You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
sage: R.<x,y>=QQ[]
sage: I = R.ideal(x)
sage: I.primary_decomposition("elephants")
---------------------------------------------------------------------------
UnboundLocalError Traceback (most recent call last)
<ipython-input-3-640b8340fda6> in <module>()
----> 1 I.primary_decomposition("elephants")
/home/kroeker/Projects/sage/local/lib/python2.7/site-packages/sage/rings/polynomial/multi_polynomial_ideal.pyc in __call__(self, *args, **kwds)
603 if not R.base_ring().is_field():
604 raise ValueError("Coefficient ring must be a field for function '%s'."%(self.f.__name__))
--> 605 return self.f(self._instance, *args, **kwds)
606
607 require_field = RequireField
/home/kroeker/Projects/sage/local/lib/python2.7/site-packages/sage/rings/polynomial/multi_polynomial_ideal.pyc in primary_decomposition(self, algorithm)
1159 York 1993.
1160 """
-> 1161 return [I for I, _ in self.complete_primary_decomposition(algorithm)]
1162
1163 @require_field
/home/kroeker/Projects/sage/local/lib/python2.7/site-packages/sage/rings/polynomial/multi_polynomial_ideal.pyc in __call__(self, *args, **kwds)
603 if not R.base_ring().is_field():
604 raise ValueError("Coefficient ring must be a field for function '%s'."%(self.f.__name__))
--> 605 return self.f(self._instance, *args, **kwds)
606
607 require_field = RequireField
/home/kroeker/Projects/sage/local/lib/python2.7/site-packages/sage/rings/polynomial/multi_polynomial_ideal.pyc in wrapper(*args, **kwds)
503 """
504 with LibSingularDefaultContext():
--> 505 return func(*args, **kwds)
506 return wrapper
507
/home/kroeker/Projects/sage/local/lib/python2.7/site-packages/sage/rings/polynomial/multi_polynomial_ideal.pyc in complete_primary_decomposition(self, algorithm)
1086
1087 R = self.ring()
-> 1088 V = [(R.ideal(X[0]), R.ideal(X[1])) for X in P]
1089 V = Sequence(V)
1090 self.__complete_primary_decomposition[algorithm] = V
UnboundLocalError: local variable 'P' referenced before assignment
CC: @nathanncohen @tom111
Component: commutative algebra
Keywords: primary decomposition error message
Issue created by migration from https://trac.sagemath.org/ticket/17723
The text was updated successfully, but these errors were encountered: