forked from ilyakava/pyfst
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsalt_binary.py
467 lines (371 loc) · 17 KB
/
salt_binary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
""" Convolutional Neural Network.
Build and train a convolutional neural network with TensorFlow.
This example is using the MNIST database of handwritten digits
(http://yann.lecun.com/exdb/mnist/)
This example is using TensorFlow layers API, see 'convolutional_network_raw'
example for a raw implementation with variables.
Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
"""
from __future__ import division, print_function, absolute_import
from collections import namedtuple
import itertools
import glob
import logging
import os
import re
import numpy as np
from PIL import Image
import tensorflow as tf
from tqdm import tqdm
import windows as win
import salt_data as sd
import salt_pixelNN as sNN
import salt_baseline as sb
import tang_feat as otf
from kaggle_prec import kaggle_prec
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import pdb
# Training Parameters
learning_rate = 0.00001
batch_size = 8
num_steps = 300
# Network Parameters
num_classes = 2 # MNIST total classes (0-9 digits)
dropout = 0.25 # Dropout, probability to drop a unit
layerO = namedtuple('layerO', ['strides', 'padding'])
winO = namedtuple('winO', ['nfilt', 'filters', 'filter_params', 'kernel_size'])
def scat2d(x, win_params, layer_params):
"""Single layer of 2d scattering
Args:
x is input with dim (batch, height, width, 1)
win_params.filters is complex with dim ......... (depth, height, width, channels)
"""
real1 = tf.layers.conv2d(
x,
win_params.nfilt,
win_params.kernel_size,
strides=layer_params.strides,
padding=layer_params.padding,
dilation_rate=(1,1),
activation=None,
use_bias=False,
kernel_initializer=tf.constant_initializer(win_params.filters.real, dtype=tf.float32),
trainable=False,
name=None
)
imag1 = tf.layers.conv2d(
x,
win_params.nfilt,
win_params.kernel_size,
strides=layer_params.strides,
padding=layer_params.padding,
dilation_rate=(1,1),
activation=None,
use_bias=False,
kernel_initializer=tf.constant_initializer(win_params.filters.imag, dtype=tf.float32),
trainable=False,
name=None
)
return tf.abs(tf.complex(real1, imag1))
def wst2d_to_2d_2layer(x, reuse=tf.AUTO_REUSE):
bs = batch_size
kernel_size = [1,7,7]
max_scale = 3
K = 3
psis = [None,None]
layer_params = [None,None,None]
psiO = win.tang_psi_factory(max_scale, K, kernel_size)
psiO = winO(psiO.nfilt, psiO.filters.squeeze(), psiO.filter_params, kernel_size[1:])
phiO = win.tang_phi_window_3D(max_scale, kernel_size)
phiO = winO(phiO.nfilt, phiO.filters.squeeze(), phiO.filter_params, kernel_size[1:])
with tf.variable_scope('TangNet2d', reuse=reuse):
psis[0] = psiO
layer_params[0] = layerO((1,1), 'valid')
# 107, 107
U1 = scat2d(x, psis[0], layer_params[0])
layer_params[1] = layerO((1,1), 'valid')
U2s = []
# only procede with increasing frequency paths
for res_i, used_params in enumerate(psis[0].filter_params):
if used_params[0] < max_scale - 1:
psiO_inc = win.tang_psi_factory(max_scale, K, kernel_size, used_params[0]+1)
psiO_inc = winO(psiO_inc.nfilt, psiO_inc.filters.squeeze(), psiO_inc.filter_params, kernel_size[1:])
U2s.append(scat2d(U1[:,:,:,res_i:(res_i+1)], psiO_inc, layer_params[1]))
# 101, 101
U2 = tf.concat(U2s, 3)
# swap to (batch, chanU2, h, w)
U2 = tf.transpose(U2, [0,3,1,2])
# reshape to (batch, h,w, 1)
U2os = U2.get_shape()
U2 = tf.reshape(U2, (bs*U2.get_shape()[1], U2.get_shape()[2],U2.get_shape()[3],1))
# swap to (batch, chanU1, h, w)
U1 = tf.transpose(U1, [0,3,1,2])
# reshape to (batch, h,w, 1)
U1os = U1.get_shape()
U1 = tf.reshape(U1, (bs*U1.get_shape()[1], U1.get_shape()[2], U1.get_shape()[3], 1))
# now lo-pass
# each layer lo-passed differently so that (h,w) align bc we
# want to be able to do 2d convolutions afterwards again
layer_params[2] = layerO((1,1), 'valid')
phi = win.fst2d_phi_factory([5,5])
# filter and separate by original batch via old shape
S0 = scat2d(x[:,6:-6, 6:-6, :], phi, layer_params[2])
S0 = tf.reshape(S0, (bs, 1, S0.get_shape()[1], S0.get_shape()[2]))
S1 = scat2d(U1[:,3:-3,3:-3,:], phi, layer_params[2])
S1 = tf.reshape(S1, (bs, U1os[1], S1.get_shape()[1],S1.get_shape()[2]))
S2 = scat2d(U2, phi, layer_params[2])
S2 = tf.reshape(S2, (bs, U2os[1], S2.get_shape()[1], S2.get_shape()[2]))
# (batch, chan, h,w)
feat2d = tf.concat([S0,S1,S2], 1)
return tf.transpose(feat2d, [0,2,3,1])
def scat2d_to_2d_2layer(x, reuse=tf.AUTO_REUSE):
"""
Args:
x: in (batch, h, w, 1) shape
Returns
(batch, h, w, channels)
"""
psis = [None,None]
layer_params = [None,None,None]
with tf.variable_scope('scat2d_to_2d_2layer', reuse=reuse):
# TF Estimator input is a dict, in case of multiple inputs
# x = tf.reshape(x, shape=[-1, 113, 113, 1])
bs = batch_size
psis[0] = win.fst2d_psi_factory([17, 17], include_avg=False, filt_steps_ovr=[9, 9])
layer_params[0] = layerO((1,1), 'valid')
# 107, 107
U1 = scat2d(x, psis[0], layer_params[0])
psis[1] = win.fst2d_psi_factory([17, 17], include_avg=False, filt_steps_ovr=[9, 9])
layer_params[1] = layerO((1,1), 'valid')
U2s = []
# only procede with increasing frequency paths
for res_i, used_params in enumerate(psis[0].filter_params):
increasing_psi = win.fst2d_psi_factory(psis[1].kernel_size, used_params)
if increasing_psi.nfilt > 0:
U2s.append(scat2d(U1[:,:,:,res_i:(res_i+1)], increasing_psi, layer_params[1]))
# 101, 101
U2 = tf.concat(U2s, 3)
# swap to (batch, chanU2, h, w)
U2 = tf.transpose(U2, [0,3,1,2])
# reshape to (batch, h,w, 1)
U2os = U2.get_shape()
U2 = tf.reshape(U2, (bs*U2.get_shape()[1], U2.get_shape()[2],U2.get_shape()[3],1))
# swap to (batch, chanU1, h, w)
U1 = tf.transpose(U1, [0,3,1,2])
# reshape to (batch, h,w, 1)
U1os = U1.get_shape()
U1 = tf.reshape(U1, (bs*U1.get_shape()[1], U1.get_shape()[2], U1.get_shape()[3], 1))
# now lo-pass
# each layer lo-passed differently so that (h,w) align bc we
# want to be able to do 2d convolutions afterwards again
layer_params[2] = layerO((1,1), 'valid')
phi = win.fst2d_phi_factory([7,7])
# filter and separate by original batch via old shape
S0 = scat2d(x[:,16:-16, 16:-16, :], phi, layer_params[2])
S0 = tf.reshape(S0, (bs, 1, S0.get_shape()[1], S0.get_shape()[2]))
S1 = scat2d(U1[:,8:-8,8:-8,:], phi, layer_params[2])
S1 = tf.reshape(S1, (bs, U1os[1], S1.get_shape()[1],S1.get_shape()[2]))
S2 = scat2d(U2, phi, layer_params[2])
S2 = tf.reshape(S2, (bs, U2os[1], S2.get_shape()[1], S2.get_shape()[2]))
# (batch, chan, h,w)
feat2d = tf.concat([S0,S1,S2], 1)
return tf.transpose(feat2d, [0,2,3,1])
# Create the neural network
def conv_net(x_dict, n_classes, dropout, reuse, is_training):
# Define a scope for reusing the variables
with tf.variable_scope('ConvNet', reuse=reuse):
# TF Estimator input is a dict, like in MNIST example
x = x_dict['images']
feat = scat2d_to_2d_2layer(x, reuse)
mlt = 4
# 1x1 conv replaces PCA step
conv1 = tf.layers.conv2d(feat, 16*mlt, 1)
# Convolution Layer with 64 filters and a kernel size of 3
conv2 = tf.layers.conv2d(conv1, 16*mlt, 3, activation=tf.nn.relu, padding='same')
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv2 = tf.layers.max_pooling2d(conv2, 2, 2) # 52
conv3 = tf.layers.conv2d(conv2, 32*mlt, 3, activation=tf.nn.relu, padding='same')
conv3 = tf.layers.max_pooling2d(conv3, 2, 2) # 26
conv4 = tf.layers.conv2d(conv3, 64*mlt, 3, activation=tf.nn.relu, padding='same')
conv4 = tf.layers.max_pooling2d(conv4, 2, 2) # 13
# Flatten the data to a 1-D vector for the fully connected layer
fc1 = tf.contrib.layers.flatten(conv4)
# Fully connected layer (in tf contrib folder for now)
fc1 = tf.layers.dense(fc1, 1024*mlt)
# Apply Dropout (if is_training is False, dropout is not applied)
fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training)
fc2 = tf.layers.dense(fc1, 250*mlt)
# Output layer, class prediction
out = tf.layers.dense(fc2, n_classes)
return out
# Define the model function (following TF Estimator Template)
def model_fn(features, labels, mode):
# Build the neural network
# Because Dropout have different behavior at training and prediction time, we
# need to create 2 distinct computation graphs that still share the same weights.
logits_train = conv_net(features, num_classes, dropout, reuse=False,
is_training=True)
logits_test = conv_net(features, num_classes, dropout, reuse=True,
is_training=False)
# Predictions
pred_classes = tf.argmax(logits_test, axis=1)
pred_probas = tf.nn.softmax(logits_test)
# If prediction mode, early return
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode, predictions=pred_classes)
# Define loss and optimizer
loss_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits_train, labels=tf.cast(labels, dtype=tf.int32)))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op,
global_step=tf.train.get_global_step())
# Evaluate the accuracy of the model
acc_op = tf.metrics.accuracy(labels=labels, predictions=pred_classes)
FP_op = tf.metrics.false_positives(labels, pred_classes)
FN_op = tf.metrics.false_negatives(labels, pred_classes)
TP_op = tf.metrics.true_positives(labels, pred_classes)
mask_predicted_rate_op = tf.metrics.mean(pred_classes)
prec_op = tf.metrics.precision(labels, pred_classes)
kaggle_op = kaggle_prec(labels, pred_classes)
myevalops = {
'accuracy': acc_op,
'mask_presence/false_positives': FP_op,
'mask_presence/false_negatives': FN_op,
'mask_presence/true_positives': TP_op,
'mask_presence/mask_prediction_rate': mask_predicted_rate_op,
'mask_presence/mask_rate': tf.metrics.mean(labels),
'mask_presence/precision': prec_op,
'mask_presence/kaggle': kaggle_op}
# TF Estimators requires to return a EstimatorSpec, that specify
# the different ops for training, evaluating, ...
estim_specs = tf.estimator.EstimatorSpec(
mode=mode,
predictions=pred_classes,
loss=loss_op,
train_op=train_op,
eval_metric_ops=myevalops)
return estim_specs
from window_plot import ScrollThruPlot
def scat2d_eg():
files = glob.glob('/scratch0/ilya/locDoc/data/kaggle-seismic-dataset/train/images/*.png')
# find a particular example of interest
cool_eg = '/scratch0/ilya/locDoc/data/kaggle-seismic-dataset/train/images/0a1742c740.png'
cool_eg_idx = re.search(cool_eg, ''.join(files)).start() // len(cool_eg)
x = tf.placeholder(tf.float32, shape=(8,113,113,1))
feat = scat2d_to_2d_2layer(x)
egbatch = get_salt_images()
egbatch = egbatch[cool_eg_idx:(cool_eg_idx+8),:,:,:]
sess = tf.Session()
sess.run(tf.global_variables_initializer())
feed_dict = {x: egbatch}
myres = sess.run(feat, feed_dict)
# now lets look at them
X = myres[0,:,:,:]
fig, ax = plt.subplots(1, 1)
tracker = ScrollThruPlot(ax, X, fig)
fig.canvas.mpl_connect('scroll_event', tracker.onscroll)
plt.show()
pdb.set_trace()
plt.imsave('/scratch0/ilya/locDoc/data/kaggle-seismic-dataset/scat_eg/input.png', egbatch[0,:,:,0], cmap=cm.gray)
for c_idx in range(X.shape[2]):
plt.imsave('/scratch0/ilya/locDoc/data/kaggle-seismic-dataset/scat_eg/channels/%03d.png' % c_idx, X[:,:,c_idx], cmap=cm.gray)
def get_salt_images(folder='mytrain'):
image_list = []
for filename in glob.glob('/scratch0/ilya/locDoc/data/kaggle-seismic-dataset/%s/images/*.png' % folder): #assuming gif
im=Image.open(filename).convert('L')
npim = np.array(im, dtype=np.float32) / 255.0
npim_padded = np.pad(npim, ((12,0),(12,0)), 'reflect')
image_list.append(npim_padded)
im.close()
image_list = np.array(image_list)
return np.expand_dims(image_list, -1)
def get_decisions(foldername='test', model_dir=None, outfile=None):
"""
change the first two vars to run on different sets
"""
valX = get_salt_images(folder=foldername)
fileids = sb.clean_glob(glob.glob('/scratch0/ilya/locDoc/data/kaggle-seismic-dataset/%s/images/*.png' % foldername))
setsize = len(fileids)
headsz = int(setsize / float(batch_size)) * batch_size
input_fn = tf.estimator.inputs.numpy_input_fn(
x={'images': valX[:headsz,:,:,:]},
batch_size=batch_size, shuffle=False)
# '/scratch0/ilya/locDoc/data/kaggle-seismic-dataset/models/binary1'
bin_model = tf.estimator.Estimator(model_fn, model_dir=model_dir)
gen = bin_model.predict(input_fn)
id_to_pred = {}
for file_i, prediction in enumerate(tqdm(gen, total=headsz)):
fileid, file_extension = os.path.splitext(fileids[file_i])
id_to_pred[fileid] = prediction
# now get the tail
input_fn = tf.estimator.inputs.numpy_input_fn(x={'images': valX[-batch_size:,:,:,:]},
batch_size=batch_size, shuffle=False)
gen = bin_model.predict(input_fn)
for file_i, prediction in enumerate(gen):
idx = setsize-batch_size+file_i
fileid, file_extension = os.path.splitext(fileids[idx])
id_to_pred[fileid] = prediction
# '/scratch0/ilya/locDoc/data/kaggle-seismic-dataset/models/binary1/test_bin_pred'
if outfile:
np.save(outfile, id_to_pred)
return id_to_pred
def view_mistakes():
foldername = 'myval'
id_to_pred = get_decisions(foldername, '/scratch0/ilya/locDoc/data/kaggle-seismic-dataset/models/binary13b')
fileids = sb.clean_glob(glob.glob('/scratch0/ilya/locDoc/data/kaggle-seismic-dataset/%s/images/*.png' % foldername))
# imgs = sd.get_salt_labels(folder='myval')
# imgs = np.reshape(imgs, (imgs.shape[0], 101,101))
imgs = sd.get_salt_images(folder='myval')
val_pix_num = sd.salt_pixel_num(folder='myval')
valY = np.array(val_pix_num > 0).astype(int)
mistake_i = 0
for file_id_i, file_id in enumerate(fileids):
fileid, file_extension = os.path.splitext(file_id)
if valY[file_id_i] != id_to_pred[fileid]:
imgs[mistake_i,:,:] = imgs[file_id_i,:,:]
mistake_i += 1
print('made %i mistakes' % mistake_i)
X = np.swapaxes(np.swapaxes(imgs[:mistake_i,:,:],0,2),0,1).astype(float)
fig, ax = plt.subplots(1, 1)
tracker = ScrollThruPlot(ax, X, fig)
fig.canvas.mpl_connect('scroll_event', tracker.onscroll)
plt.show()
def save_test_dec():
mymodel = '/scratch0/ilya/locDoc/data/kaggle-seismic-dataset/models/binary13b'
myoutfile = '/scratch0/ilya/locDoc/data/kaggle-seismic-dataset/models/binary13b/val_bin_pred.npy'
get_decisions(foldername='myval', model_dir=mymodel, outfile=myoutfile)
def main():
trainX = get_salt_images(folder='mytrain')
train_pix_num = sd.salt_pixel_num(folder='mytrain')
trainY = np.array(train_pix_num > 0).astype(int)
valX = get_salt_images(folder='myval')
val_pix_num = sd.salt_pixel_num(folder='myval')
valY = np.array(val_pix_num > 0).astype(int)
# Build the Estimator
model_dir = '/scratch0/ilya/locDoc/data/kaggle-seismic-dataset/models/binary13b'
model = tf.estimator.Estimator(model_fn, model_dir=model_dir)
for i in range(100000):
# Define the input function for training
input_fn = tf.estimator.inputs.numpy_input_fn(
x={'images': trainX[:3584,:,:,:]}, y=trainY[:3584],
batch_size=batch_size, num_epochs=1, shuffle=True)
# Train the Model
tf.logging.set_verbosity(tf.logging.INFO)
model.train(input_fn, steps=None)
# if i % 2 == 0:
# Evaluate the Model
# Define the input function for evaluating
input_fn = tf.estimator.inputs.numpy_input_fn(
x={'images': valX[:384,:,:,:]}, y=valY[:384],
batch_size=batch_size, shuffle=False)
# Use the Estimator 'evaluate' method
e = model.evaluate(input_fn)
print("Testing Accuracy:", e['accuracy'])
if __name__ == '__main__':
scat2d_eg()
# lets look at the result images with the scroll thru vis
# then do the mnist like network on binary and see results (with PCA layer in between)
# and research what they do for semantic segmentation, u net like stuff
# later concatenate in 2d wavelet features