-
-
Notifications
You must be signed in to change notification settings - Fork 4.8k
/
res2net.py
227 lines (184 loc) · 7.51 KB
/
res2net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
""" Res2Net and Res2NeXt
Adapted from Official Pytorch impl at: https://github.com/gasvn/Res2Net/
Paper: `Res2Net: A New Multi-scale Backbone Architecture` - https://arxiv.org/abs/1904.01169
"""
import math
import torch
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from ._builder import build_model_with_cfg
from ._registry import register_model, generate_default_cfgs
from .resnet import ResNet
__all__ = []
class Bottle2neck(nn.Module):
""" Res2Net/Res2NeXT Bottleneck
Adapted from https://github.com/gasvn/Res2Net/blob/master/res2net.py
"""
expansion = 4
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
cardinality=1,
base_width=26,
scale=4,
dilation=1,
first_dilation=None,
act_layer=nn.ReLU,
norm_layer=None,
attn_layer=None,
**_,
):
super(Bottle2neck, self).__init__()
self.scale = scale
self.is_first = stride > 1 or downsample is not None
self.num_scales = max(1, scale - 1)
width = int(math.floor(planes * (base_width / 64.0))) * cardinality
self.width = width
outplanes = planes * self.expansion
first_dilation = first_dilation or dilation
self.conv1 = nn.Conv2d(inplanes, width * scale, kernel_size=1, bias=False)
self.bn1 = norm_layer(width * scale)
convs = []
bns = []
for i in range(self.num_scales):
convs.append(nn.Conv2d(
width, width, kernel_size=3, stride=stride, padding=first_dilation,
dilation=first_dilation, groups=cardinality, bias=False))
bns.append(norm_layer(width))
self.convs = nn.ModuleList(convs)
self.bns = nn.ModuleList(bns)
if self.is_first:
# FIXME this should probably have count_include_pad=False, but hurts original weights
self.pool = nn.AvgPool2d(kernel_size=3, stride=stride, padding=1)
else:
self.pool = None
self.conv3 = nn.Conv2d(width * scale, outplanes, kernel_size=1, bias=False)
self.bn3 = norm_layer(outplanes)
self.se = attn_layer(outplanes) if attn_layer is not None else None
self.relu = act_layer(inplace=True)
self.downsample = downsample
def zero_init_last(self):
if getattr(self.bn3, 'weight', None) is not None:
nn.init.zeros_(self.bn3.weight)
def forward(self, x):
shortcut = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
spx = torch.split(out, self.width, 1)
spo = []
sp = spx[0] # redundant, for torchscript
for i, (conv, bn) in enumerate(zip(self.convs, self.bns)):
if i == 0 or self.is_first:
sp = spx[i]
else:
sp = sp + spx[i]
sp = conv(sp)
sp = bn(sp)
sp = self.relu(sp)
spo.append(sp)
if self.scale > 1:
if self.pool is not None: # self.is_first == True, None check for torchscript
spo.append(self.pool(spx[-1]))
else:
spo.append(spx[-1])
out = torch.cat(spo, 1)
out = self.conv3(out)
out = self.bn3(out)
if self.se is not None:
out = self.se(out)
if self.downsample is not None:
shortcut = self.downsample(x)
out += shortcut
out = self.relu(out)
return out
def _create_res2net(variant, pretrained=False, **kwargs):
return build_model_with_cfg(ResNet, variant, pretrained, **kwargs)
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bilinear',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'conv1', 'classifier': 'fc',
**kwargs
}
default_cfgs = generate_default_cfgs({
'res2net50_26w_4s.in1k': _cfg(hf_hub_id='timm/'),
'res2net50_48w_2s.in1k': _cfg(hf_hub_id='timm/'),
'res2net50_14w_8s.in1k': _cfg(hf_hub_id='timm/'),
'res2net50_26w_6s.in1k': _cfg(hf_hub_id='timm/'),
'res2net50_26w_8s.in1k': _cfg(hf_hub_id='timm/'),
'res2net101_26w_4s.in1k': _cfg(hf_hub_id='timm/'),
'res2next50.in1k': _cfg(hf_hub_id='timm/'),
'res2net50d.in1k': _cfg(hf_hub_id='timm/', first_conv='conv1.0'),
'res2net101d.in1k': _cfg(hf_hub_id='timm/', first_conv='conv1.0'),
})
@register_model
def res2net50_26w_4s(pretrained=False, **kwargs) -> ResNet:
"""Constructs a Res2Net-50 26w4s model.
"""
model_args = dict(
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, block_args=dict(scale=4))
return _create_res2net('res2net50_26w_4s', pretrained, **dict(model_args, **kwargs))
@register_model
def res2net101_26w_4s(pretrained=False, **kwargs) -> ResNet:
"""Constructs a Res2Net-101 26w4s model.
"""
model_args = dict(
block=Bottle2neck, layers=[3, 4, 23, 3], base_width=26, block_args=dict(scale=4))
return _create_res2net('res2net101_26w_4s', pretrained, **dict(model_args, **kwargs))
@register_model
def res2net50_26w_6s(pretrained=False, **kwargs) -> ResNet:
"""Constructs a Res2Net-50 26w6s model.
"""
model_args = dict(
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, block_args=dict(scale=6))
return _create_res2net('res2net50_26w_6s', pretrained, **dict(model_args, **kwargs))
@register_model
def res2net50_26w_8s(pretrained=False, **kwargs) -> ResNet:
"""Constructs a Res2Net-50 26w8s model.
"""
model_args = dict(
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, block_args=dict(scale=8))
return _create_res2net('res2net50_26w_8s', pretrained, **dict(model_args, **kwargs))
@register_model
def res2net50_48w_2s(pretrained=False, **kwargs) -> ResNet:
"""Constructs a Res2Net-50 48w2s model.
"""
model_args = dict(
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=48, block_args=dict(scale=2))
return _create_res2net('res2net50_48w_2s', pretrained, **dict(model_args, **kwargs))
@register_model
def res2net50_14w_8s(pretrained=False, **kwargs) -> ResNet:
"""Constructs a Res2Net-50 14w8s model.
"""
model_args = dict(
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=14, block_args=dict(scale=8))
return _create_res2net('res2net50_14w_8s', pretrained, **dict(model_args, **kwargs))
@register_model
def res2next50(pretrained=False, **kwargs) -> ResNet:
"""Construct Res2NeXt-50 4s
"""
model_args = dict(
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=4, cardinality=8, block_args=dict(scale=4))
return _create_res2net('res2next50', pretrained, **dict(model_args, **kwargs))
@register_model
def res2net50d(pretrained=False, **kwargs) -> ResNet:
"""Construct Res2Net-50
"""
model_args = dict(
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, stem_type='deep',
avg_down=True, stem_width=32, block_args=dict(scale=4))
return _create_res2net('res2net50d', pretrained, **dict(model_args, **kwargs))
@register_model
def res2net101d(pretrained=False, **kwargs) -> ResNet:
"""Construct Res2Net-50
"""
model_args = dict(
block=Bottle2neck, layers=[3, 4, 23, 3], base_width=26, stem_type='deep',
avg_down=True, stem_width=32, block_args=dict(scale=4))
return _create_res2net('res2net101d', pretrained, **dict(model_args, **kwargs))