-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_dsc.py
51 lines (37 loc) · 1.36 KB
/
compute_dsc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 14 11:33:36 2020
@author: sadhana-ravikumar
"""
import nibabel as nib
import sys
sys.path.append('./utilities')
import preprocess_data as p
import numpy as np
def computeGeneralizedDSC(gt, seg):
gt_seg = gt[gt > 0]
myseg = seg[gt > 0]
gdsc = 100*(sum(gt_seg == myseg)/ len(gt_seg))
return gdsc
root_dir = "/home/sadhana-ravikumar/Documents/Sadhana/exvivo_cortex_unet"
train_val_csv = root_dir + "/data_csv/split.csv"
exp_dir = 'Experiment_060120201_updateddata/'
val_dir = root_dir + '/validation_output/' + exp_dir
input_dir = root_dir + '/inputs/'
image_dataset = p.ImageDataset(csv_file = train_val_csv)
dsc_list = []
for i in range(1,len(image_dataset)):
sample = image_dataset[i]
if(sample['type'] == 'test'):
image_id = sample['id']
seg = sample['seg']
print(image_id)
predicted_segfile = val_dir + 'seg_' + str(image_id) + ".0.nii.gz"
pred_seg = nib.load(predicted_segfile)
pred_seg = pred_seg.get_fdata().astype(np.float32)
dsc = computeGeneralizedDSC(seg,pred_seg)
dsc_list.append(dsc)
print("Average srlm validation accuracy is ", sum(dsc_list)/len(dsc_list))
print(dsc_list)
print("Standard deviation is ", np.std(dsc_list))