-
Notifications
You must be signed in to change notification settings - Fork 13k
/
Copy pathnode.rs
1622 lines (1399 loc) · 58.1 KB
/
node.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// This is an attempt at an implementation following the ideal
//
// ```
// struct BTreeMap<K, V> {
// height: usize,
// root: Option<Box<Node<K, V, height>>>
// }
//
// struct Node<K, V, height: usize> {
// keys: [K; 2 * B - 1],
// vals: [V; 2 * B - 1],
// edges: if height > 0 {
// [Box<Node<K, V, height - 1>>; 2 * B]
// } else { () },
// parent: *const Node<K, V, height + 1>,
// parent_idx: u16,
// len: u16,
// }
// ```
//
// Since Rust doesn't actually have dependent types and polymorphic recursion,
// we make do with lots of unsafety.
// A major goal of this module is to avoid complexity by treating the tree as a generic (if
// weirdly shaped) container and avoiding dealing with most of the B-Tree invariants. As such,
// this module doesn't care whether the entries are sorted, which nodes can be underfull, or
// even what underfull means. However, we do rely on a few invariants:
//
// - Trees must have uniform depth/height. This means that every path down to a leaf from a
// given node has exactly the same length.
// - A node of length `n` has `n` keys, `n` values, and (in an internal node) `n + 1` edges.
// This implies that even an empty internal node has at least one edge.
use core::marker::PhantomData;
use core::mem;
use core::ptr::{self, Unique, NonNull};
use core::slice;
use alloc::{Global, Alloc, Layout};
use boxed::Box;
const B: usize = 6;
pub const MIN_LEN: usize = B - 1;
pub const CAPACITY: usize = 2 * B - 1;
/// The underlying representation of leaf nodes. Note that it is often unsafe to actually store
/// these, since only the first `len` keys and values are assumed to be initialized. As such,
/// these should always be put behind pointers, and specifically behind `BoxedNode` in the owned
/// case.
///
/// See also rust-lang/rfcs#197, which would make this structure significantly more safe by
/// avoiding accidentally dropping unused and uninitialized keys and values.
///
/// We put the metadata first so that its position is the same for every `K` and `V`, in order
/// to statically allocate a single dummy node to avoid allocations. This struct is `repr(C)` to
/// prevent them from being reordered.
#[repr(C)]
struct LeafNode<K, V> {
/// We use `*const` as opposed to `*mut` so as to be covariant in `K` and `V`.
/// This either points to an actual node or is null.
parent: *const InternalNode<K, V>,
/// This node's index into the parent node's `edges` array.
/// `*node.parent.edges[node.parent_idx]` should be the same thing as `node`.
/// This is only guaranteed to be initialized when `parent` is nonnull.
parent_idx: u16,
/// The number of keys and values this node stores.
///
/// This next to `parent_idx` to encourage the compiler to join `len` and
/// `parent_idx` into the same 32-bit word, reducing space overhead.
len: u16,
/// The arrays storing the actual data of the node. Only the first `len` elements of each
/// array are initialized and valid.
keys: [K; CAPACITY],
vals: [V; CAPACITY],
}
impl<K, V> LeafNode<K, V> {
/// Creates a new `LeafNode`. Unsafe because all nodes should really be hidden behind
/// `BoxedNode`, preventing accidental dropping of uninitialized keys and values.
unsafe fn new() -> Self {
LeafNode {
// As a general policy, we leave fields uninitialized if they can be, as this should
// be both slightly faster and easier to track in Valgrind.
keys: mem::uninitialized(),
vals: mem::uninitialized(),
parent: ptr::null(),
parent_idx: mem::uninitialized(),
len: 0
}
}
fn is_shared_root(&self) -> bool {
self as *const _ == &EMPTY_ROOT_NODE as *const _ as *const LeafNode<K, V>
}
}
// We need to implement Sync here in order to make a static instance.
unsafe impl Sync for LeafNode<(), ()> {}
// An empty node used as a placeholder for the root node, to avoid allocations.
// We use () in order to save space, since no operation on an empty tree will
// ever take a pointer past the first key.
static EMPTY_ROOT_NODE: LeafNode<(), ()> = LeafNode {
parent: ptr::null(),
parent_idx: 0,
len: 0,
keys: [(); CAPACITY],
vals: [(); CAPACITY],
};
/// The underlying representation of internal nodes. As with `LeafNode`s, these should be hidden
/// behind `BoxedNode`s to prevent dropping uninitialized keys and values. Any pointer to an
/// `InternalNode` can be directly casted to a pointer to the underlying `LeafNode` portion of the
/// node, allowing code to act on leaf and internal nodes generically without having to even check
/// which of the two a pointer is pointing at. This property is enabled by the use of `repr(C)`.
#[repr(C)]
struct InternalNode<K, V> {
data: LeafNode<K, V>,
/// The pointers to the children of this node. `len + 1` of these are considered
/// initialized and valid.
edges: [BoxedNode<K, V>; 2 * B],
}
impl<K, V> InternalNode<K, V> {
/// Creates a new `InternalNode`.
///
/// This is unsafe for two reasons. First, it returns an `InternalNode` by value, risking
/// dropping of uninitialized fields. Second, an invariant of internal nodes is that `len + 1`
/// edges are initialized and valid, meaning that even when the node is empty (having a
/// `len` of 0), there must be one initialized and valid edge. This function does not set up
/// such an edge.
unsafe fn new() -> Self {
InternalNode {
data: LeafNode::new(),
edges: mem::uninitialized()
}
}
}
/// An owned pointer to a node. This basically is either `Box<LeafNode<K, V>>` or
/// `Box<InternalNode<K, V>>`. However, it contains no information as to which of the two types
/// of nodes is actually behind the box, and, partially due to this lack of information, has no
/// destructor.
struct BoxedNode<K, V> {
ptr: Unique<LeafNode<K, V>>
}
impl<K, V> BoxedNode<K, V> {
fn from_leaf(node: Box<LeafNode<K, V>>) -> Self {
BoxedNode { ptr: Box::into_unique(node) }
}
fn from_internal(node: Box<InternalNode<K, V>>) -> Self {
unsafe {
BoxedNode { ptr: Unique::new_unchecked(Box::into_raw(node) as *mut LeafNode<K, V>) }
}
}
unsafe fn from_ptr(ptr: NonNull<LeafNode<K, V>>) -> Self {
BoxedNode { ptr: Unique::from(ptr) }
}
fn as_ptr(&self) -> NonNull<LeafNode<K, V>> {
NonNull::from(self.ptr)
}
}
/// An owned tree. Note that despite being owned, this does not have a destructor,
/// and must be cleaned up manually.
pub struct Root<K, V> {
node: BoxedNode<K, V>,
height: usize
}
unsafe impl<K: Sync, V: Sync> Sync for Root<K, V> { }
unsafe impl<K: Send, V: Send> Send for Root<K, V> { }
impl<K, V> Root<K, V> {
pub fn is_shared_root(&self) -> bool {
self.as_ref().is_shared_root()
}
pub fn shared_empty_root() -> Self {
Root {
node: unsafe {
BoxedNode::from_ptr(NonNull::new_unchecked(
&EMPTY_ROOT_NODE as *const _ as *const LeafNode<K, V> as *mut _
))
},
height: 0,
}
}
pub fn new_leaf() -> Self {
Root {
node: BoxedNode::from_leaf(Box::new(unsafe { LeafNode::new() })),
height: 0
}
}
pub fn as_ref(&self)
-> NodeRef<marker::Immut, K, V, marker::LeafOrInternal> {
NodeRef {
height: self.height,
node: self.node.as_ptr(),
root: self as *const _ as *mut _,
_marker: PhantomData,
}
}
pub fn as_mut(&mut self)
-> NodeRef<marker::Mut, K, V, marker::LeafOrInternal> {
NodeRef {
height: self.height,
node: self.node.as_ptr(),
root: self as *mut _,
_marker: PhantomData,
}
}
pub fn into_ref(self)
-> NodeRef<marker::Owned, K, V, marker::LeafOrInternal> {
NodeRef {
height: self.height,
node: self.node.as_ptr(),
root: ptr::null_mut(), // FIXME: Is there anything better to do here?
_marker: PhantomData,
}
}
/// Adds a new internal node with a single edge, pointing to the previous root, and make that
/// new node the root. This increases the height by 1 and is the opposite of `pop_level`.
pub fn push_level(&mut self)
-> NodeRef<marker::Mut, K, V, marker::Internal> {
debug_assert!(!self.is_shared_root());
let mut new_node = Box::new(unsafe { InternalNode::new() });
new_node.edges[0] = unsafe { BoxedNode::from_ptr(self.node.as_ptr()) };
self.node = BoxedNode::from_internal(new_node);
self.height += 1;
let mut ret = NodeRef {
height: self.height,
node: self.node.as_ptr(),
root: self as *mut _,
_marker: PhantomData
};
unsafe {
ret.reborrow_mut().first_edge().correct_parent_link();
}
ret
}
/// Removes the root node, using its first child as the new root. This cannot be called when
/// the tree consists only of a leaf node. As it is intended only to be called when the root
/// has only one edge, no cleanup is done on any of the other children are elements of the root.
/// This decreases the height by 1 and is the opposite of `push_level`.
pub fn pop_level(&mut self) {
debug_assert!(self.height > 0);
let top = self.node.ptr;
self.node = unsafe {
BoxedNode::from_ptr(self.as_mut()
.cast_unchecked::<marker::Internal>()
.first_edge()
.descend()
.node)
};
self.height -= 1;
self.as_mut().as_leaf_mut().parent = ptr::null();
unsafe {
Global.dealloc(NonNull::from(top).cast(), Layout::new::<InternalNode<K, V>>());
}
}
}
// N.B. `NodeRef` is always covariant in `K` and `V`, even when the `BorrowType`
// is `Mut`. This is technically wrong, but cannot result in any unsafety due to
// internal use of `NodeRef` because we stay completely generic over `K` and `V`.
// However, whenever a public type wraps `NodeRef`, make sure that it has the
// correct variance.
/// A reference to a node.
///
/// This type has a number of parameters that controls how it acts:
/// - `BorrowType`: This can be `Immut<'a>` or `Mut<'a>` for some `'a` or `Owned`.
/// When this is `Immut<'a>`, the `NodeRef` acts roughly like `&'a Node`,
/// when this is `Mut<'a>`, the `NodeRef` acts roughly like `&'a mut Node`,
/// and when this is `Owned`, the `NodeRef` acts roughly like `Box<Node>`.
/// - `K` and `V`: These control what types of things are stored in the nodes.
/// - `Type`: This can be `Leaf`, `Internal`, or `LeafOrInternal`. When this is
/// `Leaf`, the `NodeRef` points to a leaf node, when this is `Internal` the
/// `NodeRef` points to an internal node, and when this is `LeafOrInternal` the
/// `NodeRef` could be pointing to either type of node.
pub struct NodeRef<BorrowType, K, V, Type> {
height: usize,
node: NonNull<LeafNode<K, V>>,
// This is null unless the borrow type is `Mut`
root: *const Root<K, V>,
_marker: PhantomData<(BorrowType, Type)>
}
impl<'a, K: 'a, V: 'a, Type> Copy for NodeRef<marker::Immut<'a>, K, V, Type> { }
impl<'a, K: 'a, V: 'a, Type> Clone for NodeRef<marker::Immut<'a>, K, V, Type> {
fn clone(&self) -> Self {
*self
}
}
unsafe impl<BorrowType, K: Sync, V: Sync, Type> Sync
for NodeRef<BorrowType, K, V, Type> { }
unsafe impl<'a, K: Sync + 'a, V: Sync + 'a, Type> Send
for NodeRef<marker::Immut<'a>, K, V, Type> { }
unsafe impl<'a, K: Send + 'a, V: Send + 'a, Type> Send
for NodeRef<marker::Mut<'a>, K, V, Type> { }
unsafe impl<K: Send, V: Send, Type> Send
for NodeRef<marker::Owned, K, V, Type> { }
impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Internal> {
fn as_internal(&self) -> &InternalNode<K, V> {
unsafe {
&*(self.node.as_ptr() as *mut InternalNode<K, V>)
}
}
}
impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
fn as_internal_mut(&mut self) -> &mut InternalNode<K, V> {
unsafe {
&mut *(self.node.as_ptr() as *mut InternalNode<K, V>)
}
}
}
impl<BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> {
/// Finds the length of the node. This is the number of keys or values. In an
/// internal node, the number of edges is `len() + 1`.
pub fn len(&self) -> usize {
self.as_leaf().len as usize
}
/// Returns the height of this node in the whole tree. Zero height denotes the
/// leaf level.
pub fn height(&self) -> usize {
self.height
}
/// Removes any static information about whether this node is a `Leaf` or an
/// `Internal` node.
pub fn forget_type(self) -> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
NodeRef {
height: self.height,
node: self.node,
root: self.root,
_marker: PhantomData
}
}
/// Temporarily takes out another, immutable reference to the same node.
fn reborrow<'a>(&'a self) -> NodeRef<marker::Immut<'a>, K, V, Type> {
NodeRef {
height: self.height,
node: self.node,
root: self.root,
_marker: PhantomData
}
}
fn as_leaf(&self) -> &LeafNode<K, V> {
unsafe {
self.node.as_ref()
}
}
pub fn is_shared_root(&self) -> bool {
self.as_leaf().is_shared_root()
}
pub fn keys(&self) -> &[K] {
self.reborrow().into_key_slice()
}
fn vals(&self) -> &[V] {
self.reborrow().into_val_slice()
}
/// Finds the parent of the current node. Returns `Ok(handle)` if the current
/// node actually has a parent, where `handle` points to the edge of the parent
/// that points to the current node. Returns `Err(self)` if the current node has
/// no parent, giving back the original `NodeRef`.
///
/// `edge.descend().ascend().unwrap()` and `node.ascend().unwrap().descend()` should
/// both, upon success, do nothing.
pub fn ascend(self) -> Result<
Handle<
NodeRef<
BorrowType,
K, V,
marker::Internal
>,
marker::Edge
>,
Self
> {
let parent_as_leaf = self.as_leaf().parent as *const LeafNode<K, V>;
if let Some(non_zero) = NonNull::new(parent_as_leaf as *mut _) {
Ok(Handle {
node: NodeRef {
height: self.height + 1,
node: non_zero,
root: self.root,
_marker: PhantomData
},
idx: self.as_leaf().parent_idx as usize,
_marker: PhantomData
})
} else {
Err(self)
}
}
pub fn first_edge(self) -> Handle<Self, marker::Edge> {
Handle::new_edge(self, 0)
}
pub fn last_edge(self) -> Handle<Self, marker::Edge> {
let len = self.len();
Handle::new_edge(self, len)
}
/// Note that `self` must be nonempty.
pub fn first_kv(self) -> Handle<Self, marker::KV> {
debug_assert!(self.len() > 0);
Handle::new_kv(self, 0)
}
/// Note that `self` must be nonempty.
pub fn last_kv(self) -> Handle<Self, marker::KV> {
let len = self.len();
debug_assert!(len > 0);
Handle::new_kv(self, len - 1)
}
}
impl<K, V> NodeRef<marker::Owned, K, V, marker::Leaf> {
/// Similar to `ascend`, gets a reference to a node's parent node, but also
/// deallocate the current node in the process. This is unsafe because the
/// current node will still be accessible despite being deallocated.
pub unsafe fn deallocate_and_ascend(self) -> Option<
Handle<
NodeRef<
marker::Owned,
K, V,
marker::Internal
>,
marker::Edge
>
> {
debug_assert!(!self.is_shared_root());
let node = self.node;
let ret = self.ascend().ok();
Global.dealloc(node.cast(), Layout::new::<LeafNode<K, V>>());
ret
}
}
impl<K, V> NodeRef<marker::Owned, K, V, marker::Internal> {
/// Similar to `ascend`, gets a reference to a node's parent node, but also
/// deallocate the current node in the process. This is unsafe because the
/// current node will still be accessible despite being deallocated.
pub unsafe fn deallocate_and_ascend(self) -> Option<
Handle<
NodeRef<
marker::Owned,
K, V,
marker::Internal
>,
marker::Edge
>
> {
let node = self.node;
let ret = self.ascend().ok();
Global.dealloc(node.cast(), Layout::new::<InternalNode<K, V>>());
ret
}
}
impl<'a, K, V, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
/// Unsafely asserts to the compiler some static information about whether this
/// node is a `Leaf`.
unsafe fn cast_unchecked<NewType>(&mut self)
-> NodeRef<marker::Mut, K, V, NewType> {
NodeRef {
height: self.height,
node: self.node,
root: self.root,
_marker: PhantomData
}
}
/// Temporarily takes out another, mutable reference to the same node. Beware, as
/// this method is very dangerous, doubly so since it may not immediately appear
/// dangerous.
///
/// Because mutable pointers can roam anywhere around the tree and can even (through
/// `into_root_mut`) mess with the root of the tree, the result of `reborrow_mut`
/// can easily be used to make the original mutable pointer dangling, or, in the case
/// of a reborrowed handle, out of bounds.
// FIXME(@gereeter) consider adding yet another type parameter to `NodeRef` that restricts
// the use of `ascend` and `into_root_mut` on reborrowed pointers, preventing this unsafety.
unsafe fn reborrow_mut(&mut self) -> NodeRef<marker::Mut, K, V, Type> {
NodeRef {
height: self.height,
node: self.node,
root: self.root,
_marker: PhantomData
}
}
fn as_leaf_mut(&mut self) -> &mut LeafNode<K, V> {
unsafe {
self.node.as_mut()
}
}
fn keys_mut(&mut self) -> &mut [K] {
unsafe { self.reborrow_mut().into_key_slice_mut() }
}
fn vals_mut(&mut self) -> &mut [V] {
unsafe { self.reborrow_mut().into_val_slice_mut() }
}
}
impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Immut<'a>, K, V, Type> {
fn into_key_slice(self) -> &'a [K] {
// When taking a pointer to the keys, if our key has a stricter
// alignment requirement than the shared root does, then the pointer
// would be out of bounds, which LLVM assumes will not happen. If the
// alignment is more strict, we need to make an empty slice that doesn't
// use an out of bounds pointer.
if mem::align_of::<K>() > mem::align_of::<LeafNode<(), ()>>() && self.is_shared_root() {
&[]
} else {
// Here either it's not the root, or the alignment is less strict,
// in which case the keys pointer will point "one-past-the-end" of
// the node, which is allowed by LLVM.
unsafe {
slice::from_raw_parts(
self.as_leaf().keys.as_ptr(),
self.len()
)
}
}
}
fn into_val_slice(self) -> &'a [V] {
debug_assert!(!self.is_shared_root());
unsafe {
slice::from_raw_parts(
self.as_leaf().vals.as_ptr(),
self.len()
)
}
}
fn into_slices(self) -> (&'a [K], &'a [V]) {
let k = unsafe { ptr::read(&self) };
(k.into_key_slice(), self.into_val_slice())
}
}
impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
/// Gets a mutable reference to the root itself. This is useful primarily when the
/// height of the tree needs to be adjusted. Never call this on a reborrowed pointer.
pub fn into_root_mut(self) -> &'a mut Root<K, V> {
unsafe {
&mut *(self.root as *mut Root<K, V>)
}
}
fn into_key_slice_mut(mut self) -> &'a mut [K] {
if mem::align_of::<K>() > mem::align_of::<LeafNode<(), ()>>() && self.is_shared_root() {
&mut []
} else {
unsafe {
slice::from_raw_parts_mut(
&mut self.as_leaf_mut().keys as *mut [K] as *mut K,
self.len()
)
}
}
}
fn into_val_slice_mut(mut self) -> &'a mut [V] {
debug_assert!(!self.is_shared_root());
unsafe {
slice::from_raw_parts_mut(
&mut self.as_leaf_mut().vals as *mut [V] as *mut V,
self.len()
)
}
}
fn into_slices_mut(self) -> (&'a mut [K], &'a mut [V]) {
let k = unsafe { ptr::read(&self) };
(k.into_key_slice_mut(), self.into_val_slice_mut())
}
}
impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Leaf> {
/// Adds a key/value pair the end of the node.
pub fn push(&mut self, key: K, val: V) {
// Necessary for correctness, but this is an internal module
debug_assert!(self.len() < CAPACITY);
debug_assert!(!self.is_shared_root());
let idx = self.len();
unsafe {
ptr::write(self.keys_mut().get_unchecked_mut(idx), key);
ptr::write(self.vals_mut().get_unchecked_mut(idx), val);
}
self.as_leaf_mut().len += 1;
}
/// Adds a key/value pair to the beginning of the node.
pub fn push_front(&mut self, key: K, val: V) {
// Necessary for correctness, but this is an internal module
debug_assert!(self.len() < CAPACITY);
debug_assert!(!self.is_shared_root());
unsafe {
slice_insert(self.keys_mut(), 0, key);
slice_insert(self.vals_mut(), 0, val);
}
self.as_leaf_mut().len += 1;
}
}
impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
/// Adds a key/value pair and an edge to go to the right of that pair to
/// the end of the node.
pub fn push(&mut self, key: K, val: V, edge: Root<K, V>) {
// Necessary for correctness, but this is an internal module
debug_assert!(edge.height == self.height - 1);
debug_assert!(self.len() < CAPACITY);
let idx = self.len();
unsafe {
ptr::write(self.keys_mut().get_unchecked_mut(idx), key);
ptr::write(self.vals_mut().get_unchecked_mut(idx), val);
ptr::write(self.as_internal_mut().edges.get_unchecked_mut(idx + 1), edge.node);
self.as_leaf_mut().len += 1;
Handle::new_edge(self.reborrow_mut(), idx + 1).correct_parent_link();
}
}
fn correct_childrens_parent_links(&mut self, first: usize, after_last: usize) {
for i in first..after_last {
Handle::new_edge(unsafe { self.reborrow_mut() }, i).correct_parent_link();
}
}
fn correct_all_childrens_parent_links(&mut self) {
let len = self.len();
self.correct_childrens_parent_links(0, len + 1);
}
/// Adds a key/value pair and an edge to go to the left of that pair to
/// the beginning of the node.
pub fn push_front(&mut self, key: K, val: V, edge: Root<K, V>) {
// Necessary for correctness, but this is an internal module
debug_assert!(edge.height == self.height - 1);
debug_assert!(self.len() < CAPACITY);
unsafe {
slice_insert(self.keys_mut(), 0, key);
slice_insert(self.vals_mut(), 0, val);
slice_insert(
slice::from_raw_parts_mut(
self.as_internal_mut().edges.as_mut_ptr(),
self.len()+1
),
0,
edge.node
);
self.as_leaf_mut().len += 1;
self.correct_all_childrens_parent_links();
}
}
}
impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
/// Removes a key/value pair from the end of this node. If this is an internal node,
/// also removes the edge that was to the right of that pair.
pub fn pop(&mut self) -> (K, V, Option<Root<K, V>>) {
// Necessary for correctness, but this is an internal module
debug_assert!(self.len() > 0);
let idx = self.len() - 1;
unsafe {
let key = ptr::read(self.keys().get_unchecked(idx));
let val = ptr::read(self.vals().get_unchecked(idx));
let edge = match self.reborrow_mut().force() {
ForceResult::Leaf(_) => None,
ForceResult::Internal(internal) => {
let edge = ptr::read(internal.as_internal().edges.get_unchecked(idx + 1));
let mut new_root = Root { node: edge, height: internal.height - 1 };
new_root.as_mut().as_leaf_mut().parent = ptr::null();
Some(new_root)
}
};
self.as_leaf_mut().len -= 1;
(key, val, edge)
}
}
/// Removes a key/value pair from the beginning of this node. If this is an internal node,
/// also removes the edge that was to the left of that pair.
pub fn pop_front(&mut self) -> (K, V, Option<Root<K, V>>) {
// Necessary for correctness, but this is an internal module
debug_assert!(self.len() > 0);
let old_len = self.len();
unsafe {
let key = slice_remove(self.keys_mut(), 0);
let val = slice_remove(self.vals_mut(), 0);
let edge = match self.reborrow_mut().force() {
ForceResult::Leaf(_) => None,
ForceResult::Internal(mut internal) => {
let edge = slice_remove(
slice::from_raw_parts_mut(
internal.as_internal_mut().edges.as_mut_ptr(),
old_len+1
),
0
);
let mut new_root = Root { node: edge, height: internal.height - 1 };
new_root.as_mut().as_leaf_mut().parent = ptr::null();
for i in 0..old_len {
Handle::new_edge(internal.reborrow_mut(), i).correct_parent_link();
}
Some(new_root)
}
};
self.as_leaf_mut().len -= 1;
(key, val, edge)
}
}
fn into_kv_pointers_mut(mut self) -> (*mut K, *mut V) {
(
self.keys_mut().as_mut_ptr(),
self.vals_mut().as_mut_ptr()
)
}
}
impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
/// Checks whether a node is an `Internal` node or a `Leaf` node.
pub fn force(self) -> ForceResult<
NodeRef<BorrowType, K, V, marker::Leaf>,
NodeRef<BorrowType, K, V, marker::Internal>
> {
if self.height == 0 {
ForceResult::Leaf(NodeRef {
height: self.height,
node: self.node,
root: self.root,
_marker: PhantomData
})
} else {
ForceResult::Internal(NodeRef {
height: self.height,
node: self.node,
root: self.root,
_marker: PhantomData
})
}
}
}
/// A reference to a specific key/value pair or edge within a node. The `Node` parameter
/// must be a `NodeRef`, while the `Type` can either be `KV` (signifying a handle on a key/value
/// pair) or `Edge` (signifying a handle on an edge).
///
/// Note that even `Leaf` nodes can have `Edge` handles. Instead of representing a pointer to
/// a child node, these represent the spaces where child pointers would go between the key/value
/// pairs. For example, in a node with length 2, there would be 3 possible edge locations - one
/// to the left of the node, one between the two pairs, and one at the right of the node.
pub struct Handle<Node, Type> {
node: Node,
idx: usize,
_marker: PhantomData<Type>
}
impl<Node: Copy, Type> Copy for Handle<Node, Type> { }
// We don't need the full generality of `#[derive(Clone)]`, as the only time `Node` will be
// `Clone`able is when it is an immutable reference and therefore `Copy`.
impl<Node: Copy, Type> Clone for Handle<Node, Type> {
fn clone(&self) -> Self {
*self
}
}
impl<Node, Type> Handle<Node, Type> {
/// Retrieves the node that contains the edge of key/value pair this handle points to.
pub fn into_node(self) -> Node {
self.node
}
}
impl<BorrowType, K, V, NodeType> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV> {
/// Creates a new handle to a key/value pair in `node`. `idx` must be less than `node.len()`.
pub fn new_kv(node: NodeRef<BorrowType, K, V, NodeType>, idx: usize) -> Self {
// Necessary for correctness, but in a private module
debug_assert!(idx < node.len());
Handle {
node,
idx,
_marker: PhantomData
}
}
pub fn left_edge(self) -> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> {
Handle::new_edge(self.node, self.idx)
}
pub fn right_edge(self) -> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> {
Handle::new_edge(self.node, self.idx + 1)
}
}
impl<BorrowType, K, V, NodeType, HandleType> PartialEq
for Handle<NodeRef<BorrowType, K, V, NodeType>, HandleType> {
fn eq(&self, other: &Self) -> bool {
self.node.node == other.node.node && self.idx == other.idx
}
}
impl<BorrowType, K, V, NodeType, HandleType>
Handle<NodeRef<BorrowType, K, V, NodeType>, HandleType> {
/// Temporarily takes out another, immutable handle on the same location.
pub fn reborrow(&self)
-> Handle<NodeRef<marker::Immut, K, V, NodeType>, HandleType> {
// We can't use Handle::new_kv or Handle::new_edge because we don't know our type
Handle {
node: self.node.reborrow(),
idx: self.idx,
_marker: PhantomData
}
}
}
impl<'a, K, V, NodeType, HandleType>
Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, HandleType> {
/// Temporarily takes out another, mutable handle on the same location. Beware, as
/// this method is very dangerous, doubly so since it may not immediately appear
/// dangerous.
///
/// Because mutable pointers can roam anywhere around the tree and can even (through
/// `into_root_mut`) mess with the root of the tree, the result of `reborrow_mut`
/// can easily be used to make the original mutable pointer dangling, or, in the case
/// of a reborrowed handle, out of bounds.
// FIXME(@gereeter) consider adding yet another type parameter to `NodeRef` that restricts
// the use of `ascend` and `into_root_mut` on reborrowed pointers, preventing this unsafety.
pub unsafe fn reborrow_mut(&mut self)
-> Handle<NodeRef<marker::Mut, K, V, NodeType>, HandleType> {
// We can't use Handle::new_kv or Handle::new_edge because we don't know our type
Handle {
node: self.node.reborrow_mut(),
idx: self.idx,
_marker: PhantomData
}
}
}
impl<BorrowType, K, V, NodeType>
Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> {
/// Creates a new handle to an edge in `node`. `idx` must be less than or equal to
/// `node.len()`.
pub fn new_edge(node: NodeRef<BorrowType, K, V, NodeType>, idx: usize) -> Self {
// Necessary for correctness, but in a private module
debug_assert!(idx <= node.len());
Handle {
node,
idx,
_marker: PhantomData
}
}
pub fn left_kv(self)
-> Result<Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV>, Self> {
if self.idx > 0 {
Ok(Handle::new_kv(self.node, self.idx - 1))
} else {
Err(self)
}
}
pub fn right_kv(self)
-> Result<Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV>, Self> {
if self.idx < self.node.len() {
Ok(Handle::new_kv(self.node, self.idx))
} else {
Err(self)
}
}
}
impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge> {
/// Inserts a new key/value pair between the key/value pairs to the right and left of
/// this edge. This method assumes that there is enough space in the node for the new
/// pair to fit.
///
/// The returned pointer points to the inserted value.
fn insert_fit(&mut self, key: K, val: V) -> *mut V {
// Necessary for correctness, but in a private module
debug_assert!(self.node.len() < CAPACITY);
debug_assert!(!self.node.is_shared_root());
unsafe {
slice_insert(self.node.keys_mut(), self.idx, key);
slice_insert(self.node.vals_mut(), self.idx, val);
self.node.as_leaf_mut().len += 1;
self.node.vals_mut().get_unchecked_mut(self.idx)
}
}
/// Inserts a new key/value pair between the key/value pairs to the right and left of
/// this edge. This method splits the node if there isn't enough room.
///
/// The returned pointer points to the inserted value.
pub fn insert(mut self, key: K, val: V)
-> (InsertResult<'a, K, V, marker::Leaf>, *mut V) {
if self.node.len() < CAPACITY {
let ptr = self.insert_fit(key, val);
(InsertResult::Fit(Handle::new_kv(self.node, self.idx)), ptr)
} else {
let middle = Handle::new_kv(self.node, B);
let (mut left, k, v, mut right) = middle.split();
let ptr = if self.idx <= B {
unsafe {
Handle::new_edge(left.reborrow_mut(), self.idx).insert_fit(key, val)
}
} else {
unsafe {
Handle::new_edge(
right.as_mut().cast_unchecked::<marker::Leaf>(),
self.idx - (B + 1)
).insert_fit(key, val)