forked from torch/nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMultiMarginCriterion.lua
64 lines (61 loc) · 1.92 KB
/
MultiMarginCriterion.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
local THNN = require 'nn.THNN'
local MultiMarginCriterion, parent = torch.class('nn.MultiMarginCriterion', 'nn.Criterion')
function MultiMarginCriterion:__init(p, weights, margin)
assert(p == nil or p == 1 or p == 2, 'only p=1 and p=2 supported')
self.p = p or 1
self.margin = margin or 1.0
parent.__init(self)
self.sizeAverage = true
if weights then
assert(weights:dim() == 1, "weights input should be 1-D Tensor")
self.weights = weights
end
end
function MultiMarginCriterion:updateOutput(input, target)
-- backward compatibility
if not torch.isTensor(target) then
self.target_tensor = self.target_tensor or torch.LongTensor(1)
self.target_tensor[1] = target
target = self.target_tensor
end
if torch.typename(input):find('torch%.Cuda.*Tensor') then
target = torch.CudaLongTensor and target:cudaLong() or target
else
target = target:long()
end
self.p = self.p or 1
self.output_tensor = self.output_tensor or input.new(1)
input.THNN.MultiMarginCriterion_updateOutput(
input:cdata(),
target:cdata(),
self.output_tensor:cdata(),
self.sizeAverage,
self.p,
THNN.optionalTensor(self.weights),
self.margin
)
self.output = self.output_tensor[1]
return self.output
end
function MultiMarginCriterion:updateGradInput(input, target)
if not torch.isTensor(target) then
self.target_tensor = self.target_tensor or torch.LongTensor(1)
self.target_tensor[1] = target
target = self.target_tensor
end
if torch.typename(input):find('torch%.Cuda.*Tensor') then
target = torch.CudaLongTensor and target:cudaLong() or target
else
target = target:long()
end
input.THNN.MultiMarginCriterion_updateGradInput(
input:cdata(),
target:cdata(),
self.gradInput:cdata(),
self.sizeAverage,
self.p,
THNN.optionalTensor(self.weights),
self.margin
)
return self.gradInput
end