-
Notifications
You must be signed in to change notification settings - Fork 12.9k
/
mod.rs
907 lines (805 loc) · 32.5 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
use syntax::ast::{self, MetaItem};
use syntax::print::pprust;
use syntax::symbol::{Symbol, sym};
use rustc_index::bit_set::{BitSet, HybridBitSet};
use rustc_index::vec::Idx;
use rustc_data_structures::work_queue::WorkQueue;
use rustc::hir::def_id::DefId;
use rustc::ty::{self, TyCtxt};
use rustc::mir::{self, Body, BasicBlock, BasicBlockData, Location, Statement, Terminator};
use rustc::mir::traversal;
use rustc::session::Session;
use std::borrow::Borrow;
use std::fmt;
use std::io;
use std::path::PathBuf;
use std::usize;
pub use self::impls::{MaybeStorageLive, RequiresStorage};
pub use self::impls::{MaybeInitializedPlaces, MaybeUninitializedPlaces};
pub use self::impls::DefinitelyInitializedPlaces;
pub use self::impls::EverInitializedPlaces;
pub use self::impls::borrows::Borrows;
pub use self::impls::HaveBeenBorrowedLocals;
pub use self::impls::IndirectlyMutableLocals;
pub use self::at_location::{FlowAtLocation, FlowsAtLocation};
pub(crate) use self::drop_flag_effects::*;
use self::move_paths::MoveData;
mod at_location;
pub mod drop_flag_effects;
pub mod generic;
mod graphviz;
mod impls;
pub mod move_paths;
pub(crate) mod indexes {
pub(crate) use super::{
move_paths::{MovePathIndex, MoveOutIndex, InitIndex},
impls::borrows::BorrowIndex,
};
}
pub(crate) struct DataflowBuilder<'a, 'tcx, BD>
where
BD: BitDenotation<'tcx>,
{
def_id: DefId,
flow_state: DataflowAnalysis<'a, 'tcx, BD>,
print_preflow_to: Option<String>,
print_postflow_to: Option<String>,
}
/// `DebugFormatted` encapsulates the "{:?}" rendering of some
/// arbitrary value. This way: you pay cost of allocating an extra
/// string (as well as that of rendering up-front); in exchange, you
/// don't have to hand over ownership of your value or deal with
/// borrowing it.
pub struct DebugFormatted(String);
impl DebugFormatted {
pub fn new(input: &dyn fmt::Debug) -> DebugFormatted {
DebugFormatted(format!("{:?}", input))
}
}
impl fmt::Debug for DebugFormatted {
fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(w, "{}", self.0)
}
}
pub trait Dataflow<'tcx, BD: BitDenotation<'tcx>> {
/// Sets up and runs the dataflow problem, using `p` to render results if
/// implementation so chooses.
fn dataflow<P>(&mut self, p: P) where P: Fn(&BD, BD::Idx) -> DebugFormatted {
let _ = p; // default implementation does not instrument process.
self.build_sets();
self.propagate();
}
/// Sets up the entry, gen, and kill sets for this instance of a dataflow problem.
fn build_sets(&mut self);
/// Finds a fixed-point solution to this instance of a dataflow problem.
fn propagate(&mut self);
}
impl<'a, 'tcx, BD> Dataflow<'tcx, BD> for DataflowBuilder<'a, 'tcx, BD>
where
BD: BitDenotation<'tcx>,
{
fn dataflow<P>(&mut self, p: P) where P: Fn(&BD, BD::Idx) -> DebugFormatted {
self.flow_state.build_sets();
self.pre_dataflow_instrumentation(|c,i| p(c,i)).unwrap();
self.flow_state.propagate();
self.post_dataflow_instrumentation(|c,i| p(c,i)).unwrap();
}
fn build_sets(&mut self) { self.flow_state.build_sets(); }
fn propagate(&mut self) { self.flow_state.propagate(); }
}
pub(crate) fn has_rustc_mir_with(attrs: &[ast::Attribute], name: Symbol) -> Option<MetaItem> {
for attr in attrs {
if attr.check_name(sym::rustc_mir) {
let items = attr.meta_item_list();
for item in items.iter().flat_map(|l| l.iter()) {
match item.meta_item() {
Some(mi) if mi.check_name(name) => return Some(mi.clone()),
_ => continue
}
}
}
}
return None;
}
pub struct MoveDataParamEnv<'tcx> {
pub(crate) move_data: MoveData<'tcx>,
pub(crate) param_env: ty::ParamEnv<'tcx>,
}
pub fn do_dataflow<'a, 'tcx, BD, P>(
tcx: TyCtxt<'tcx>,
body: &'a Body<'tcx>,
def_id: DefId,
attributes: &[ast::Attribute],
dead_unwinds: &BitSet<BasicBlock>,
bd: BD,
p: P,
) -> DataflowResults<'tcx, BD>
where
BD: BitDenotation<'tcx>,
P: Fn(&BD, BD::Idx) -> DebugFormatted,
{
let flow_state = DataflowAnalysis::new(body, dead_unwinds, bd);
flow_state.run(tcx, def_id, attributes, p)
}
impl<'a, 'tcx, BD> DataflowAnalysis<'a, 'tcx, BD>
where
BD: BitDenotation<'tcx>,
{
pub(crate) fn run<P>(
self,
tcx: TyCtxt<'tcx>,
def_id: DefId,
attributes: &[ast::Attribute],
p: P,
) -> DataflowResults<'tcx, BD>
where
P: Fn(&BD, BD::Idx) -> DebugFormatted,
{
let name_found = |sess: &Session, attrs: &[ast::Attribute], name| -> Option<String> {
if let Some(item) = has_rustc_mir_with(attrs, name) {
if let Some(s) = item.value_str() {
return Some(s.to_string())
} else {
let path = pprust::path_to_string(&item.path);
sess.span_err(item.span, &format!("{} attribute requires a path", path));
return None;
}
}
return None;
};
let print_preflow_to = name_found(tcx.sess, attributes, sym::borrowck_graphviz_preflow);
let print_postflow_to = name_found(tcx.sess, attributes, sym::borrowck_graphviz_postflow);
let mut mbcx = DataflowBuilder {
def_id,
print_preflow_to, print_postflow_to, flow_state: self,
};
mbcx.dataflow(p);
mbcx.flow_state.results()
}
}
struct PropagationContext<'b, 'a, 'tcx, O>
where
O: BitDenotation<'tcx>,
{
builder: &'b mut DataflowAnalysis<'a, 'tcx, O>,
}
impl<'a, 'tcx, BD> DataflowAnalysis<'a, 'tcx, BD>
where
BD: BitDenotation<'tcx>,
{
fn propagate(&mut self) {
let mut temp = BitSet::new_empty(self.flow_state.sets.bits_per_block);
let mut propcx = PropagationContext {
builder: self,
};
propcx.walk_cfg(&mut temp);
}
fn build_sets(&mut self) {
// Build the transfer function for each block.
for (bb, data) in self.body.basic_blocks().iter_enumerated() {
let &mir::BasicBlockData { ref statements, ref terminator, is_cleanup: _ } = data;
let trans = self.flow_state.sets.trans_mut_for(bb.index());
for j_stmt in 0..statements.len() {
let location = Location { block: bb, statement_index: j_stmt };
self.flow_state.operator.before_statement_effect(trans, location);
self.flow_state.operator.statement_effect(trans, location);
}
if terminator.is_some() {
let location = Location { block: bb, statement_index: statements.len() };
self.flow_state.operator.before_terminator_effect(trans, location);
self.flow_state.operator.terminator_effect(trans, location);
}
}
// Initialize the flow state at entry to the start block.
let on_entry = self.flow_state.sets.entry_set_mut_for(mir::START_BLOCK.index());
self.flow_state.operator.start_block_effect(on_entry);
}
}
impl<'b, 'a, 'tcx, BD> PropagationContext<'b, 'a, 'tcx, BD>
where
BD: BitDenotation<'tcx>,
{
fn walk_cfg(&mut self, in_out: &mut BitSet<BD::Idx>) {
let body = self.builder.body;
// Initialize the dirty queue in reverse post-order. This makes it more likely that the
// entry state for each basic block will have the effects of its predecessors applied
// before it is processed. In fact, for CFGs without back edges, this guarantees that
// dataflow will converge in exactly `N` iterations, where `N` is the number of basic
// blocks.
let mut dirty_queue: WorkQueue<mir::BasicBlock> =
WorkQueue::with_none(body.basic_blocks().len());
for (bb, _) in traversal::reverse_postorder(body) {
dirty_queue.insert(bb);
}
// Add blocks which are not reachable from START_BLOCK to the work queue. These blocks will
// be processed after the ones added above.
for bb in body.basic_blocks().indices() {
dirty_queue.insert(bb);
}
while let Some(bb) = dirty_queue.pop() {
let (on_entry, trans) = self.builder.flow_state.sets.get_mut(bb.index());
debug_assert!(in_out.words().len() == on_entry.words().len());
in_out.overwrite(on_entry);
trans.apply(in_out);
let bb_data = &body[bb];
self.builder.propagate_bits_into_graph_successors_of(
in_out, (bb, bb_data), &mut dirty_queue);
}
}
}
fn dataflow_path(context: &str, path: &str) -> PathBuf {
let mut path = PathBuf::from(path);
let new_file_name = {
let orig_file_name = path.file_name().unwrap().to_str().unwrap();
format!("{}_{}", context, orig_file_name)
};
path.set_file_name(new_file_name);
path
}
impl<'a, 'tcx, BD> DataflowBuilder<'a, 'tcx, BD>
where
BD: BitDenotation<'tcx>,
{
fn pre_dataflow_instrumentation<P>(&self, p: P) -> io::Result<()>
where P: Fn(&BD, BD::Idx) -> DebugFormatted
{
if let Some(ref path_str) = self.print_preflow_to {
let path = dataflow_path(BD::name(), path_str);
graphviz::print_borrowck_graph_to(self, &path, p)
} else {
Ok(())
}
}
fn post_dataflow_instrumentation<P>(&self, p: P) -> io::Result<()>
where P: Fn(&BD, BD::Idx) -> DebugFormatted
{
if let Some(ref path_str) = self.print_postflow_to {
let path = dataflow_path(BD::name(), path_str);
graphviz::print_borrowck_graph_to(self, &path, p)
} else {
Ok(())
}
}
}
/// DataflowResultsConsumer abstracts over walking the MIR with some
/// already constructed dataflow results.
///
/// It abstracts over the FlowState and also completely hides the
/// underlying flow analysis results, because it needs to handle cases
/// where we are combining the results of *multiple* flow analyses
/// (e.g., borrows + inits + uninits).
pub(crate) trait DataflowResultsConsumer<'a, 'tcx: 'a> {
type FlowState: FlowsAtLocation;
// Observation Hooks: override (at least one of) these to get analysis feedback.
fn visit_block_entry(&mut self,
_bb: BasicBlock,
_flow_state: &Self::FlowState) {}
fn visit_statement_entry(&mut self,
_loc: Location,
_stmt: &'a Statement<'tcx>,
_flow_state: &Self::FlowState) {}
fn visit_terminator_entry(&mut self,
_loc: Location,
_term: &'a Terminator<'tcx>,
_flow_state: &Self::FlowState) {}
// Main entry point: this drives the processing of results.
fn analyze_results(&mut self, flow_uninit: &mut Self::FlowState) {
let flow = flow_uninit;
for (bb, _) in traversal::reverse_postorder(self.body()) {
flow.reset_to_entry_of(bb);
self.process_basic_block(bb, flow);
}
}
fn process_basic_block(&mut self, bb: BasicBlock, flow_state: &mut Self::FlowState) {
self.visit_block_entry(bb, flow_state);
let BasicBlockData { ref statements, ref terminator, is_cleanup: _ } =
self.body()[bb];
let mut location = Location { block: bb, statement_index: 0 };
for stmt in statements.iter() {
flow_state.reconstruct_statement_effect(location);
self.visit_statement_entry(location, stmt, flow_state);
flow_state.apply_local_effect(location);
location.statement_index += 1;
}
if let Some(ref term) = *terminator {
flow_state.reconstruct_terminator_effect(location);
self.visit_terminator_entry(location, term, flow_state);
// We don't need to apply the effect of the terminator,
// since we are only visiting dataflow state on control
// flow entry to the various nodes. (But we still need to
// reconstruct the effect, because the visit method might
// inspect it.)
}
}
// Delegated Hooks: Provide access to the MIR and process the flow state.
fn body(&self) -> &'a Body<'tcx>;
}
/// Allows iterating dataflow results in a flexible and reasonably fast way.
pub struct DataflowResultsCursor<'mir, 'tcx, BD, DR = DataflowResults<'tcx, BD>>
where
BD: BitDenotation<'tcx>,
DR: Borrow<DataflowResults<'tcx, BD>>,
{
flow_state: FlowAtLocation<'tcx, BD, DR>,
// The statement (or terminator) whose effect has been reconstructed in
// flow_state.
curr_loc: Option<Location>,
body: &'mir Body<'tcx>,
}
pub type DataflowResultsRefCursor<'mir, 'tcx, BD> =
DataflowResultsCursor<'mir, 'tcx, BD, &'mir DataflowResults<'tcx, BD>>;
impl<'mir, 'tcx, BD, DR> DataflowResultsCursor<'mir, 'tcx, BD, DR>
where
BD: BitDenotation<'tcx>,
DR: Borrow<DataflowResults<'tcx, BD>>,
{
pub fn new(result: DR, body: &'mir Body<'tcx>) -> Self {
DataflowResultsCursor {
flow_state: FlowAtLocation::new(result),
curr_loc: None,
body,
}
}
/// Seek to the given location in MIR. This method is fast if you are
/// traversing your MIR statements in order.
///
/// After calling `seek`, the current state will reflect all effects up to
/// and including the `before_statement_effect` of the statement at location
/// `loc`. The `statement_effect` of the statement at `loc` will be
/// available as the current effect (see e.g. `each_gen_bit`).
///
/// If `loc.statement_index` equals the number of statements in the block,
/// we will reconstruct the terminator effect in the same way as described
/// above.
pub fn seek(&mut self, loc: Location) {
if self.curr_loc.map(|cur| loc == cur).unwrap_or(false) {
return;
}
let start_index;
let should_reset = match self.curr_loc {
None => true,
Some(cur)
if loc.block != cur.block || loc.statement_index < cur.statement_index => true,
_ => false,
};
if should_reset {
self.flow_state.reset_to_entry_of(loc.block);
start_index = 0;
} else {
let curr_loc = self.curr_loc.unwrap();
start_index = curr_loc.statement_index;
// Apply the effect from the last seek to the current state.
self.flow_state.apply_local_effect(curr_loc);
}
for stmt in start_index..loc.statement_index {
let mut stmt_loc = loc;
stmt_loc.statement_index = stmt;
self.flow_state.reconstruct_statement_effect(stmt_loc);
self.flow_state.apply_local_effect(stmt_loc);
}
if loc.statement_index == self.body[loc.block].statements.len() {
self.flow_state.reconstruct_terminator_effect(loc);
} else {
self.flow_state.reconstruct_statement_effect(loc);
}
self.curr_loc = Some(loc);
}
/// Return whether the current state contains bit `x`.
pub fn contains(&self, x: BD::Idx) -> bool {
self.flow_state.contains(x)
}
/// Iterate over each `gen` bit in the current effect (invoke `seek` first).
pub fn each_gen_bit<F>(&self, f: F)
where
F: FnMut(BD::Idx),
{
self.flow_state.each_gen_bit(f)
}
pub fn get(&self) -> &BitSet<BD::Idx> {
self.flow_state.as_dense()
}
}
pub struct DataflowAnalysis<'a, 'tcx, O>
where
O: BitDenotation<'tcx>,
{
flow_state: DataflowState<'tcx, O>,
dead_unwinds: &'a BitSet<mir::BasicBlock>,
body: &'a Body<'tcx>,
}
impl<'a, 'tcx, O> DataflowAnalysis<'a, 'tcx, O>
where
O: BitDenotation<'tcx>,
{
pub fn results(self) -> DataflowResults<'tcx, O> {
DataflowResults(self.flow_state)
}
pub fn body(&self) -> &'a Body<'tcx> { self.body }
}
pub struct DataflowResults<'tcx, O>(pub(crate) DataflowState<'tcx, O>) where O: BitDenotation<'tcx>;
impl<'tcx, O: BitDenotation<'tcx>> DataflowResults<'tcx, O> {
pub fn sets(&self) -> &AllSets<O::Idx> {
&self.0.sets
}
pub fn operator(&self) -> &O {
&self.0.operator
}
}
/// State of a dataflow analysis; couples a collection of bit sets
/// with operator used to initialize and merge bits during analysis.
pub struct DataflowState<'tcx, O: BitDenotation<'tcx>>
{
/// All the sets for the analysis. (Factored into its
/// own structure so that we can borrow it mutably
/// on its own separate from other fields.)
pub sets: AllSets<O::Idx>,
/// operator used to initialize, combine, and interpret bits.
pub(crate) operator: O,
}
impl<'tcx, O: BitDenotation<'tcx>> DataflowState<'tcx, O> {
pub(crate) fn interpret_set<'c, P>(&self,
o: &'c O,
set: &BitSet<O::Idx>,
render_idx: &P)
-> Vec<DebugFormatted>
where P: Fn(&O, O::Idx) -> DebugFormatted
{
set.iter().map(|i| render_idx(o, i)).collect()
}
pub(crate) fn interpret_hybrid_set<'c, P>(&self,
o: &'c O,
set: &HybridBitSet<O::Idx>,
render_idx: &P)
-> Vec<DebugFormatted>
where P: Fn(&O, O::Idx) -> DebugFormatted
{
set.iter().map(|i| render_idx(o, i)).collect()
}
}
/// A 2-tuple representing the "gen" and "kill" bitsets during
/// dataflow analysis.
///
/// It is best to ensure that the intersection of `gen_set` and
/// `kill_set` is empty; otherwise the results of the dataflow will
/// have a hidden dependency on what order the bits are generated and
/// killed during the iteration. (This is such a good idea that the
/// `fn gen` and `fn kill` methods that set their state enforce this
/// for you.)
#[derive(Debug, Clone, Copy)]
pub struct GenKill<T> {
pub(crate) gen_set: T,
pub(crate) kill_set: T,
}
pub type GenKillSet<T> = GenKill<HybridBitSet<T>>;
impl<T> GenKill<T> {
/// Creates a new tuple where `gen_set == kill_set == elem`.
pub(crate) fn from_elem(elem: T) -> Self
where T: Clone
{
GenKill {
gen_set: elem.clone(),
kill_set: elem,
}
}
}
impl<E:Idx> GenKillSet<E> {
pub fn clear(&mut self) {
self.gen_set.clear();
self.kill_set.clear();
}
pub fn gen(&mut self, e: E) {
self.gen_set.insert(e);
self.kill_set.remove(e);
}
pub fn gen_all(&mut self, i: impl IntoIterator<Item: Borrow<E>>) {
for j in i {
self.gen(*j.borrow());
}
}
pub fn kill(&mut self, e: E) {
self.gen_set.remove(e);
self.kill_set.insert(e);
}
pub fn kill_all(&mut self, i: impl IntoIterator<Item: Borrow<E>>) {
for j in i {
self.kill(*j.borrow());
}
}
/// Computes `(set ∪ gen) - kill` and assigns the result to `set`.
pub(crate) fn apply(&self, set: &mut BitSet<E>) {
set.union(&self.gen_set);
set.subtract(&self.kill_set);
}
}
#[derive(Debug)]
pub struct AllSets<E: Idx> {
/// Analysis bitwidth for each block.
bits_per_block: usize,
/// For each block, bits valid on entry to the block.
on_entry: Vec<BitSet<E>>,
/// The transfer function of each block expressed as the set of bits
/// generated and killed by executing the statements + terminator in the
/// block -- with one caveat. In particular, for *call terminators*, the
/// effect of storing the destination is not included, since that only takes
/// effect on the **success** edge (and not the unwind edge).
trans: Vec<GenKillSet<E>>,
}
impl<E:Idx> AllSets<E> {
pub fn bits_per_block(&self) -> usize { self.bits_per_block }
pub fn get_mut(&mut self, block_idx: usize) -> (&mut BitSet<E>, &mut GenKillSet<E>) {
(&mut self.on_entry[block_idx], &mut self.trans[block_idx])
}
pub fn trans_for(&self, block_idx: usize) -> &GenKillSet<E> {
&self.trans[block_idx]
}
pub fn trans_mut_for(&mut self, block_idx: usize) -> &mut GenKillSet<E> {
&mut self.trans[block_idx]
}
pub fn entry_set_for(&self, block_idx: usize) -> &BitSet<E> {
&self.on_entry[block_idx]
}
pub fn entry_set_mut_for(&mut self, block_idx: usize) -> &mut BitSet<E> {
&mut self.on_entry[block_idx]
}
pub fn gen_set_for(&self, block_idx: usize) -> &HybridBitSet<E> {
&self.trans_for(block_idx).gen_set
}
pub fn kill_set_for(&self, block_idx: usize) -> &HybridBitSet<E> {
&self.trans_for(block_idx).kill_set
}
}
/// Parameterization for the precise form of data flow that is used.
///
/// `BottomValue` determines whether the initial entry set for each basic block is empty or full.
/// This also determines the semantics of the lattice `join` operator used to merge dataflow
/// results, since dataflow works by starting at the bottom and moving monotonically to a fixed
/// point.
///
/// This means, for propagation across the graph, that you either want to start at all-zeroes and
/// then use Union as your merge when propagating, or you start at all-ones and then use Intersect
/// as your merge when propagating.
pub trait BottomValue {
/// Specifies the initial value for each bit in the entry set for each basic block.
const BOTTOM_VALUE: bool;
/// Merges `in_set` into `inout_set`, returning `true` if `inout_set` changed.
#[inline]
fn join<T: Idx>(&self, inout_set: &mut BitSet<T>, in_set: &BitSet<T>) -> bool {
if Self::BOTTOM_VALUE == false {
inout_set.union(in_set)
} else {
inout_set.intersect(in_set)
}
}
}
/// A specific flavor of dataflow analysis.
///
/// To run a dataflow analysis, one sets up an initial state for the
/// `START_BLOCK` via `start_block_effect` and a transfer function (`trans`)
/// for each block individually. The entry set for all other basic blocks is
/// initialized to `Self::BOTTOM_VALUE`. The dataflow analysis then
/// iteratively modifies the various entry sets (but leaves the the transfer
/// function unchanged).
pub trait BitDenotation<'tcx>: BottomValue {
/// Specifies what index type is used to access the bitvector.
type Idx: Idx;
/// A name describing the dataflow analysis that this
/// `BitDenotation` is supporting. The name should be something
/// suitable for plugging in as part of a filename (i.e., avoid
/// space-characters or other things that tend to look bad on a
/// file system, like slashes or periods). It is also better for
/// the name to be reasonably short, again because it will be
/// plugged into a filename.
fn name() -> &'static str;
/// Size of each bitvector allocated for each block in the analysis.
fn bits_per_block(&self) -> usize;
/// Mutates the entry set according to the effects that
/// have been established *prior* to entering the start
/// block. This can't access the gen/kill sets, because
/// these won't be accounted for correctly.
///
/// (For example, establishing the call arguments.)
fn start_block_effect(&self, entry_set: &mut BitSet<Self::Idx>);
/// Similar to `statement_effect`, except it applies
/// *just before* the statement rather than *just after* it.
///
/// This matters for "dataflow at location" APIs, because the
/// before-statement effect is visible while visiting the
/// statement, while the after-statement effect only becomes
/// visible at the next statement.
///
/// Both the before-statement and after-statement effects are
/// applied, in that order, before moving for the next
/// statement.
fn before_statement_effect(&self,
_trans: &mut GenKillSet<Self::Idx>,
_location: Location) {}
/// Mutates the block-sets (the flow sets for the given
/// basic block) according to the effects of evaluating statement.
///
/// This is used, in particular, for building up the
/// "transfer-function" representing the overall-effect of the
/// block, represented via GEN and KILL sets.
///
/// The statement is identified as `bb_data[idx_stmt]`, where
/// `bb_data` is the sequence of statements identified by `bb` in
/// the MIR.
fn statement_effect(&self,
trans: &mut GenKillSet<Self::Idx>,
location: Location);
/// Similar to `terminator_effect`, except it applies
/// *just before* the terminator rather than *just after* it.
///
/// This matters for "dataflow at location" APIs, because the
/// before-terminator effect is visible while visiting the
/// terminator, while the after-terminator effect only becomes
/// visible at the terminator's successors.
///
/// Both the before-terminator and after-terminator effects are
/// applied, in that order, before moving for the next
/// terminator.
fn before_terminator_effect(&self,
_trans: &mut GenKillSet<Self::Idx>,
_location: Location) {}
/// Mutates the block-sets (the flow sets for the given
/// basic block) according to the effects of evaluating
/// the terminator.
///
/// This is used, in particular, for building up the
/// "transfer-function" representing the overall-effect of the
/// block, represented via GEN and KILL sets.
///
/// The effects applied here cannot depend on which branch the
/// terminator took.
fn terminator_effect(&self,
trans: &mut GenKillSet<Self::Idx>,
location: Location);
/// Mutates the block-sets according to the (flow-dependent)
/// effect of a successful return from a Call terminator.
///
/// If basic-block BB_x ends with a call-instruction that, upon
/// successful return, flows to BB_y, then this method will be
/// called on the exit flow-state of BB_x in order to set up the
/// entry flow-state of BB_y.
///
/// This is used, in particular, as a special case during the
/// "propagate" loop where all of the basic blocks are repeatedly
/// visited. Since the effects of a Call terminator are
/// flow-dependent, the current MIR cannot encode them via just
/// GEN and KILL sets attached to the block, and so instead we add
/// this extra machinery to represent the flow-dependent effect.
//
// FIXME: right now this is a bit of a wart in the API. It might
// be better to represent this as an additional gen- and
// kill-sets associated with each edge coming out of the basic
// block.
fn propagate_call_return(
&self,
in_out: &mut BitSet<Self::Idx>,
call_bb: mir::BasicBlock,
dest_bb: mir::BasicBlock,
dest_place: &mir::Place<'tcx>,
);
}
impl<'a, 'tcx, D> DataflowAnalysis<'a, 'tcx, D> where D: BitDenotation<'tcx>
{
pub fn new(body: &'a Body<'tcx>,
dead_unwinds: &'a BitSet<mir::BasicBlock>,
denotation: D) -> Self {
let bits_per_block = denotation.bits_per_block();
let num_blocks = body.basic_blocks().len();
let on_entry = if D::BOTTOM_VALUE == true {
vec![BitSet::new_filled(bits_per_block); num_blocks]
} else {
vec![BitSet::new_empty(bits_per_block); num_blocks]
};
let nop = GenKill::from_elem(HybridBitSet::new_empty(bits_per_block));
DataflowAnalysis {
body,
dead_unwinds,
flow_state: DataflowState {
sets: AllSets {
bits_per_block,
on_entry,
trans: vec![nop; num_blocks],
},
operator: denotation,
}
}
}
}
impl<'a, 'tcx, D> DataflowAnalysis<'a, 'tcx, D>
where
D: BitDenotation<'tcx>,
{
/// Propagates the bits of `in_out` into all the successors of `bb`,
/// using bitwise operator denoted by `self.operator`.
///
/// For most blocks, this is entirely uniform. However, for blocks
/// that end with a call terminator, the effect of the call on the
/// dataflow state may depend on whether the call returned
/// successfully or unwound.
///
/// To reflect this, the `propagate_call_return` method of the
/// `BitDenotation` mutates `in_out` when propagating `in_out` via
/// a call terminator; such mutation is performed *last*, to
/// ensure its side-effects do not leak elsewhere (e.g., into
/// unwind target).
fn propagate_bits_into_graph_successors_of(
&mut self,
in_out: &mut BitSet<D::Idx>,
(bb, bb_data): (mir::BasicBlock, &mir::BasicBlockData<'tcx>),
dirty_list: &mut WorkQueue<mir::BasicBlock>)
{
match bb_data.terminator().kind {
mir::TerminatorKind::Return |
mir::TerminatorKind::Resume |
mir::TerminatorKind::Abort |
mir::TerminatorKind::GeneratorDrop |
mir::TerminatorKind::Unreachable => {}
mir::TerminatorKind::Goto { target } |
mir::TerminatorKind::Assert { target, cleanup: None, .. } |
mir::TerminatorKind::Yield { resume: target, drop: None, .. } |
mir::TerminatorKind::Drop { target, location: _, unwind: None } |
mir::TerminatorKind::DropAndReplace {
target, value: _, location: _, unwind: None
} => {
self.propagate_bits_into_entry_set_for(in_out, target, dirty_list);
}
mir::TerminatorKind::Yield { resume: target, drop: Some(drop), .. } => {
self.propagate_bits_into_entry_set_for(in_out, target, dirty_list);
self.propagate_bits_into_entry_set_for(in_out, drop, dirty_list);
}
mir::TerminatorKind::Assert { target, cleanup: Some(unwind), .. } |
mir::TerminatorKind::Drop { target, location: _, unwind: Some(unwind) } |
mir::TerminatorKind::DropAndReplace {
target, value: _, location: _, unwind: Some(unwind)
} => {
self.propagate_bits_into_entry_set_for(in_out, target, dirty_list);
if !self.dead_unwinds.contains(bb) {
self.propagate_bits_into_entry_set_for(in_out, unwind, dirty_list);
}
}
mir::TerminatorKind::SwitchInt { ref targets, .. } => {
for target in targets {
self.propagate_bits_into_entry_set_for(in_out, *target, dirty_list);
}
}
mir::TerminatorKind::Call { cleanup, ref destination, .. } => {
if let Some(unwind) = cleanup {
if !self.dead_unwinds.contains(bb) {
self.propagate_bits_into_entry_set_for(in_out, unwind, dirty_list);
}
}
if let Some((ref dest_place, dest_bb)) = *destination {
// N.B.: This must be done *last*, after all other
// propagation, as documented in comment above.
self.flow_state.operator.propagate_call_return(
in_out, bb, dest_bb, dest_place);
self.propagate_bits_into_entry_set_for(in_out, dest_bb, dirty_list);
}
}
mir::TerminatorKind::FalseEdges { real_target, imaginary_target } => {
self.propagate_bits_into_entry_set_for(in_out, real_target, dirty_list);
self.propagate_bits_into_entry_set_for(in_out, imaginary_target, dirty_list);
}
mir::TerminatorKind::FalseUnwind { real_target, unwind } => {
self.propagate_bits_into_entry_set_for(in_out, real_target, dirty_list);
if let Some(unwind) = unwind {
if !self.dead_unwinds.contains(bb) {
self.propagate_bits_into_entry_set_for(in_out, unwind, dirty_list);
}
}
}
}
}
fn propagate_bits_into_entry_set_for(&mut self,
in_out: &BitSet<D::Idx>,
bb: mir::BasicBlock,
dirty_queue: &mut WorkQueue<mir::BasicBlock>) {
let entry_set = self.flow_state.sets.entry_set_mut_for(bb.index());
let set_changed = self.flow_state.operator.join(entry_set, &in_out);
if set_changed {
dirty_queue.insert(bb);
}
}
}