-
Notifications
You must be signed in to change notification settings - Fork 13.2k
/
Copy pathmod.rs
1710 lines (1509 loc) · 52.8 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// ignore-lexer-test FIXME #15679
//! String manipulation
//!
//! For more details, see std::str
#![doc(primitive = "str")]
use self::Searcher::{Naive, TwoWay, TwoWayLong};
use cmp::{self, Eq};
use default::Default;
use error::Error;
use fmt;
use iter::ExactSizeIterator;
use iter::range;
use iter::{Map, Iterator, IteratorExt, DoubleEndedIterator};
use marker::Sized;
use mem;
use num::Int;
use ops::{Fn, FnMut};
use option::Option::{self, None, Some};
use ptr::PtrExt;
use raw::{Repr, Slice};
use result::Result::{self, Ok, Err};
use slice::{self, SliceExt};
use uint;
macro_rules! delegate_iter {
(exact $te:ty : $ti:ty) => {
delegate_iter!{$te : $ti}
impl<'a> ExactSizeIterator for $ti {
#[inline]
fn len(&self) -> uint {
self.0.len()
}
}
};
($te:ty : $ti:ty) => {
#[stable]
impl<'a> Iterator for $ti {
type Item = $te;
#[inline]
fn next(&mut self) -> Option<$te> {
self.0.next()
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
self.0.size_hint()
}
}
#[stable]
impl<'a> DoubleEndedIterator for $ti {
#[inline]
fn next_back(&mut self) -> Option<$te> {
self.0.next_back()
}
}
};
(pattern $te:ty : $ti:ty) => {
#[stable]
impl<'a, P: CharEq> Iterator for $ti {
type Item = $te;
#[inline]
fn next(&mut self) -> Option<$te> {
self.0.next()
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
self.0.size_hint()
}
}
#[stable]
impl<'a, P: CharEq> DoubleEndedIterator for $ti {
#[inline]
fn next_back(&mut self) -> Option<$te> {
self.0.next_back()
}
}
};
(pattern forward $te:ty : $ti:ty) => {
#[stable]
impl<'a, P: CharEq> Iterator for $ti {
type Item = $te;
#[inline]
fn next(&mut self) -> Option<$te> {
self.0.next()
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
self.0.size_hint()
}
}
}
}
/// A trait to abstract the idea of creating a new instance of a type from a
/// string.
// FIXME(#17307): there should be an `E` associated type for a `Result` return
#[unstable = "will return a Result once associated types are working"]
pub trait FromStr {
/// Parses a string `s` to return an optional value of this type. If the
/// string is ill-formatted, the None is returned.
fn from_str(s: &str) -> Option<Self>;
}
impl FromStr for bool {
/// Parse a `bool` from a string.
///
/// Yields an `Option<bool>`, because `s` may or may not actually be parseable.
///
/// # Examples
///
/// ```rust
/// assert_eq!("true".parse(), Some(true));
/// assert_eq!("false".parse(), Some(false));
/// assert_eq!("not even a boolean".parse::<bool>(), None);
/// ```
#[inline]
fn from_str(s: &str) -> Option<bool> {
match s {
"true" => Some(true),
"false" => Some(false),
_ => None,
}
}
}
/*
Section: Creating a string
*/
/// Errors which can occur when attempting to interpret a byte slice as a `str`.
#[derive(Copy, Eq, PartialEq, Clone, Show)]
#[unstable = "error enumeration recently added and definitions may be refined"]
pub enum Utf8Error {
/// An invalid byte was detected at the byte offset given.
///
/// The offset is guaranteed to be in bounds of the slice in question, and
/// the byte at the specified offset was the first invalid byte in the
/// sequence detected.
InvalidByte(uint),
/// The byte slice was invalid because more bytes were needed but no more
/// bytes were available.
TooShort,
}
/// Converts a slice of bytes to a string slice without performing any
/// allocations.
///
/// Once the slice has been validated as utf-8, it is transmuted in-place and
/// returned as a '&str' instead of a '&[u8]'
///
/// # Failure
///
/// Returns `Err` if the slice is not utf-8 with a description as to why the
/// provided slice is not utf-8.
#[stable]
pub fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
try!(run_utf8_validation_iterator(&mut v.iter()));
Ok(unsafe { from_utf8_unchecked(v) })
}
/// Converts a slice of bytes to a string slice without checking
/// that the string contains valid UTF-8.
#[stable]
pub unsafe fn from_utf8_unchecked<'a>(v: &'a [u8]) -> &'a str {
mem::transmute(v)
}
/// Constructs a static string slice from a given raw pointer.
///
/// This function will read memory starting at `s` until it finds a 0, and then
/// transmute the memory up to that point as a string slice, returning the
/// corresponding `&'static str` value.
///
/// This function is unsafe because the caller must ensure the C string itself
/// has the static lifetime and that the memory `s` is valid up to and including
/// the first null byte.
///
/// # Panics
///
/// This function will panic if the string pointed to by `s` is not valid UTF-8.
#[deprecated = "use std::ffi::c_str_to_bytes + str::from_utf8"]
pub unsafe fn from_c_str(s: *const i8) -> &'static str {
let s = s as *const u8;
let mut len = 0u;
while *s.offset(len as int) != 0 {
len += 1u;
}
let v: &'static [u8] = ::mem::transmute(Slice { data: s, len: len });
from_utf8(v).ok().expect("from_c_str passed invalid utf-8 data")
}
/// Something that can be used to compare against a character
#[unstable = "definition may change as pattern-related methods are stabilized"]
pub trait CharEq {
/// Determine if the splitter should split at the given character
fn matches(&mut self, char) -> bool;
/// Indicate if this is only concerned about ASCII characters,
/// which can allow for a faster implementation.
fn only_ascii(&self) -> bool;
}
impl CharEq for char {
#[inline]
fn matches(&mut self, c: char) -> bool { *self == c }
#[inline]
fn only_ascii(&self) -> bool { (*self as uint) < 128 }
}
impl<F> CharEq for F where F: FnMut(char) -> bool {
#[inline]
fn matches(&mut self, c: char) -> bool { (*self)(c) }
#[inline]
fn only_ascii(&self) -> bool { false }
}
impl<'a> CharEq for &'a [char] {
#[inline]
fn matches(&mut self, c: char) -> bool {
self.iter().any(|&m| { let mut m = m; m.matches(c) })
}
#[inline]
fn only_ascii(&self) -> bool {
self.iter().all(|m| m.only_ascii())
}
}
#[stable]
impl Error for Utf8Error {
fn description(&self) -> &str {
match *self {
Utf8Error::TooShort => "invalid utf-8: not enough bytes",
Utf8Error::InvalidByte(..) => "invalid utf-8: corrupt contents",
}
}
}
#[stable]
impl fmt::Display for Utf8Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Utf8Error::InvalidByte(n) => {
write!(f, "invalid utf-8: invalid byte at index {}", n)
}
Utf8Error::TooShort => {
write!(f, "invalid utf-8: byte slice too short")
}
}
}
}
/*
Section: Iterators
*/
/// Iterator for the char (representing *Unicode Scalar Values*) of a string
///
/// Created with the method `.chars()`.
#[derive(Clone, Copy)]
#[stable]
pub struct Chars<'a> {
iter: slice::Iter<'a, u8>
}
// Return the initial codepoint accumulator for the first byte.
// The first byte is special, only want bottom 5 bits for width 2, 4 bits
// for width 3, and 3 bits for width 4
macro_rules! utf8_first_byte {
($byte:expr, $width:expr) => (($byte & (0x7F >> $width)) as u32)
}
// return the value of $ch updated with continuation byte $byte
macro_rules! utf8_acc_cont_byte {
($ch:expr, $byte:expr) => (($ch << 6) | ($byte & CONT_MASK) as u32)
}
macro_rules! utf8_is_cont_byte {
($byte:expr) => (($byte & !CONT_MASK) == TAG_CONT_U8)
}
#[inline]
fn unwrap_or_0(opt: Option<&u8>) -> u8 {
match opt {
Some(&byte) => byte,
None => 0,
}
}
/// Reads the next code point out of a byte iterator (assuming a
/// UTF-8-like encoding).
#[unstable]
pub fn next_code_point(bytes: &mut slice::Iter<u8>) -> Option<u32> {
// Decode UTF-8
let x = match bytes.next() {
None => return None,
Some(&next_byte) if next_byte < 128 => return Some(next_byte as u32),
Some(&next_byte) => next_byte,
};
// Multibyte case follows
// Decode from a byte combination out of: [[[x y] z] w]
// NOTE: Performance is sensitive to the exact formulation here
let init = utf8_first_byte!(x, 2);
let y = unwrap_or_0(bytes.next());
let mut ch = utf8_acc_cont_byte!(init, y);
if x >= 0xE0 {
// [[x y z] w] case
// 5th bit in 0xE0 .. 0xEF is always clear, so `init` is still valid
let z = unwrap_or_0(bytes.next());
let y_z = utf8_acc_cont_byte!((y & CONT_MASK) as u32, z);
ch = init << 12 | y_z;
if x >= 0xF0 {
// [x y z w] case
// use only the lower 3 bits of `init`
let w = unwrap_or_0(bytes.next());
ch = (init & 7) << 18 | utf8_acc_cont_byte!(y_z, w);
}
}
Some(ch)
}
#[stable]
impl<'a> Iterator for Chars<'a> {
type Item = char;
#[inline]
fn next(&mut self) -> Option<char> {
next_code_point(&mut self.iter).map(|ch| {
// str invariant says `ch` is a valid Unicode Scalar Value
unsafe {
mem::transmute(ch)
}
})
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let (len, _) = self.iter.size_hint();
(len.saturating_add(3) / 4, Some(len))
}
}
#[stable]
impl<'a> DoubleEndedIterator for Chars<'a> {
#[inline]
fn next_back(&mut self) -> Option<char> {
let w = match self.iter.next_back() {
None => return None,
Some(&back_byte) if back_byte < 128 => return Some(back_byte as char),
Some(&back_byte) => back_byte,
};
// Multibyte case follows
// Decode from a byte combination out of: [x [y [z w]]]
let mut ch;
let z = unwrap_or_0(self.iter.next_back());
ch = utf8_first_byte!(z, 2);
if utf8_is_cont_byte!(z) {
let y = unwrap_or_0(self.iter.next_back());
ch = utf8_first_byte!(y, 3);
if utf8_is_cont_byte!(y) {
let x = unwrap_or_0(self.iter.next_back());
ch = utf8_first_byte!(x, 4);
ch = utf8_acc_cont_byte!(ch, y);
}
ch = utf8_acc_cont_byte!(ch, z);
}
ch = utf8_acc_cont_byte!(ch, w);
// str invariant says `ch` is a valid Unicode Scalar Value
unsafe {
Some(mem::transmute(ch))
}
}
}
/// External iterator for a string's characters and their byte offsets.
/// Use with the `std::iter` module.
#[derive(Clone)]
#[stable]
pub struct CharIndices<'a> {
front_offset: uint,
iter: Chars<'a>,
}
#[stable]
impl<'a> Iterator for CharIndices<'a> {
type Item = (uint, char);
#[inline]
fn next(&mut self) -> Option<(uint, char)> {
let (pre_len, _) = self.iter.iter.size_hint();
match self.iter.next() {
None => None,
Some(ch) => {
let index = self.front_offset;
let (len, _) = self.iter.iter.size_hint();
self.front_offset += pre_len - len;
Some((index, ch))
}
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
self.iter.size_hint()
}
}
#[stable]
impl<'a> DoubleEndedIterator for CharIndices<'a> {
#[inline]
fn next_back(&mut self) -> Option<(uint, char)> {
match self.iter.next_back() {
None => None,
Some(ch) => {
let (len, _) = self.iter.iter.size_hint();
let index = self.front_offset + len;
Some((index, ch))
}
}
}
}
/// External iterator for a string's bytes.
/// Use with the `std::iter` module.
///
/// Created with `StrExt::bytes`
#[stable]
#[derive(Clone)]
pub struct Bytes<'a>(Map<&'a u8, u8, slice::Iter<'a, u8>, BytesDeref>);
delegate_iter!{exact u8 : Bytes<'a>}
/// A temporary fn new type that ensures that the `Bytes` iterator
/// is cloneable.
#[derive(Copy, Clone)]
struct BytesDeref;
impl<'a> Fn(&'a u8) -> u8 for BytesDeref {
#[inline]
extern "rust-call" fn call(&self, (ptr,): (&'a u8,)) -> u8 {
*ptr
}
}
/// An iterator over the substrings of a string, separated by `sep`.
#[derive(Clone)]
struct CharSplits<'a, Sep> {
/// The slice remaining to be iterated
string: &'a str,
sep: Sep,
/// Whether an empty string at the end is allowed
allow_trailing_empty: bool,
only_ascii: bool,
finished: bool,
}
/// An iterator over the substrings of a string, separated by `sep`,
/// splitting at most `count` times.
#[derive(Clone)]
struct CharSplitsN<'a, Sep> {
iter: CharSplits<'a, Sep>,
/// The number of splits remaining
count: uint,
invert: bool,
}
/// An iterator over the lines of a string, separated by `\n`.
#[stable]
pub struct Lines<'a> {
inner: CharSplits<'a, char>,
}
/// An iterator over the lines of a string, separated by either `\n` or (`\r\n`).
#[stable]
pub struct LinesAny<'a> {
inner: Map<&'a str, &'a str, Lines<'a>, fn(&str) -> &str>,
}
impl<'a, Sep> CharSplits<'a, Sep> {
#[inline]
fn get_end(&mut self) -> Option<&'a str> {
if !self.finished && (self.allow_trailing_empty || self.string.len() > 0) {
self.finished = true;
Some(self.string)
} else {
None
}
}
}
#[stable]
impl<'a, Sep: CharEq> Iterator for CharSplits<'a, Sep> {
type Item = &'a str;
#[inline]
fn next(&mut self) -> Option<&'a str> {
if self.finished { return None }
let mut next_split = None;
if self.only_ascii {
for (idx, byte) in self.string.bytes().enumerate() {
if self.sep.matches(byte as char) && byte < 128u8 {
next_split = Some((idx, idx + 1));
break;
}
}
} else {
for (idx, ch) in self.string.char_indices() {
if self.sep.matches(ch) {
next_split = Some((idx, self.string.char_range_at(idx).next));
break;
}
}
}
match next_split {
Some((a, b)) => unsafe {
let elt = self.string.slice_unchecked(0, a);
self.string = self.string.slice_unchecked(b, self.string.len());
Some(elt)
},
None => self.get_end(),
}
}
}
#[stable]
impl<'a, Sep: CharEq> DoubleEndedIterator for CharSplits<'a, Sep> {
#[inline]
fn next_back(&mut self) -> Option<&'a str> {
if self.finished { return None }
if !self.allow_trailing_empty {
self.allow_trailing_empty = true;
match self.next_back() {
Some(elt) if !elt.is_empty() => return Some(elt),
_ => if self.finished { return None }
}
}
let len = self.string.len();
let mut next_split = None;
if self.only_ascii {
for (idx, byte) in self.string.bytes().enumerate().rev() {
if self.sep.matches(byte as char) && byte < 128u8 {
next_split = Some((idx, idx + 1));
break;
}
}
} else {
for (idx, ch) in self.string.char_indices().rev() {
if self.sep.matches(ch) {
next_split = Some((idx, self.string.char_range_at(idx).next));
break;
}
}
}
match next_split {
Some((a, b)) => unsafe {
let elt = self.string.slice_unchecked(b, len);
self.string = self.string.slice_unchecked(0, a);
Some(elt)
},
None => { self.finished = true; Some(self.string) }
}
}
}
#[stable]
impl<'a, Sep: CharEq> Iterator for CharSplitsN<'a, Sep> {
type Item = &'a str;
#[inline]
fn next(&mut self) -> Option<&'a str> {
if self.count != 0 {
self.count -= 1;
if self.invert { self.iter.next_back() } else { self.iter.next() }
} else {
self.iter.get_end()
}
}
}
/// The internal state of an iterator that searches for matches of a substring
/// within a larger string using naive search
#[derive(Clone)]
struct NaiveSearcher {
position: uint
}
impl NaiveSearcher {
fn new() -> NaiveSearcher {
NaiveSearcher { position: 0 }
}
fn next(&mut self, haystack: &[u8], needle: &[u8]) -> Option<(uint, uint)> {
while self.position + needle.len() <= haystack.len() {
if &haystack[self.position .. self.position + needle.len()] == needle {
let match_pos = self.position;
self.position += needle.len(); // add 1 for all matches
return Some((match_pos, match_pos + needle.len()));
} else {
self.position += 1;
}
}
None
}
}
/// The internal state of an iterator that searches for matches of a substring
/// within a larger string using two-way search
#[derive(Clone)]
struct TwoWaySearcher {
// constants
crit_pos: uint,
period: uint,
byteset: u64,
// variables
position: uint,
memory: uint
}
/*
This is the Two-Way search algorithm, which was introduced in the paper:
Crochemore, M., Perrin, D., 1991, Two-way string-matching, Journal of the ACM 38(3):651-675.
Here's some background information.
A *word* is a string of symbols. The *length* of a word should be a familiar
notion, and here we denote it for any word x by |x|.
(We also allow for the possibility of the *empty word*, a word of length zero).
If x is any non-empty word, then an integer p with 0 < p <= |x| is said to be a
*period* for x iff for all i with 0 <= i <= |x| - p - 1, we have x[i] == x[i+p].
For example, both 1 and 2 are periods for the string "aa". As another example,
the only period of the string "abcd" is 4.
We denote by period(x) the *smallest* period of x (provided that x is non-empty).
This is always well-defined since every non-empty word x has at least one period,
|x|. We sometimes call this *the period* of x.
If u, v and x are words such that x = uv, where uv is the concatenation of u and
v, then we say that (u, v) is a *factorization* of x.
Let (u, v) be a factorization for a word x. Then if w is a non-empty word such
that both of the following hold
- either w is a suffix of u or u is a suffix of w
- either w is a prefix of v or v is a prefix of w
then w is said to be a *repetition* for the factorization (u, v).
Just to unpack this, there are four possibilities here. Let w = "abc". Then we
might have:
- w is a suffix of u and w is a prefix of v. ex: ("lolabc", "abcde")
- w is a suffix of u and v is a prefix of w. ex: ("lolabc", "ab")
- u is a suffix of w and w is a prefix of v. ex: ("bc", "abchi")
- u is a suffix of w and v is a prefix of w. ex: ("bc", "a")
Note that the word vu is a repetition for any factorization (u,v) of x = uv,
so every factorization has at least one repetition.
If x is a string and (u, v) is a factorization for x, then a *local period* for
(u, v) is an integer r such that there is some word w such that |w| = r and w is
a repetition for (u, v).
We denote by local_period(u, v) the smallest local period of (u, v). We sometimes
call this *the local period* of (u, v). Provided that x = uv is non-empty, this
is well-defined (because each non-empty word has at least one factorization, as
noted above).
It can be proven that the following is an equivalent definition of a local period
for a factorization (u, v): any positive integer r such that x[i] == x[i+r] for
all i such that |u| - r <= i <= |u| - 1 and such that both x[i] and x[i+r] are
defined. (i.e. i > 0 and i + r < |x|).
Using the above reformulation, it is easy to prove that
1 <= local_period(u, v) <= period(uv)
A factorization (u, v) of x such that local_period(u,v) = period(x) is called a
*critical factorization*.
The algorithm hinges on the following theorem, which is stated without proof:
**Critical Factorization Theorem** Any word x has at least one critical
factorization (u, v) such that |u| < period(x).
The purpose of maximal_suffix is to find such a critical factorization.
*/
impl TwoWaySearcher {
fn new(needle: &[u8]) -> TwoWaySearcher {
let (crit_pos_false, period_false) = TwoWaySearcher::maximal_suffix(needle, false);
let (crit_pos_true, period_true) = TwoWaySearcher::maximal_suffix(needle, true);
let (crit_pos, period) =
if crit_pos_false > crit_pos_true {
(crit_pos_false, period_false)
} else {
(crit_pos_true, period_true)
};
// This isn't in the original algorithm, as far as I'm aware.
let byteset = needle.iter()
.fold(0, |a, &b| (1 << ((b & 0x3f) as uint)) | a);
// A particularly readable explanation of what's going on here can be found
// in Crochemore and Rytter's book "Text Algorithms", ch 13. Specifically
// see the code for "Algorithm CP" on p. 323.
//
// What's going on is we have some critical factorization (u, v) of the
// needle, and we want to determine whether u is a suffix of
// &v[..period]. If it is, we use "Algorithm CP1". Otherwise we use
// "Algorithm CP2", which is optimized for when the period of the needle
// is large.
if &needle[..crit_pos] == &needle[period.. period + crit_pos] {
TwoWaySearcher {
crit_pos: crit_pos,
period: period,
byteset: byteset,
position: 0,
memory: 0
}
} else {
TwoWaySearcher {
crit_pos: crit_pos,
period: cmp::max(crit_pos, needle.len() - crit_pos) + 1,
byteset: byteset,
position: 0,
memory: uint::MAX // Dummy value to signify that the period is long
}
}
}
// One of the main ideas of Two-Way is that we factorize the needle into
// two halves, (u, v), and begin trying to find v in the haystack by scanning
// left to right. If v matches, we try to match u by scanning right to left.
// How far we can jump when we encounter a mismatch is all based on the fact
// that (u, v) is a critical factorization for the needle.
#[inline]
fn next(&mut self, haystack: &[u8], needle: &[u8], long_period: bool) -> Option<(uint, uint)> {
'search: loop {
// Check that we have room to search in
if self.position + needle.len() > haystack.len() {
return None;
}
// Quickly skip by large portions unrelated to our substring
if (self.byteset >>
((haystack[self.position + needle.len() - 1] & 0x3f)
as uint)) & 1 == 0 {
self.position += needle.len();
if !long_period {
self.memory = 0;
}
continue 'search;
}
// See if the right part of the needle matches
let start = if long_period { self.crit_pos }
else { cmp::max(self.crit_pos, self.memory) };
for i in range(start, needle.len()) {
if needle[i] != haystack[self.position + i] {
self.position += i - self.crit_pos + 1;
if !long_period {
self.memory = 0;
}
continue 'search;
}
}
// See if the left part of the needle matches
let start = if long_period { 0 } else { self.memory };
for i in range(start, self.crit_pos).rev() {
if needle[i] != haystack[self.position + i] {
self.position += self.period;
if !long_period {
self.memory = needle.len() - self.period;
}
continue 'search;
}
}
// We have found a match!
let match_pos = self.position;
self.position += needle.len(); // add self.period for all matches
if !long_period {
self.memory = 0; // set to needle.len() - self.period for all matches
}
return Some((match_pos, match_pos + needle.len()));
}
}
// Computes a critical factorization (u, v) of `arr`.
// Specifically, returns (i, p), where i is the starting index of v in some
// critical factorization (u, v) and p = period(v)
#[inline]
fn maximal_suffix(arr: &[u8], reversed: bool) -> (uint, uint) {
let mut left = -1; // Corresponds to i in the paper
let mut right = 0; // Corresponds to j in the paper
let mut offset = 1; // Corresponds to k in the paper
let mut period = 1; // Corresponds to p in the paper
while right + offset < arr.len() {
let a;
let b;
if reversed {
a = arr[left + offset];
b = arr[right + offset];
} else {
a = arr[right + offset];
b = arr[left + offset];
}
if a < b {
// Suffix is smaller, period is entire prefix so far.
right += offset;
offset = 1;
period = right - left;
} else if a == b {
// Advance through repetition of the current period.
if offset == period {
right += offset;
offset = 1;
} else {
offset += 1;
}
} else {
// Suffix is larger, start over from current location.
left = right;
right += 1;
offset = 1;
period = 1;
}
}
(left + 1, period)
}
}
/// The internal state of an iterator that searches for matches of a substring
/// within a larger string using a dynamically chosen search algorithm
#[derive(Clone)]
enum Searcher {
Naive(NaiveSearcher),
TwoWay(TwoWaySearcher),
TwoWayLong(TwoWaySearcher)
}
impl Searcher {
fn new(haystack: &[u8], needle: &[u8]) -> Searcher {
// FIXME: Tune this.
// FIXME(#16715): This unsigned integer addition will probably not
// overflow because that would mean that the memory almost solely
// consists of the needle. Needs #16715 to be formally fixed.
if needle.len() + 20 > haystack.len() {
Naive(NaiveSearcher::new())
} else {
let searcher = TwoWaySearcher::new(needle);
if searcher.memory == uint::MAX { // If the period is long
TwoWayLong(searcher)
} else {
TwoWay(searcher)
}
}
}
}
/// An iterator over the start and end indices of the matches of a
/// substring within a larger string
#[derive(Clone)]
#[unstable = "type may be removed"]
pub struct MatchIndices<'a> {
// constants
haystack: &'a str,
needle: &'a str,
searcher: Searcher
}
/// An iterator over the substrings of a string separated by a given
/// search string
#[derive(Clone)]
#[unstable = "type may be removed"]
pub struct SplitStr<'a> {
it: MatchIndices<'a>,
last_end: uint,
finished: bool
}
#[stable]
impl<'a> Iterator for MatchIndices<'a> {
type Item = (uint, uint);
#[inline]
fn next(&mut self) -> Option<(uint, uint)> {
match self.searcher {
Naive(ref mut searcher)
=> searcher.next(self.haystack.as_bytes(), self.needle.as_bytes()),
TwoWay(ref mut searcher)
=> searcher.next(self.haystack.as_bytes(), self.needle.as_bytes(), false),
TwoWayLong(ref mut searcher)
=> searcher.next(self.haystack.as_bytes(), self.needle.as_bytes(), true)
}
}
}
#[stable]
impl<'a> Iterator for SplitStr<'a> {
type Item = &'a str;
#[inline]
fn next(&mut self) -> Option<&'a str> {
if self.finished { return None; }
match self.it.next() {
Some((from, to)) => {
let ret = Some(&self.it.haystack[self.last_end .. from]);
self.last_end = to;
ret
}
None => {
self.finished = true;
Some(&self.it.haystack[self.last_end .. self.it.haystack.len()])
}
}
}
}
/*
Section: Comparing strings
*/
// share the implementation of the lang-item vs. non-lang-item
// eq_slice.
/// NOTE: This function is (ab)used in rustc::middle::trans::_match
/// to compare &[u8] byte slices that are not necessarily valid UTF-8.
#[inline]
fn eq_slice_(a: &str, b: &str) -> bool {
#[allow(improper_ctypes)]
extern { fn memcmp(s1: *const i8, s2: *const i8, n: uint) -> i32; }
a.len() == b.len() && unsafe {
memcmp(a.as_ptr() as *const i8,
b.as_ptr() as *const i8,
a.len()) == 0
}
}
/// Bytewise slice equality
/// NOTE: This function is (ab)used in rustc::middle::trans::_match
/// to compare &[u8] byte slices that are not necessarily valid UTF-8.
#[lang="str_eq"]
#[inline]
fn eq_slice(a: &str, b: &str) -> bool {
eq_slice_(a, b)
}
/*
Section: Misc
*/
/// Walk through `iter` checking that it's a valid UTF-8 sequence,
/// returning `true` in that case, or, if it is invalid, `false` with
/// `iter` reset such that it is pointing at the first byte in the
/// invalid sequence.
#[inline(always)]
fn run_utf8_validation_iterator(iter: &mut slice::Iter<u8>)
-> Result<(), Utf8Error> {
let whole = iter.as_slice();
loop {
// save the current thing we're pointing at.
let old = *iter;
// restore the iterator we had at the start of this codepoint.
macro_rules! err { () => {{
*iter = old;
return Err(Utf8Error::InvalidByte(whole.len() - iter.as_slice().len()))