coeff_stream[i] for i in range(g._coeff_stream._approximate_order, 1)): - raise ValueError("can only compose with a positive valuation series") - g._coeff_stream._approximate_order = 1 + if check: + if g._coeff_stream._approximate_order <= 0: + if any(g._coeff_stream[i] for i in range(g._coeff_stream._approximate_order, 1)): + raise ValueError("can only compose with a positive valuation series") + g._coeff_stream._approximate_order = 1 if isinstance(g, LazyDirichletSeries): - if g._coeff_stream._approximate_order == 1: - if g._coeff_stream[1] != 0: - raise ValueError("can only compose with a positive valuation series") - g._coeff_stream._approximate_order = 2 + if check: + if g._coeff_stream._approximate_order == 1: + if g._coeff_stream[1] != 0: + raise ValueError("can only compose with a positive valuation series") + g._coeff_stream._approximate_order = 2 # we assume that the valuation of self[i](g) is at least i def coefficient(n): @@ -3261,7 +3265,7 @@ class LazyTaylorSeries(LazyCauchyProductSeries): sage: g == f True """ - def __call__(self, *g): + def __call__(self, *g, check=True): r""" Return the composition of ``self`` with ``g``. @@ -3283,17 +3287,16 @@ def __call__(self, *g): sage: L. = LazyTaylorSeriesRing(QQ) sage: M. = LazyTaylorSeriesRing(ZZ) - sage: g1 = 1/(1-x); g2 = x+y^2 + sage: g1 = 1 / (1 - x) + sage: g2 = x + y^2 sage: p = a^2 + b + 1 sage: p(g1, g2) - g1^2 - g2 - 1 O(x,y,z)^7 - sage: L. = LazyTaylorSeriesRing(QQ) - sage: M. = LazyTaylorSeriesRing(QQ) - The number of mappings from a set with `m` elements to a set with `n` elements:: + sage: M. = LazyTaylorSeriesRing(QQ) sage: Ea = M(lambda n: 1/factorial(n)) sage: Ex = L(lambda n: 1/factorial(n)*x^n) sage: Ea(Ex*y)[5] @@ -3305,50 +3308,176 @@ def __call__(self, *g): We perform the composition with a lazy Laurent series:: sage: N. = LazyLaurentSeriesRing(QQ) - sage: f1 = 1/(1-w); f2 = cot(w/(1-w)) + sage: f1 = 1 / (1 - w) + sage: f2 = cot(w / (1 - w)) sage: p(f1, f2) w^-1 + 1 + 5/3*w + 8/3*w^2 + 164/45*w^3 + 23/5*w^4 + 5227/945*w^5 + O(w^6) + We perform the composition with a lazy Dirichlet series:: + + sage: D = LazyDirichletSeriesRing(QQ, "s") + sage: g = D(constant=1)-1; g + 1/(2^s) + 1/(3^s) + 1/(4^s) + O(1/(5^s)) + sage: f = 1 / (1 - x - y*z); f + 1 + x + (x^2+y*z) + (x^3+2*x*y*z) + (x^4+3*x^2*y*z+y^2*z^2) + + (x^5+4*x^3*y*z+3*x*y^2*z^2) + + (x^6+5*x^4*y*z+6*x^2*y^2*z^2+y^3*z^3) + + O(x,y,z)^7 + sage: fog = f(g, g, g); fog + 1 + 1/(2^s) + 1/(3^s) + 3/4^s + 1/(5^s) + 5/6^s + O(1/(7^s)) + sage: fg = 1 / (1 - g - g*g); fg + 1 + 1/(2^s) + 1/(3^s) + 3/4^s + 1/(5^s) + 5/6^s + 1/(7^s) + O(1/(8^s)) + sage: fog - fg + O(1/(7^s)) + + sage: f = 1 / (1 - 2*a) + sage: f(g) + 1 + 2/2^s + 2/3^s + 6/4^s + 2/5^s + 10/6^s + 2/7^s + O(1/(8^s)) + sage: 1 / (1 - 2*g) + 1 + 2/2^s + 2/3^s + 6/4^s + 2/5^s + 10/6^s + 2/7^s + O(1/(8^s)) + + The output parent is always the common parent between the base ring + of `f` and the parent of `g` or extended to the corresponding + lazy series:: + + sage: T. = LazyTaylorSeriesRing(QQ) + sage: R. = ZZ[] + sage: S. = R[] + sage: L. = LaurentPolynomialRing(ZZ) + sage: parent(x(a, b)) + Multivariate Polynomial Ring in a, b, c over Rational Field + sage: parent(x(CC(2), a)) + Multivariate Polynomial Ring in a, b, c over Complex Field with 53 bits of precision + sage: parent(x(0, 0)) + Rational Field + sage: f = 1 / (1 - x - y); f + 1 + (x+y) + (x^2+2*x*y+y^2) + (x^3+3*x^2*y+3*x*y^2+y^3) + + (x^4+4*x^3*y+6*x^2*y^2+4*x*y^3+y^4) + + (x^5+5*x^4*y+10*x^3*y^2+10*x^2*y^3+5*x*y^4+y^5) + + (x^6+6*x^5*y+15*x^4*y^2+20*x^3*y^3+15*x^2*y^4+6*x*y^5+y^6) + + O(x,y)^7 + sage: f(a^2, b*c) + 1 + (a^2+b*c) + (a^4+2*a^2*b*c+b^2*c^2) + (a^6+3*a^4*b*c+3*a^2*b^2*c^2+b^3*c^3) + O(a,b,c)^7 + sage: f(v, v^2) + 1 + v + 2*v^2 + 3*v^3 + 5*v^4 + 8*v^5 + 13*v^6 + O(v^7) + sage: f(z, z^2 + z) + 1 + 2*z + 5*z^2 + 12*z^3 + 29*z^4 + 70*z^5 + 169*z^6 + O(z^7) + sage: three = T(3)(a^2, b); three + 3 + sage: parent(three) + Multivariate Polynomial Ring in a, b, c over Rational Field + TESTS:: sage: L. = LazyTaylorSeriesRing(ZZ) - sage: f = 1/(1-x-y) + sage: f = 1 / (1 - x - y) sage: f(f) Traceback (most recent call last): ... ValueError: arity of must be equal to the number of arguments provided + sage: f(1, x*y) + Traceback (most recent call last): + ... + ValueError: can only compose with a positive valuation series + + This test will pass once pushouts are implemented:: + + sage: R. = QQ[] + sage: f(1/2*a, x) + Traceback (most recent call last): + ... + TypeError: no common canonical parent for objects with parents: ... + """ if len(g) != len(self.parent().variable_names()): raise ValueError("arity of must be equal to the number of arguments provided") + # Find a good parent for the result + from sage.structure.element import get_coercion_model + cm = get_coercion_model() + P = cm.common_parent(self.base_ring(), *[parent(h) for h in g]) + # f has finite length if isinstance(self._coeff_stream, Stream_exact) and not self._coeff_stream._constant: # constant polynomial poly = self.polynomial() if poly.is_constant(): - return poly - return poly(g) - - g0 = g[0] - P = g0.parent() + return P(poly) + return P(poly(g)) + + # f now has (potentially) infinitely many terms + # Lift the resulting parent to a lazy series (if possible) + # Also make sure each element of g is a LazyModuleElement + from sage.rings.polynomial.polynomial_ring import PolynomialRing_general + from sage.rings.polynomial.multi_polynomial_ring_base import MPolynomialRing_base + from sage.rings.polynomial.laurent_polynomial_ring import LaurentPolynomialRing_univariate + from sage.rings.lazy_series_ring import LazySeriesRing + if not isinstance(P, LazySeriesRing): + fP = parent(self) + if fP._laurent_poly_ring.has_coerce_map_from(P): + S = fP._laurent_poly_ring + P = fP + if isinstance(P, (PolynomialRing_general, MPolynomialRing_base)): + from sage.rings.lazy_series_ring import LazyTaylorSeriesRing + S = P + try: + sparse = S.is_sparse() + except AttributeError: + sparse = fP.is_sparse() + P = LazyTaylorSeriesRing(S.base_ring(), S.variable_names(), sparse) + elif isinstance(P, LaurentPolynomialRing_univariate): + from sage.rings.lazy_series_ring import LazyLaurentSeriesRing + S = P + P = LazyLaurentSeriesRing(S.base_ring(), S.variable_names(), fP.is_sparse()) + else: + raise ValueError("unable to evaluate the series at {}".format(g)) + g = [P(S(h)) for h in g] + else: + g = [P(h) for h in g] R = P._internal_poly_ring.base_ring() + + if check: + for h in g: + if h._coeff_stream._approximate_order == 0: + if h[0]: + raise ValueError("can only compose with a positive valuation series") + h._coeff_stream._approximate_order = 1 + + if isinstance(h, LazyDirichletSeries): + if h._coeff_stream._approximate_order == 1: + if h._coeff_stream[1] != 0: + raise ValueError("can only compose with a positive valuation series") + h._coeff_stream._approximate_order = 2 + + + # We now ahave that every element of g has a _coeff_stream + sorder = self._coeff_stream._approximate_order if len(g) == 1: - # we assume that the valuation of self[i](g) is at least i - def coefficient(n): - r = R.zero() - for i in range(n+1): - r += self[i]*(g0 ** i)[n] - return r - else: - def coefficient(n): - r = R.zero() - for i in range(n+1): - r += self[i](g)[n] - return r - coeff_stream = Stream_function(coefficient, R, P._sparse, 0) + g0 = g[0] + if isinstance(g0, LazyDirichletSeries): + # we assume that the valuation of self[i](g) is at least i + def coefficient(n): + return sum(self[i] * (g0**i)[n] for i in range(n+1)) + coeff_stream = Stream_function(coefficient, R, P._sparse, 1) + return P.element_class(P, coeff_stream) + + coeff_stream = Stream_cauchy_compose(self._coeff_stream, g0._coeff_stream) + return P.element_class(P, coeff_stream) + + # The arity is at least 2 + gv = min(h._coeff_stream._approximate_order for h in g) + def coefficient(n): + r = R.zero() + for i in range(n//gv+1): + # Make sure the element returned from the composition is in P + r += P(self[i](g))[n] + return r + coeff_stream = Stream_function(coefficient, R, P._sparse, sorder * gv) return P.element_class(P, coeff_stream) + compose = __call__ + def _format_series(self, formatter, format_strings=False): """ Return nonzero ``self`` formatted by ``formatter``. @@ -3492,7 +3621,7 @@ class LazySymmetricFunction(LazyCauchyProductSeries): sage: s = SymmetricFunctions(ZZ).s() sage: L = LazySymmetricFunctions(s) """ - def __call__(self, *args): + def __call__(self, *args, check=True): r""" Return the composition of ``self`` with ``args``. @@ -3554,6 +3683,15 @@ def __call__(self, *args): s[] + (s[2,2]+s[4]) + O^7 sage: S(sum(f[i](s[2]) for i in range(5))).truncate(10) == g.truncate(10) True + sage: f = 1 / (1 - S(s[2])) + sage: g = S(s[1]) / (1 - S(s[1])) + sage: h = f(g) + sage: h + s[] + s[2] + (s[1,1,1]+2*s[2,1]+s[3]) + + (2*s[1,1,1,1]+4*s[2,1,1]+5*s[2,2]+5*s[3,1]+3*s[4]) + + (2*s[1,1,1,1,1]+10*s[2,1,1,1]+14*s[2,2,1]+18*s[3,1,1]+16*s[3,2]+14*s[4,1]+4*s[5]) + + (3*s[1,1,1,1,1,1]+22*s[2,1,1,1,1]+38*s[2,2,1,1]+28*s[2,2,2]+48*s[3,1,1,1]+82*s[3,2,1]+25*s[3,3]+51*s[4,1,1]+56*s[4,2]+31*s[5,1]+9*s[6]) + + O^7 sage: f(0) 1 sage: f(s(1)) @@ -3597,13 +3735,15 @@ def __call__(self, *args): g = P(g) # self has (potentially) infinitely many terms - if g._coeff_stream._approximate_order == 0: - if g[0]: - raise ValueError("can only compose with a positive valuation series") - g._coeff_stream._approximate_order = 1 - - p = R.realization_of().power() - g_p = Stream_map_coefficients(g._coeff_stream, lambda c: c, p) + if check: + if g._coeff_stream._approximate_order == 0: + if g[0]: + raise ValueError("can only compose with a positive valuation series") + g._coeff_stream._approximate_order = 1 + + ps = P._laurent_poly_ring.realization_of().p() + coeff_stream = Stream_plethysm(self._coeff_stream, g._coeff_stream, ps) + g_p = Stream_map_coefficients(g._coeff_stream, lambda c: c, ps) try: degree_one = [BR(x) for x in BR.variable_names_recursive()] except AttributeError: @@ -3630,23 +3770,25 @@ def g_coeff_stream(k): R, P._sparse, 0) from sage.misc.lazy_list import lazy_list stretched = lazy_list(lambda k: g_coeff_stream(k)) - f_p = Stream_map_coefficients(self._coeff_stream, lambda c: c, p) + f_p = Stream_map_coefficients(self._coeff_stream, lambda c: c, ps) def coefficient(n): r = R(0) for i in range(n+1): - r += p._apply_module_morphism(f_p[i], - lambda part: p.prod(sum(stretched[j][h] for h in range(n+1)) - for j in part), - codomain=p).homogeneous_component(n) + r += ps._apply_module_morphism(f_p[i], + lambda part: ps.prod(sum(stretched[j][h] for h in range(n+1)) + for j in part), + codomain=ps).homogeneous_component(n) return r + #coeff_stream = Stream_function(coefficient, P._internal_poly_ring.base_ring(), P._sparse, 0) else: - raise NotImplementedError + raise NotImplementedError("only implemented for arity 1") - coeff_stream = Stream_function(coefficient, P._internal_poly_ring.base_ring(), P._sparse, 0) return P.element_class(P, coeff_stream) + plethysm = __call__ + def _format_series(self, formatter, format_strings=False): - """ + r""" Return nonzero ``self`` formatted by ``formatter``. TESTS:: @@ -3656,7 +3798,14 @@ def _format_series(self, formatter, format_strings=False): sage: L = LazySymmetricFunctions(tensor([h, e])) sage: f = L(lambda n: sum(tensor([h[k], e[n-k]]) for k in range(n+1))) sage: f._format_series(repr) - '(h[]#e[]) + (h[]#e[1]+h[1]#e[]) + (h[]#e[2]+h[1]#e[1]+h[2]#e[]) + (h[]#e[3]+h[1]#e[2]+h[2]#e[1]+h[3]#e[]) + (h[]#e[4]+h[1]#e[3]+h[2]#e[2]+h[3]#e[1]+h[4]#e[]) + (h[]#e[5]+h[1]#e[4]+h[2]#e[3]+h[3]#e[2]+h[4]#e[1]+h[5]#e[]) + (h[]#e[6]+h[1]#e[5]+h[2]#e[4]+h[3]#e[3]+h[4]#e[2]+h[5]#e[1]+h[6]#e[]) + O^7' + '(h[]#e[]) + + (h[]#e[1]+h[1]#e[]) + + (h[]#e[2]+h[1]#e[1]+h[2]#e[]) + + (h[]#e[3]+h[1]#e[2]+h[2]#e[1]+h[3]#e[]) + + (h[]#e[4]+h[1]#e[3]+h[2]#e[2]+h[3]#e[1]+h[4]#e[]) + + (h[]#e[5]+h[1]#e[4]+h[2]#e[3]+h[3]#e[2]+h[4]#e[1]+h[5]#e[]) + + (h[]#e[6]+h[1]#e[5]+h[2]#e[4]+h[3]#e[3]+h[4]#e[2]+h[5]#e[1]+h[6]#e[]) + + O^7' """ P = self.parent() cs = self._coeff_stream @@ -3920,7 +4069,7 @@ def __invert__(self): P = self.parent() return P.element_class(P, Stream_dirichlet_invert(self._coeff_stream)) - def __call__(self, p): + def __call__(self, p, *, check=True): r""" Return the composition of ``self`` with a linear polynomial ``p``. diff --git a/src/sage/rings/lazy_series_ring.py b/src/sage/rings/lazy_series_ring.py index 0ef1f1888c3..b0cc8172d07 100644 --- a/src/sage/rings/lazy_series_ring.py +++ b/src/sage/rings/lazy_series_ring.py @@ -671,6 +671,20 @@ def is_sparse(self): """ return self._sparse + def is_exact(self): + """ + Return if ``self`` is exact or not. + + EXAMPLES:: + + sage: L = LazyLaurentSeriesRing(ZZ, 'z') + sage: L.is_exact() + True + sage: L = LazyLaurentSeriesRing(RR, 'z') + sage: L.is_exact() + False + """ + return self.base_ring().is_exact() class LazyLaurentSeriesRing(LazySeriesRing): """