-
Notifications
You must be signed in to change notification settings - Fork 13k
/
Copy pathvalidity.rs
763 lines (714 loc) · 31.6 KB
/
validity.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
//! Check the validity invariant of a given value, and tell the user
//! where in the value it got violated.
//! In const context, this goes even further and tries to approximate const safety.
//! That's useful because it means other passes (e.g. promotion) can rely on `const`s
//! to be const-safe.
use std::fmt::Write;
use std::ops::RangeInclusive;
use rustc::ty;
use rustc::ty::layout::{self, LayoutOf, TyLayout, VariantIdx};
use rustc_data_structures::fx::FxHashSet;
use rustc_hir as hir;
use rustc_span::symbol::{sym, Symbol};
use std::hash::Hash;
use super::{
CheckInAllocMsg, GlobalAlloc, InterpCx, InterpResult, MPlaceTy, Machine, MemPlaceMeta, OpTy,
ValueVisitor,
};
macro_rules! throw_validation_failure {
($what:expr, $where:expr, $details:expr) => {{
let mut msg = format!("encountered {}", $what);
let where_ = &$where;
if !where_.is_empty() {
msg.push_str(" at ");
write_path(&mut msg, where_);
}
write!(&mut msg, ", but expected {}", $details).unwrap();
throw_unsup!(ValidationFailure(msg))
}};
($what:expr, $where:expr) => {{
let mut msg = format!("encountered {}", $what);
let where_ = &$where;
if !where_.is_empty() {
msg.push_str(" at ");
write_path(&mut msg, where_);
}
throw_unsup!(ValidationFailure(msg))
}};
}
macro_rules! try_validation {
($e:expr, $what:expr, $where:expr, $details:expr) => {{
match $e {
Ok(x) => x,
Err(_) => throw_validation_failure!($what, $where, $details),
}
}};
($e:expr, $what:expr, $where:expr) => {{
match $e {
Ok(x) => x,
Err(_) => throw_validation_failure!($what, $where),
}
}};
}
/// We want to show a nice path to the invalid field for diagnostics,
/// but avoid string operations in the happy case where no error happens.
/// So we track a `Vec<PathElem>` where `PathElem` contains all the data we
/// need to later print something for the user.
#[derive(Copy, Clone, Debug)]
pub enum PathElem {
Field(Symbol),
Variant(Symbol),
GeneratorState(VariantIdx),
CapturedVar(Symbol),
ArrayElem(usize),
TupleElem(usize),
Deref,
EnumTag,
GeneratorTag,
DynDowncast,
}
/// State for tracking recursive validation of references
pub struct RefTracking<T, PATH = ()> {
pub seen: FxHashSet<T>,
pub todo: Vec<(T, PATH)>,
}
impl<T: Copy + Eq + Hash + std::fmt::Debug, PATH: Default> RefTracking<T, PATH> {
pub fn empty() -> Self {
RefTracking { seen: FxHashSet::default(), todo: vec![] }
}
pub fn new(op: T) -> Self {
let mut ref_tracking_for_consts =
RefTracking { seen: FxHashSet::default(), todo: vec![(op, PATH::default())] };
ref_tracking_for_consts.seen.insert(op);
ref_tracking_for_consts
}
pub fn track(&mut self, op: T, path: impl FnOnce() -> PATH) {
if self.seen.insert(op) {
trace!("Recursing below ptr {:#?}", op);
let path = path();
// Remember to come back to this later.
self.todo.push((op, path));
}
}
}
/// Format a path
fn write_path(out: &mut String, path: &Vec<PathElem>) {
use self::PathElem::*;
for elem in path.iter() {
match elem {
Field(name) => write!(out, ".{}", name),
EnumTag => write!(out, ".<enum-tag>"),
Variant(name) => write!(out, ".<enum-variant({})>", name),
GeneratorTag => write!(out, ".<generator-tag>"),
GeneratorState(idx) => write!(out, ".<generator-state({})>", idx.index()),
CapturedVar(name) => write!(out, ".<captured-var({})>", name),
TupleElem(idx) => write!(out, ".{}", idx),
ArrayElem(idx) => write!(out, "[{}]", idx),
// `.<deref>` does not match Rust syntax, but it is more readable for long paths -- and
// some of the other items here also are not Rust syntax. Actually we can't
// even use the usual syntax because we are just showing the projections,
// not the root.
Deref => write!(out, ".<deref>"),
DynDowncast => write!(out, ".<dyn-downcast>"),
}
.unwrap()
}
}
// Test if a range that wraps at overflow contains `test`
fn wrapping_range_contains(r: &RangeInclusive<u128>, test: u128) -> bool {
let (lo, hi) = r.clone().into_inner();
if lo > hi {
// Wrapped
(..=hi).contains(&test) || (lo..).contains(&test)
} else {
// Normal
r.contains(&test)
}
}
// Formats such that a sentence like "expected something {}" to mean
// "expected something <in the given range>" makes sense.
fn wrapping_range_format(r: &RangeInclusive<u128>, max_hi: u128) -> String {
let (lo, hi) = r.clone().into_inner();
debug_assert!(hi <= max_hi);
if lo > hi {
format!("less or equal to {}, or greater or equal to {}", hi, lo)
} else if lo == hi {
format!("equal to {}", lo)
} else if lo == 0 {
debug_assert!(hi < max_hi, "should not be printing if the range covers everything");
format!("less or equal to {}", hi)
} else if hi == max_hi {
debug_assert!(lo > 0, "should not be printing if the range covers everything");
format!("greater or equal to {}", lo)
} else {
format!("in the range {:?}", r)
}
}
struct ValidityVisitor<'rt, 'mir, 'tcx, M: Machine<'mir, 'tcx>> {
/// The `path` may be pushed to, but the part that is present when a function
/// starts must not be changed! `visit_fields` and `visit_array` rely on
/// this stack discipline.
path: Vec<PathElem>,
ref_tracking_for_consts:
Option<&'rt mut RefTracking<MPlaceTy<'tcx, M::PointerTag>, Vec<PathElem>>>,
ecx: &'rt InterpCx<'mir, 'tcx, M>,
}
impl<'rt, 'mir, 'tcx, M: Machine<'mir, 'tcx>> ValidityVisitor<'rt, 'mir, 'tcx, M> {
fn aggregate_field_path_elem(&mut self, layout: TyLayout<'tcx>, field: usize) -> PathElem {
// First, check if we are projecting to a variant.
match layout.variants {
layout::Variants::Multiple { discr_index, .. } => {
if discr_index == field {
return match layout.ty.kind {
ty::Adt(def, ..) if def.is_enum() => PathElem::EnumTag,
ty::Generator(..) => PathElem::GeneratorTag,
_ => bug!("non-variant type {:?}", layout.ty),
};
}
}
layout::Variants::Single { .. } => {}
}
// Now we know we are projecting to a field, so figure out which one.
match layout.ty.kind {
// generators and closures.
ty::Closure(def_id, _) | ty::Generator(def_id, _, _) => {
let mut name = None;
if def_id.is_local() {
let tables = self.ecx.tcx.typeck_tables_of(def_id);
if let Some(upvars) = tables.upvar_list.get(&def_id) {
// Sometimes the index is beyond the number of upvars (seen
// for a generator).
if let Some((&var_hir_id, _)) = upvars.get_index(field) {
let node = self.ecx.tcx.hir().get(var_hir_id);
if let hir::Node::Binding(pat) = node {
if let hir::PatKind::Binding(_, _, ident, _) = pat.kind {
name = Some(ident.name);
}
}
}
}
}
PathElem::CapturedVar(name.unwrap_or_else(|| {
// Fall back to showing the field index.
sym::integer(field)
}))
}
// tuples
ty::Tuple(_) => PathElem::TupleElem(field),
// enums
ty::Adt(def, ..) if def.is_enum() => {
// we might be projecting *to* a variant, or to a field *in* a variant.
match layout.variants {
layout::Variants::Single { index } => {
// Inside a variant
PathElem::Field(def.variants[index].fields[field].ident.name)
}
layout::Variants::Multiple { .. } => bug!("we handled variants above"),
}
}
// other ADTs
ty::Adt(def, _) => PathElem::Field(def.non_enum_variant().fields[field].ident.name),
// arrays/slices
ty::Array(..) | ty::Slice(..) => PathElem::ArrayElem(field),
// dyn traits
ty::Dynamic(..) => PathElem::DynDowncast,
// nothing else has an aggregate layout
_ => bug!("aggregate_field_path_elem: got non-aggregate type {:?}", layout.ty),
}
}
fn visit_elem(
&mut self,
new_op: OpTy<'tcx, M::PointerTag>,
elem: PathElem,
) -> InterpResult<'tcx> {
// Remember the old state
let path_len = self.path.len();
// Perform operation
self.path.push(elem);
self.visit_value(new_op)?;
// Undo changes
self.path.truncate(path_len);
Ok(())
}
fn check_wide_ptr_meta(
&mut self,
meta: MemPlaceMeta<M::PointerTag>,
pointee: TyLayout<'tcx>,
) -> InterpResult<'tcx> {
let tail = self.ecx.tcx.struct_tail_erasing_lifetimes(pointee.ty, self.ecx.param_env);
match tail.kind {
ty::Dynamic(..) => {
let vtable = meta.unwrap_meta();
try_validation!(
self.ecx.memory.check_ptr_access(
vtable,
3 * self.ecx.tcx.data_layout.pointer_size, // drop, size, align
self.ecx.tcx.data_layout.pointer_align.abi,
),
"dangling or unaligned vtable pointer in wide pointer or too small vtable",
self.path
);
try_validation!(
self.ecx.read_drop_type_from_vtable(vtable),
"invalid drop fn in vtable",
self.path
);
try_validation!(
self.ecx.read_size_and_align_from_vtable(vtable),
"invalid size or align in vtable",
self.path
);
// FIXME: More checks for the vtable.
}
ty::Slice(..) | ty::Str => {
let _len = try_validation!(
meta.unwrap_meta().to_machine_usize(self.ecx),
"non-integer slice length in wide pointer",
self.path
);
// We do not check that `len * elem_size <= isize::MAX`:
// that is only required for references, and there it falls out of the
// "dereferenceable" check performed by Stacked Borrows.
}
ty::Foreign(..) => {
// Unsized, but not wide.
}
_ => bug!("Unexpected unsized type tail: {:?}", tail),
}
Ok(())
}
fn visit_primitive(&mut self, value: OpTy<'tcx, M::PointerTag>) -> InterpResult<'tcx> {
let value = self.ecx.read_immediate(value)?;
// Go over all the primitive types
let ty = value.layout.ty;
match ty.kind {
ty::Bool => {
let value = value.to_scalar_or_undef();
try_validation!(value.to_bool(), value, self.path, "a boolean");
}
ty::Char => {
let value = value.to_scalar_or_undef();
try_validation!(value.to_char(), value, self.path, "a valid unicode codepoint");
}
ty::Float(_) | ty::Int(_) | ty::Uint(_) => {
// NOTE: Keep this in sync with the array optimization for int/float
// types below!
let size = value.layout.size;
let value = value.to_scalar_or_undef();
if self.ref_tracking_for_consts.is_some() {
// Integers/floats in CTFE: Must be scalar bits, pointers are dangerous
try_validation!(
value.to_bits(size),
value,
self.path,
"initialized plain (non-pointer) bytes"
);
} else {
// At run-time, for now, we accept *anything* for these types, including
// undef. We should fix that, but let's start low.
}
}
ty::RawPtr(..) => {
// We are conservative with undef for integers, but try to
// actually enforce our current rules for raw pointers.
let place =
try_validation!(self.ecx.ref_to_mplace(value), "undefined pointer", self.path);
if place.layout.is_unsized() {
self.check_wide_ptr_meta(place.meta, place.layout)?;
}
}
_ if ty.is_box() || ty.is_region_ptr() => {
// Handle wide pointers.
// Check metadata early, for better diagnostics
let place =
try_validation!(self.ecx.ref_to_mplace(value), "undefined pointer", self.path);
if place.layout.is_unsized() {
self.check_wide_ptr_meta(place.meta, place.layout)?;
}
// Make sure this is dereferenceable and all.
let (size, align) = self
.ecx
.size_and_align_of(place.meta, place.layout)?
// for the purpose of validity, consider foreign types to have
// alignment and size determined by the layout (size will be 0,
// alignment should take attributes into account).
.unwrap_or_else(|| (place.layout.size, place.layout.align.abi));
let ptr: Option<_> = match self.ecx.memory.check_ptr_access_align(
place.ptr,
size,
Some(align),
CheckInAllocMsg::InboundsTest,
) {
Ok(ptr) => ptr,
Err(err) => {
info!(
"{:?} did not pass access check for size {:?}, align {:?}",
place.ptr, size, align
);
match err.kind {
err_unsup!(InvalidNullPointerUsage) => {
throw_validation_failure!("a NULL reference", self.path)
}
err_unsup!(AlignmentCheckFailed { required, has }) => {
throw_validation_failure!(
format_args!(
"an unaligned reference \
(required {} byte alignment but found {})",
required.bytes(),
has.bytes()
),
self.path
)
}
err_unsup!(ReadBytesAsPointer) => throw_validation_failure!(
"a dangling reference (created from integer)",
self.path
),
_ => throw_validation_failure!(
"a dangling reference (not entirely in bounds)",
self.path
),
}
}
};
// Recursive checking
if let Some(ref mut ref_tracking) = self.ref_tracking_for_consts {
if let Some(ptr) = ptr {
// not a ZST
// Skip validation entirely for some external statics
let alloc_kind = self.ecx.tcx.alloc_map.lock().get(ptr.alloc_id);
if let Some(GlobalAlloc::Static(did)) = alloc_kind {
// `extern static` cannot be validated as they have no body.
// FIXME: Statics from other crates are also skipped.
// They might be checked at a different type, but for now we
// want to avoid recursing too deeply. This is not sound!
if !did.is_local() || self.ecx.tcx.is_foreign_item(did) {
return Ok(());
}
}
}
// Proceed recursively even for ZST, no reason to skip them!
// `!` is a ZST and we want to validate it.
// Normalize before handing `place` to tracking because that will
// check for duplicates.
let place = if size.bytes() > 0 {
self.ecx.force_mplace_ptr(place).expect("we already bounds-checked")
} else {
place
};
let path = &self.path;
ref_tracking.track(place, || {
// We need to clone the path anyway, make sure it gets created
// with enough space for the additional `Deref`.
let mut new_path = Vec::with_capacity(path.len() + 1);
new_path.clone_from(path);
new_path.push(PathElem::Deref);
new_path
});
}
}
ty::FnPtr(_sig) => {
let value = value.to_scalar_or_undef();
let _fn = try_validation!(
value.not_undef().and_then(|ptr| self.ecx.memory.get_fn(ptr)),
value,
self.path,
"a function pointer"
);
// FIXME: Check if the signature matches
}
// This should be all the (inhabited) primitive types
_ => bug!("Unexpected primitive type {}", value.layout.ty),
}
Ok(())
}
fn visit_scalar(
&mut self,
op: OpTy<'tcx, M::PointerTag>,
scalar_layout: &layout::Scalar,
) -> InterpResult<'tcx> {
let value = self.ecx.read_scalar(op)?;
let valid_range = &scalar_layout.valid_range;
let (lo, hi) = valid_range.clone().into_inner();
// Determine the allowed range
// `max_hi` is as big as the size fits
let max_hi = u128::max_value() >> (128 - op.layout.size.bits());
assert!(hi <= max_hi);
// We could also write `(hi + 1) % (max_hi + 1) == lo` but `max_hi + 1` overflows for `u128`
if (lo == 0 && hi == max_hi) || (hi + 1 == lo) {
// Nothing to check
return Ok(());
}
// At least one value is excluded. Get the bits.
let value = try_validation!(
value.not_undef(),
value,
self.path,
format_args!("something {}", wrapping_range_format(valid_range, max_hi),)
);
let bits = match value.to_bits_or_ptr(op.layout.size, self.ecx) {
Err(ptr) => {
if lo == 1 && hi == max_hi {
// Only NULL is the niche. So make sure the ptr is NOT NULL.
if self.ecx.memory.ptr_may_be_null(ptr) {
throw_validation_failure!(
"a potentially NULL pointer",
self.path,
format_args!(
"something that cannot possibly fail to be {}",
wrapping_range_format(valid_range, max_hi)
)
)
}
return Ok(());
} else {
// Conservatively, we reject, because the pointer *could* have a bad
// value.
throw_validation_failure!(
"a pointer",
self.path,
format_args!(
"something that cannot possibly fail to be {}",
wrapping_range_format(valid_range, max_hi)
)
)
}
}
Ok(data) => data,
};
// Now compare. This is slightly subtle because this is a special "wrap-around" range.
if wrapping_range_contains(&valid_range, bits) {
Ok(())
} else {
throw_validation_failure!(
bits,
self.path,
format_args!("something {}", wrapping_range_format(valid_range, max_hi))
)
}
}
}
impl<'rt, 'mir, 'tcx, M: Machine<'mir, 'tcx>> ValueVisitor<'mir, 'tcx, M>
for ValidityVisitor<'rt, 'mir, 'tcx, M>
{
type V = OpTy<'tcx, M::PointerTag>;
#[inline(always)]
fn ecx(&self) -> &InterpCx<'mir, 'tcx, M> {
&self.ecx
}
#[inline]
fn visit_field(
&mut self,
old_op: OpTy<'tcx, M::PointerTag>,
field: usize,
new_op: OpTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx> {
let elem = self.aggregate_field_path_elem(old_op.layout, field);
self.visit_elem(new_op, elem)
}
#[inline]
fn visit_variant(
&mut self,
old_op: OpTy<'tcx, M::PointerTag>,
variant_id: VariantIdx,
new_op: OpTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx> {
let name = match old_op.layout.ty.kind {
ty::Adt(adt, _) => PathElem::Variant(adt.variants[variant_id].ident.name),
// Generators also have variants
ty::Generator(..) => PathElem::GeneratorState(variant_id),
_ => bug!("Unexpected type with variant: {:?}", old_op.layout.ty),
};
self.visit_elem(new_op, name)
}
#[inline(always)]
fn visit_union(&mut self, _v: Self::V, fields: usize) -> InterpResult<'tcx> {
// Empty unions are not accepted by rustc. That's great, it means we can
// use that as a signal for detecting primitives. Make sure
// we did not miss any primitive.
assert!(fields > 0);
Ok(())
}
#[inline]
fn visit_value(&mut self, op: OpTy<'tcx, M::PointerTag>) -> InterpResult<'tcx> {
trace!("visit_value: {:?}, {:?}", *op, op.layout);
if op.layout.abi.is_uninhabited() {
// Uninhabited types do not have sensible layout, stop right here.
throw_validation_failure!(
format_args!("a value of uninhabited type {:?}", op.layout.ty),
self.path
)
}
// Check primitive types. We do this after checking for uninhabited types,
// to exclude fieldless enums (that also appear as fieldless unions here).
// Primitives can have varying layout, so we check them separately and before aggregate
// handling.
// It is CRITICAL that we get this check right, or we might be validating the wrong thing!
let primitive = match op.layout.fields {
// Primitives appear as Union with 0 fields - except for Boxes and fat pointers.
// (Fieldless enums also appear here, but they are uninhabited and thus handled above.)
layout::FieldPlacement::Union(0) => true,
_ => op.layout.ty.builtin_deref(true).is_some(),
};
if primitive {
// No need to recurse further or check scalar layout, this is a leaf type.
return self.visit_primitive(op);
}
// Recursively walk the type. Translate some possible errors to something nicer.
match self.walk_value(op) {
Ok(()) => {}
Err(err) => match err.kind {
err_ub!(InvalidDiscriminant(val)) => {
throw_validation_failure!(val, self.path, "a valid enum discriminant")
}
err_unsup!(ReadPointerAsBytes) => {
throw_validation_failure!("a pointer", self.path, "plain (non-pointer) bytes")
}
_ => return Err(err),
},
}
// *After* all of this, check the ABI. We need to check the ABI to handle
// types like `NonNull` where the `Scalar` info is more restrictive than what
// the fields say (`rustc_layout_scalar_valid_range_start`).
// But in most cases, this will just propagate what the fields say,
// and then we want the error to point at the field -- so, first recurse,
// then check ABI.
//
// FIXME: We could avoid some redundant checks here. For newtypes wrapping
// scalars, we do the same check on every "level" (e.g., first we check
// MyNewtype and then the scalar in there).
match op.layout.abi {
layout::Abi::Uninhabited => unreachable!(), // checked above
layout::Abi::Scalar(ref scalar_layout) => {
self.visit_scalar(op, scalar_layout)?;
}
layout::Abi::ScalarPair { .. } | layout::Abi::Vector { .. } => {
// These have fields that we already visited above, so we already checked
// all their scalar-level restrictions.
// There is also no equivalent to `rustc_layout_scalar_valid_range_start`
// that would make skipping them here an issue.
}
layout::Abi::Aggregate { .. } => {
// Nothing to do.
}
}
Ok(())
}
fn visit_aggregate(
&mut self,
op: OpTy<'tcx, M::PointerTag>,
fields: impl Iterator<Item = InterpResult<'tcx, Self::V>>,
) -> InterpResult<'tcx> {
match op.layout.ty.kind {
ty::Str => {
let mplace = op.assert_mem_place(self.ecx); // strings are never immediate
try_validation!(
self.ecx.read_str(mplace),
"uninitialized or non-UTF-8 data in str",
self.path
);
}
ty::Array(tys, ..) | ty::Slice(tys)
if {
// This optimization applies for types that can hold arbitrary bytes (such as
// integer and floating point types) or for structs or tuples with no fields.
// FIXME(wesleywiser) This logic could be extended further to arbitrary structs
// or tuples made up of integer/floating point types or inhabited ZSTs with no
// padding.
match tys.kind {
ty::Int(..) | ty::Uint(..) | ty::Float(..) => true,
_ => false,
}
} =>
{
// Optimized handling for arrays of integer/float type.
// Arrays cannot be immediate, slices are never immediate.
let mplace = op.assert_mem_place(self.ecx);
// This is the length of the array/slice.
let len = mplace.len(self.ecx)?;
// Zero length slices have nothing to be checked.
if len == 0 {
return Ok(());
}
// This is the element type size.
let layout = self.ecx.layout_of(tys)?;
// This is the size in bytes of the whole array.
let size = layout.size * len;
// Size is not 0, get a pointer.
let ptr = self.ecx.force_ptr(mplace.ptr)?;
// Optimization: we just check the entire range at once.
// NOTE: Keep this in sync with the handling of integer and float
// types above, in `visit_primitive`.
// In run-time mode, we accept pointers in here. This is actually more
// permissive than a per-element check would be, e.g., we accept
// an &[u8] that contains a pointer even though bytewise checking would
// reject it. However, that's good: We don't inherently want
// to reject those pointers, we just do not have the machinery to
// talk about parts of a pointer.
// We also accept undef, for consistency with the slow path.
match self.ecx.memory.get_raw(ptr.alloc_id)?.check_bytes(
self.ecx,
ptr,
size,
/*allow_ptr_and_undef*/ self.ref_tracking_for_consts.is_none(),
) {
// In the happy case, we needn't check anything else.
Ok(()) => {}
// Some error happened, try to provide a more detailed description.
Err(err) => {
// For some errors we might be able to provide extra information
match err.kind {
err_unsup!(ReadUndefBytes(offset)) => {
// Some byte was undefined, determine which
// element that byte belongs to so we can
// provide an index.
let i = (offset.bytes() / layout.size.bytes()) as usize;
self.path.push(PathElem::ArrayElem(i));
throw_validation_failure!("undefined bytes", self.path)
}
// Other errors shouldn't be possible
_ => return Err(err),
}
}
}
}
// Fast path for arrays and slices of ZSTs. We only need to check a single ZST element
// of an array and not all of them, because there's only a single value of a specific
// ZST type, so either validation fails for all elements or none.
ty::Array(tys, ..) | ty::Slice(tys) if self.ecx.layout_of(tys)?.is_zst() => {
// Validate just the first element
self.walk_aggregate(op, fields.take(1))?
}
_ => {
self.walk_aggregate(op, fields)? // default handler
}
}
Ok(())
}
}
impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
/// This function checks the data at `op`. `op` is assumed to cover valid memory if it
/// is an indirect operand.
/// It will error if the bits at the destination do not match the ones described by the layout.
///
/// `ref_tracking_for_consts` can be `None` to avoid recursive checking below references.
/// This also toggles between "run-time" (no recursion) and "compile-time" (with recursion)
/// validation (e.g., pointer values are fine in integers at runtime) and various other const
/// specific validation checks.
pub fn validate_operand(
&self,
op: OpTy<'tcx, M::PointerTag>,
path: Vec<PathElem>,
ref_tracking_for_consts: Option<
&mut RefTracking<MPlaceTy<'tcx, M::PointerTag>, Vec<PathElem>>,
>,
) -> InterpResult<'tcx> {
trace!("validate_operand: {:?}, {:?}", *op, op.layout.ty);
// Construct a visitor
let mut visitor = ValidityVisitor { path, ref_tracking_for_consts, ecx: self };
// Try to cast to ptr *once* instead of all the time.
let op = self.force_op_ptr(op).unwrap_or(op);
// Run it
visitor.visit_value(op)
}
}