forked from torch/nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMapTable.lua
99 lines (87 loc) · 2.42 KB
/
MapTable.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
local MapTable, parent = torch.class('nn.MapTable', 'nn.Container')
function MapTable:__init(module, shared)
parent.__init(self)
self.shared = shared or {'weight', 'bias', 'gradWeight', 'gradBias'}
self.output = {}
self.gradInput = {}
self:add(module)
end
function MapTable:_extend(n)
self.modules[1] = self.module
for i = 2, n do
if not self.modules[i] then
self.modules[i] = self.module:clone(table.unpack(self.shared))
end
end
end
function MapTable:resize(n)
self:_extend(n)
for i = n + 1, #self.modules do
self.modules[i] = nil
end
end
function MapTable:add(module)
assert(not self.module, 'Single module required')
self.module = module
self.modules[1] = self.module
return self
end
function MapTable:updateOutput(input)
self.output = {}
self:_extend(#input)
for i = 1, #input do
self.output[i] = self:rethrowErrors(self.modules[i], i, 'updateOutput', input[i])
end
return self.output
end
function MapTable:updateGradInput(input, gradOutput)
self.gradInput = {}
self:_extend(#input)
for i = 1, #input do
self.gradInput[i] = self:rethrowErrors(self.modules[i], i, 'updateGradInput', input[i], gradOutput[i])
end
return self.gradInput
end
function MapTable:accGradParameters(input, gradOutput, scale)
scale = scale or 1
self:_extend(#input)
for i = 1, #input do
self:rethrowErrors(self.modules[i], i, 'accGradParameters', input[i], gradOutput[i], scale)
end
end
function MapTable:accUpdateGradParameters(input, gradOutput, lr)
lr = lr or 1
self:_extend(#input)
for i = 1, #input do
self:rethrowErrors(self.modules[i], i, 'accUpdateGradParameters', input[i], gradOutput[i], lr)
end
end
function MapTable:zeroGradParameters()
if self.module then
self.module:zeroGradParameters()
end
end
function MapTable:updateParameters(learningRate)
if self.module then
self.module:updateParameters(learningRate)
end
end
function MapTable:clearState()
for i = 2, #self.modules do
self.modules[i] = nil
end
parent.clearState(self)
end
function MapTable:__tostring__()
local tab = ' '
local line = '\n'
local extlast = ' '
local str = torch.type(self)
if self.module then
str = str .. ' {' .. line .. tab
str = str .. tostring(self.module):gsub(line, line .. tab .. extlast) .. line .. '}'
else
str = str .. ' { }'
end
return str
end