-
Notifications
You must be signed in to change notification settings - Fork 12.9k
/
map.rs
2590 lines (2355 loc) · 79.7 KB
/
map.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use core::cmp::Ordering;
use core::fmt::Debug;
use core::hash::{Hash, Hasher};
use core::iter::{FromIterator, Peekable, FusedIterator};
use core::marker::PhantomData;
use core::ops::Bound::{Excluded, Included, Unbounded};
use core::ops::Index;
use core::ops::RangeBounds;
use core::{fmt, intrinsics, mem, ptr};
use borrow::Borrow;
use super::node::{self, Handle, NodeRef, marker};
use super::search;
use super::node::InsertResult::*;
use super::node::ForceResult::*;
use super::search::SearchResult::*;
use self::UnderflowResult::*;
use self::Entry::*;
/// A map based on a B-Tree.
///
/// B-Trees represent a fundamental compromise between cache-efficiency and actually minimizing
/// the amount of work performed in a search. In theory, a binary search tree (BST) is the optimal
/// choice for a sorted map, as a perfectly balanced BST performs the theoretical minimum amount of
/// comparisons necessary to find an element (log<sub>2</sub>n). However, in practice the way this
/// is done is *very* inefficient for modern computer architectures. In particular, every element
/// is stored in its own individually heap-allocated node. This means that every single insertion
/// triggers a heap-allocation, and every single comparison should be a cache-miss. Since these
/// are both notably expensive things to do in practice, we are forced to at very least reconsider
/// the BST strategy.
///
/// A B-Tree instead makes each node contain B-1 to 2B-1 elements in a contiguous array. By doing
/// this, we reduce the number of allocations by a factor of B, and improve cache efficiency in
/// searches. However, this does mean that searches will have to do *more* comparisons on average.
/// The precise number of comparisons depends on the node search strategy used. For optimal cache
/// efficiency, one could search the nodes linearly. For optimal comparisons, one could search
/// the node using binary search. As a compromise, one could also perform a linear search
/// that initially only checks every i<sup>th</sup> element for some choice of i.
///
/// Currently, our implementation simply performs naive linear search. This provides excellent
/// performance on *small* nodes of elements which are cheap to compare. However in the future we
/// would like to further explore choosing the optimal search strategy based on the choice of B,
/// and possibly other factors. Using linear search, searching for a random element is expected
/// to take O(B log<sub>B</sub>n) comparisons, which is generally worse than a BST. In practice,
/// however, performance is excellent.
///
/// It is a logic error for a key to be modified in such a way that the key's ordering relative to
/// any other key, as determined by the [`Ord`] trait, changes while it is in the map. This is
/// normally only possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code.
///
/// [`Ord`]: ../../std/cmp/trait.Ord.html
/// [`Cell`]: ../../std/cell/struct.Cell.html
/// [`RefCell`]: ../../std/cell/struct.RefCell.html
///
/// # Examples
///
/// ```
/// use std::collections::BTreeMap;
///
/// // type inference lets us omit an explicit type signature (which
/// // would be `BTreeMap<&str, &str>` in this example).
/// let mut movie_reviews = BTreeMap::new();
///
/// // review some movies.
/// movie_reviews.insert("Office Space", "Deals with real issues in the workplace.");
/// movie_reviews.insert("Pulp Fiction", "Masterpiece.");
/// movie_reviews.insert("The Godfather", "Very enjoyable.");
/// movie_reviews.insert("The Blues Brothers", "Eye lyked it alot.");
///
/// // check for a specific one.
/// if !movie_reviews.contains_key("Les Misérables") {
/// println!("We've got {} reviews, but Les Misérables ain't one.",
/// movie_reviews.len());
/// }
///
/// // oops, this review has a lot of spelling mistakes, let's delete it.
/// movie_reviews.remove("The Blues Brothers");
///
/// // look up the values associated with some keys.
/// let to_find = ["Up!", "Office Space"];
/// for book in &to_find {
/// match movie_reviews.get(book) {
/// Some(review) => println!("{}: {}", book, review),
/// None => println!("{} is unreviewed.", book)
/// }
/// }
///
/// // iterate over everything.
/// for (movie, review) in &movie_reviews {
/// println!("{}: \"{}\"", movie, review);
/// }
/// ```
///
/// `BTreeMap` also implements an [`Entry API`](#method.entry), which allows
/// for more complex methods of getting, setting, updating and removing keys and
/// their values:
///
/// ```
/// use std::collections::BTreeMap;
///
/// // type inference lets us omit an explicit type signature (which
/// // would be `BTreeMap<&str, u8>` in this example).
/// let mut player_stats = BTreeMap::new();
///
/// fn random_stat_buff() -> u8 {
/// // could actually return some random value here - let's just return
/// // some fixed value for now
/// 42
/// }
///
/// // insert a key only if it doesn't already exist
/// player_stats.entry("health").or_insert(100);
///
/// // insert a key using a function that provides a new value only if it
/// // doesn't already exist
/// player_stats.entry("defence").or_insert_with(random_stat_buff);
///
/// // update a key, guarding against the key possibly not being set
/// let stat = player_stats.entry("attack").or_insert(100);
/// *stat += random_stat_buff();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub struct BTreeMap<K, V> {
root: node::Root<K, V>,
length: usize,
}
#[stable(feature = "btree_drop", since = "1.7.0")]
unsafe impl<#[may_dangle] K, #[may_dangle] V> Drop for BTreeMap<K, V> {
fn drop(&mut self) {
unsafe {
drop(ptr::read(self).into_iter());
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<K: Clone, V: Clone> Clone for BTreeMap<K, V> {
fn clone(&self) -> BTreeMap<K, V> {
fn clone_subtree<'a, K: Clone, V: Clone>(
node: node::NodeRef<marker::Immut<'a>, K, V, marker::LeafOrInternal>
) -> BTreeMap<K, V>
where K: 'a, V: 'a,
{
match node.force() {
Leaf(leaf) => {
let mut out_tree = BTreeMap {
root: node::Root::new_leaf(),
length: 0,
};
{
let mut out_node = match out_tree.root.as_mut().force() {
Leaf(leaf) => leaf,
Internal(_) => unreachable!(),
};
let mut in_edge = leaf.first_edge();
while let Ok(kv) = in_edge.right_kv() {
let (k, v) = kv.into_kv();
in_edge = kv.right_edge();
out_node.push(k.clone(), v.clone());
out_tree.length += 1;
}
}
out_tree
}
Internal(internal) => {
let mut out_tree = clone_subtree(internal.first_edge().descend());
{
let mut out_node = out_tree.root.push_level();
let mut in_edge = internal.first_edge();
while let Ok(kv) = in_edge.right_kv() {
let (k, v) = kv.into_kv();
in_edge = kv.right_edge();
let k = (*k).clone();
let v = (*v).clone();
let subtree = clone_subtree(in_edge.descend());
// We can't destructure subtree directly
// because BTreeMap implements Drop
let (subroot, sublength) = unsafe {
let root = ptr::read(&subtree.root);
let length = subtree.length;
mem::forget(subtree);
(root, length)
};
out_node.push(k, v, subroot);
out_tree.length += 1 + sublength;
}
}
out_tree
}
}
}
if self.len() == 0 {
// Ideally we'd call `BTreeMap::new` here, but that has the `K:
// Ord` constraint, which this method lacks.
BTreeMap {
root: node::Root::shared_empty_root(),
length: 0,
}
} else {
clone_subtree(self.root.as_ref())
}
}
}
impl<K, Q: ?Sized> super::Recover<Q> for BTreeMap<K, ()>
where K: Borrow<Q> + Ord,
Q: Ord
{
type Key = K;
fn get(&self, key: &Q) -> Option<&K> {
match search::search_tree(self.root.as_ref(), key) {
Found(handle) => Some(handle.into_kv().0),
GoDown(_) => None,
}
}
fn take(&mut self, key: &Q) -> Option<K> {
match search::search_tree(self.root.as_mut(), key) {
Found(handle) => {
Some(OccupiedEntry {
handle,
length: &mut self.length,
_marker: PhantomData,
}
.remove_kv()
.0)
}
GoDown(_) => None,
}
}
fn replace(&mut self, key: K) -> Option<K> {
self.ensure_root_is_owned();
match search::search_tree::<marker::Mut, K, (), K>(self.root.as_mut(), &key) {
Found(handle) => Some(mem::replace(handle.into_kv_mut().0, key)),
GoDown(handle) => {
VacantEntry {
key,
handle,
length: &mut self.length,
_marker: PhantomData,
}
.insert(());
None
}
}
}
}
/// An iterator over the entries of a `BTreeMap`.
///
/// This `struct` is created by the [`iter`] method on [`BTreeMap`]. See its
/// documentation for more.
///
/// [`iter`]: struct.BTreeMap.html#method.iter
/// [`BTreeMap`]: struct.BTreeMap.html
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Iter<'a, K: 'a, V: 'a> {
range: Range<'a, K, V>,
length: usize,
}
#[stable(feature = "collection_debug", since = "1.17.0")]
impl<'a, K: 'a + fmt::Debug, V: 'a + fmt::Debug> fmt::Debug for Iter<'a, K, V> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
/// A mutable iterator over the entries of a `BTreeMap`.
///
/// This `struct` is created by the [`iter_mut`] method on [`BTreeMap`]. See its
/// documentation for more.
///
/// [`iter_mut`]: struct.BTreeMap.html#method.iter_mut
/// [`BTreeMap`]: struct.BTreeMap.html
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug)]
pub struct IterMut<'a, K: 'a, V: 'a> {
range: RangeMut<'a, K, V>,
length: usize,
}
/// An owning iterator over the entries of a `BTreeMap`.
///
/// This `struct` is created by the [`into_iter`] method on [`BTreeMap`][`BTreeMap`]
/// (provided by the `IntoIterator` trait). See its documentation for more.
///
/// [`into_iter`]: struct.BTreeMap.html#method.into_iter
/// [`BTreeMap`]: struct.BTreeMap.html
#[stable(feature = "rust1", since = "1.0.0")]
pub struct IntoIter<K, V> {
front: Handle<NodeRef<marker::Owned, K, V, marker::Leaf>, marker::Edge>,
back: Handle<NodeRef<marker::Owned, K, V, marker::Leaf>, marker::Edge>,
length: usize,
}
#[stable(feature = "collection_debug", since = "1.17.0")]
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for IntoIter<K, V> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let range = Range {
front: self.front.reborrow(),
back: self.back.reborrow(),
};
f.debug_list().entries(range).finish()
}
}
/// An iterator over the keys of a `BTreeMap`.
///
/// This `struct` is created by the [`keys`] method on [`BTreeMap`]. See its
/// documentation for more.
///
/// [`keys`]: struct.BTreeMap.html#method.keys
/// [`BTreeMap`]: struct.BTreeMap.html
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Keys<'a, K: 'a, V: 'a> {
inner: Iter<'a, K, V>,
}
#[stable(feature = "collection_debug", since = "1.17.0")]
impl<'a, K: 'a + fmt::Debug, V: 'a> fmt::Debug for Keys<'a, K, V> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
/// An iterator over the values of a `BTreeMap`.
///
/// This `struct` is created by the [`values`] method on [`BTreeMap`]. See its
/// documentation for more.
///
/// [`values`]: struct.BTreeMap.html#method.values
/// [`BTreeMap`]: struct.BTreeMap.html
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Values<'a, K: 'a, V: 'a> {
inner: Iter<'a, K, V>,
}
#[stable(feature = "collection_debug", since = "1.17.0")]
impl<'a, K: 'a, V: 'a + fmt::Debug> fmt::Debug for Values<'a, K, V> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
/// A mutable iterator over the values of a `BTreeMap`.
///
/// This `struct` is created by the [`values_mut`] method on [`BTreeMap`]. See its
/// documentation for more.
///
/// [`values_mut`]: struct.BTreeMap.html#method.values_mut
/// [`BTreeMap`]: struct.BTreeMap.html
#[stable(feature = "map_values_mut", since = "1.10.0")]
#[derive(Debug)]
pub struct ValuesMut<'a, K: 'a, V: 'a> {
inner: IterMut<'a, K, V>,
}
/// An iterator over a sub-range of entries in a `BTreeMap`.
///
/// This `struct` is created by the [`range`] method on [`BTreeMap`]. See its
/// documentation for more.
///
/// [`range`]: struct.BTreeMap.html#method.range
/// [`BTreeMap`]: struct.BTreeMap.html
#[stable(feature = "btree_range", since = "1.17.0")]
pub struct Range<'a, K: 'a, V: 'a> {
front: Handle<NodeRef<marker::Immut<'a>, K, V, marker::Leaf>, marker::Edge>,
back: Handle<NodeRef<marker::Immut<'a>, K, V, marker::Leaf>, marker::Edge>,
}
#[stable(feature = "collection_debug", since = "1.17.0")]
impl<'a, K: 'a + fmt::Debug, V: 'a + fmt::Debug> fmt::Debug for Range<'a, K, V> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
/// A mutable iterator over a sub-range of entries in a `BTreeMap`.
///
/// This `struct` is created by the [`range_mut`] method on [`BTreeMap`]. See its
/// documentation for more.
///
/// [`range_mut`]: struct.BTreeMap.html#method.range_mut
/// [`BTreeMap`]: struct.BTreeMap.html
#[stable(feature = "btree_range", since = "1.17.0")]
pub struct RangeMut<'a, K: 'a, V: 'a> {
front: Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>,
back: Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>,
// Be invariant in `K` and `V`
_marker: PhantomData<&'a mut (K, V)>,
}
#[stable(feature = "collection_debug", since = "1.17.0")]
impl<'a, K: 'a + fmt::Debug, V: 'a + fmt::Debug> fmt::Debug for RangeMut<'a, K, V> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let range = Range {
front: self.front.reborrow(),
back: self.back.reborrow(),
};
f.debug_list().entries(range).finish()
}
}
/// A view into a single entry in a map, which may either be vacant or occupied.
///
/// This `enum` is constructed from the [`entry`] method on [`BTreeMap`].
///
/// [`BTreeMap`]: struct.BTreeMap.html
/// [`entry`]: struct.BTreeMap.html#method.entry
#[stable(feature = "rust1", since = "1.0.0")]
pub enum Entry<'a, K: 'a, V: 'a> {
/// A vacant entry.
#[stable(feature = "rust1", since = "1.0.0")]
Vacant(#[stable(feature = "rust1", since = "1.0.0")]
VacantEntry<'a, K, V>),
/// An occupied entry.
#[stable(feature = "rust1", since = "1.0.0")]
Occupied(#[stable(feature = "rust1", since = "1.0.0")]
OccupiedEntry<'a, K, V>),
}
#[stable(feature= "debug_btree_map", since = "1.12.0")]
impl<'a, K: 'a + Debug + Ord, V: 'a + Debug> Debug for Entry<'a, K, V> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Vacant(ref v) => f.debug_tuple("Entry")
.field(v)
.finish(),
Occupied(ref o) => f.debug_tuple("Entry")
.field(o)
.finish(),
}
}
}
/// A view into a vacant entry in a `BTreeMap`.
/// It is part of the [`Entry`] enum.
///
/// [`Entry`]: enum.Entry.html
#[stable(feature = "rust1", since = "1.0.0")]
pub struct VacantEntry<'a, K: 'a, V: 'a> {
key: K,
handle: Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>,
length: &'a mut usize,
// Be invariant in `K` and `V`
_marker: PhantomData<&'a mut (K, V)>,
}
#[stable(feature= "debug_btree_map", since = "1.12.0")]
impl<'a, K: 'a + Debug + Ord, V: 'a> Debug for VacantEntry<'a, K, V> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("VacantEntry")
.field(self.key())
.finish()
}
}
/// A view into an occupied entry in a `BTreeMap`.
/// It is part of the [`Entry`] enum.
///
/// [`Entry`]: enum.Entry.html
#[stable(feature = "rust1", since = "1.0.0")]
pub struct OccupiedEntry<'a, K: 'a, V: 'a> {
handle: Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::KV>,
length: &'a mut usize,
// Be invariant in `K` and `V`
_marker: PhantomData<&'a mut (K, V)>,
}
#[stable(feature= "debug_btree_map", since = "1.12.0")]
impl<'a, K: 'a + Debug + Ord, V: 'a + Debug> Debug for OccupiedEntry<'a, K, V> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("OccupiedEntry")
.field("key", self.key())
.field("value", self.get())
.finish()
}
}
// An iterator for merging two sorted sequences into one
struct MergeIter<K, V, I: Iterator<Item = (K, V)>> {
left: Peekable<I>,
right: Peekable<I>,
}
impl<K: Ord, V> BTreeMap<K, V> {
/// Makes a new empty BTreeMap with a reasonable choice for B.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::collections::BTreeMap;
///
/// let mut map = BTreeMap::new();
///
/// // entries can now be inserted into the empty map
/// map.insert(1, "a");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new() -> BTreeMap<K, V> {
BTreeMap {
root: node::Root::shared_empty_root(),
length: 0,
}
}
/// Clears the map, removing all values.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::collections::BTreeMap;
///
/// let mut a = BTreeMap::new();
/// a.insert(1, "a");
/// a.clear();
/// assert!(a.is_empty());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn clear(&mut self) {
*self = BTreeMap::new();
}
/// Returns a reference to the value corresponding to the key.
///
/// The key may be any borrowed form of the map's key type, but the ordering
/// on the borrowed form *must* match the ordering on the key type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::collections::BTreeMap;
///
/// let mut map = BTreeMap::new();
/// map.insert(1, "a");
/// assert_eq!(map.get(&1), Some(&"a"));
/// assert_eq!(map.get(&2), None);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn get<Q: ?Sized>(&self, key: &Q) -> Option<&V>
where K: Borrow<Q>,
Q: Ord
{
match search::search_tree(self.root.as_ref(), key) {
Found(handle) => Some(handle.into_kv().1),
GoDown(_) => None,
}
}
/// Returns the key-value pair corresponding to the supplied key.
///
/// The supplied key may be any borrowed form of the map's key type, but the ordering
/// on the borrowed form *must* match the ordering on the key type.
///
/// # Examples
///
/// ```
/// #![feature(map_get_key_value)]
/// use std::collections::BTreeMap;
///
/// let mut map = BTreeMap::new();
/// map.insert(1, "a");
/// assert_eq!(map.get_key_value(&1), Some((&1, &"a")));
/// assert_eq!(map.get_key_value(&2), None);
/// ```
#[unstable(feature = "map_get_key_value", issue = "49347")]
pub fn get_key_value<Q: ?Sized>(&self, k: &Q) -> Option<(&K, &V)>
where K: Borrow<Q>,
Q: Ord
{
match search::search_tree(self.root.as_ref(), k) {
Found(handle) => Some(handle.into_kv()),
GoDown(_) => None,
}
}
/// Returns `true` if the map contains a value for the specified key.
///
/// The key may be any borrowed form of the map's key type, but the ordering
/// on the borrowed form *must* match the ordering on the key type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::collections::BTreeMap;
///
/// let mut map = BTreeMap::new();
/// map.insert(1, "a");
/// assert_eq!(map.contains_key(&1), true);
/// assert_eq!(map.contains_key(&2), false);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn contains_key<Q: ?Sized>(&self, key: &Q) -> bool
where K: Borrow<Q>,
Q: Ord
{
self.get(key).is_some()
}
/// Returns a mutable reference to the value corresponding to the key.
///
/// The key may be any borrowed form of the map's key type, but the ordering
/// on the borrowed form *must* match the ordering on the key type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::collections::BTreeMap;
///
/// let mut map = BTreeMap::new();
/// map.insert(1, "a");
/// if let Some(x) = map.get_mut(&1) {
/// *x = "b";
/// }
/// assert_eq!(map[&1], "b");
/// ```
// See `get` for implementation notes, this is basically a copy-paste with mut's added
#[stable(feature = "rust1", since = "1.0.0")]
pub fn get_mut<Q: ?Sized>(&mut self, key: &Q) -> Option<&mut V>
where K: Borrow<Q>,
Q: Ord
{
match search::search_tree(self.root.as_mut(), key) {
Found(handle) => Some(handle.into_kv_mut().1),
GoDown(_) => None,
}
}
/// Inserts a key-value pair into the map.
///
/// If the map did not have this key present, `None` is returned.
///
/// If the map did have this key present, the value is updated, and the old
/// value is returned. The key is not updated, though; this matters for
/// types that can be `==` without being identical. See the [module-level
/// documentation] for more.
///
/// [module-level documentation]: index.html#insert-and-complex-keys
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::collections::BTreeMap;
///
/// let mut map = BTreeMap::new();
/// assert_eq!(map.insert(37, "a"), None);
/// assert_eq!(map.is_empty(), false);
///
/// map.insert(37, "b");
/// assert_eq!(map.insert(37, "c"), Some("b"));
/// assert_eq!(map[&37], "c");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn insert(&mut self, key: K, value: V) -> Option<V> {
match self.entry(key) {
Occupied(mut entry) => Some(entry.insert(value)),
Vacant(entry) => {
entry.insert(value);
None
}
}
}
/// Removes a key from the map, returning the value at the key if the key
/// was previously in the map.
///
/// The key may be any borrowed form of the map's key type, but the ordering
/// on the borrowed form *must* match the ordering on the key type.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::collections::BTreeMap;
///
/// let mut map = BTreeMap::new();
/// map.insert(1, "a");
/// assert_eq!(map.remove(&1), Some("a"));
/// assert_eq!(map.remove(&1), None);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn remove<Q: ?Sized>(&mut self, key: &Q) -> Option<V>
where K: Borrow<Q>,
Q: Ord
{
match search::search_tree(self.root.as_mut(), key) {
Found(handle) => {
Some(OccupiedEntry {
handle,
length: &mut self.length,
_marker: PhantomData,
}
.remove())
}
GoDown(_) => None,
}
}
/// Moves all elements from `other` into `Self`, leaving `other` empty.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeMap;
///
/// let mut a = BTreeMap::new();
/// a.insert(1, "a");
/// a.insert(2, "b");
/// a.insert(3, "c");
///
/// let mut b = BTreeMap::new();
/// b.insert(3, "d");
/// b.insert(4, "e");
/// b.insert(5, "f");
///
/// a.append(&mut b);
///
/// assert_eq!(a.len(), 5);
/// assert_eq!(b.len(), 0);
///
/// assert_eq!(a[&1], "a");
/// assert_eq!(a[&2], "b");
/// assert_eq!(a[&3], "d");
/// assert_eq!(a[&4], "e");
/// assert_eq!(a[&5], "f");
/// ```
#[stable(feature = "btree_append", since = "1.11.0")]
pub fn append(&mut self, other: &mut Self) {
// Do we have to append anything at all?
if other.len() == 0 {
return;
}
// We can just swap `self` and `other` if `self` is empty.
if self.len() == 0 {
mem::swap(self, other);
return;
}
// First, we merge `self` and `other` into a sorted sequence in linear time.
let self_iter = mem::replace(self, BTreeMap::new()).into_iter();
let other_iter = mem::replace(other, BTreeMap::new()).into_iter();
let iter = MergeIter {
left: self_iter.peekable(),
right: other_iter.peekable(),
};
// Second, we build a tree from the sorted sequence in linear time.
self.from_sorted_iter(iter);
self.fix_right_edge();
}
/// Constructs a double-ended iterator over a sub-range of elements in the map.
/// The simplest way is to use the range syntax `min..max`, thus `range(min..max)` will
/// yield elements from min (inclusive) to max (exclusive).
/// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example
/// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive
/// range from 4 to 10.
///
/// # Panics
///
/// Panics if range `start > end`.
/// Panics if range `start == end` and both bounds are `Excluded`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::collections::BTreeMap;
/// use std::ops::Bound::Included;
///
/// let mut map = BTreeMap::new();
/// map.insert(3, "a");
/// map.insert(5, "b");
/// map.insert(8, "c");
/// for (&key, &value) in map.range((Included(&4), Included(&8))) {
/// println!("{}: {}", key, value);
/// }
/// assert_eq!(Some((&5, &"b")), map.range(4..).next());
/// ```
#[stable(feature = "btree_range", since = "1.17.0")]
pub fn range<T: ?Sized, R>(&self, range: R) -> Range<K, V>
where T: Ord, K: Borrow<T>, R: RangeBounds<T>
{
let root1 = self.root.as_ref();
let root2 = self.root.as_ref();
let (f, b) = range_search(root1, root2, range);
Range { front: f, back: b}
}
/// Constructs a mutable double-ended iterator over a sub-range of elements in the map.
/// The simplest way is to use the range syntax `min..max`, thus `range(min..max)` will
/// yield elements from min (inclusive) to max (exclusive).
/// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example
/// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive
/// range from 4 to 10.
///
/// # Panics
///
/// Panics if range `start > end`.
/// Panics if range `start == end` and both bounds are `Excluded`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::collections::BTreeMap;
///
/// let mut map: BTreeMap<&str, i32> = ["Alice", "Bob", "Carol", "Cheryl"].iter()
/// .map(|&s| (s, 0))
/// .collect();
/// for (_, balance) in map.range_mut("B".."Cheryl") {
/// *balance += 100;
/// }
/// for (name, balance) in &map {
/// println!("{} => {}", name, balance);
/// }
/// ```
#[stable(feature = "btree_range", since = "1.17.0")]
pub fn range_mut<T: ?Sized, R>(&mut self, range: R) -> RangeMut<K, V>
where T: Ord, K: Borrow<T>, R: RangeBounds<T>
{
let root1 = self.root.as_mut();
let root2 = unsafe { ptr::read(&root1) };
let (f, b) = range_search(root1, root2, range);
RangeMut {
front: f,
back: b,
_marker: PhantomData,
}
}
/// Gets the given key's corresponding entry in the map for in-place manipulation.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::collections::BTreeMap;
///
/// let mut count: BTreeMap<&str, usize> = BTreeMap::new();
///
/// // count the number of occurrences of letters in the vec
/// for x in vec!["a","b","a","c","a","b"] {
/// *count.entry(x).or_insert(0) += 1;
/// }
///
/// assert_eq!(count["a"], 3);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn entry(&mut self, key: K) -> Entry<K, V> {
// FIXME(@porglezomp) Avoid allocating if we don't insert
self.ensure_root_is_owned();
match search::search_tree(self.root.as_mut(), &key) {
Found(handle) => {
Occupied(OccupiedEntry {
handle,
length: &mut self.length,
_marker: PhantomData,
})
}
GoDown(handle) => {
Vacant(VacantEntry {
key,
handle,
length: &mut self.length,
_marker: PhantomData,
})
}
}
}
fn from_sorted_iter<I: Iterator<Item = (K, V)>>(&mut self, iter: I) {
self.ensure_root_is_owned();
let mut cur_node = last_leaf_edge(self.root.as_mut()).into_node();
// Iterate through all key-value pairs, pushing them into nodes at the right level.
for (key, value) in iter {
// Try to push key-value pair into the current leaf node.
if cur_node.len() < node::CAPACITY {
cur_node.push(key, value);
} else {
// No space left, go up and push there.
let mut open_node;
let mut test_node = cur_node.forget_type();
loop {
match test_node.ascend() {
Ok(parent) => {
let parent = parent.into_node();
if parent.len() < node::CAPACITY {
// Found a node with space left, push here.
open_node = parent;
break;
} else {
// Go up again.
test_node = parent.forget_type();
}
}
Err(node) => {
// We are at the top, create a new root node and push there.
open_node = node.into_root_mut().push_level();
break;
}
}
}
// Push key-value pair and new right subtree.
let tree_height = open_node.height() - 1;
let mut right_tree = node::Root::new_leaf();
for _ in 0..tree_height {
right_tree.push_level();
}
open_node.push(key, value, right_tree);
// Go down to the right-most leaf again.
cur_node = last_leaf_edge(open_node.forget_type()).into_node();
}
self.length += 1;
}
}
fn fix_right_edge(&mut self) {
// Handle underfull nodes, start from the top.
let mut cur_node = self.root.as_mut();
while let Internal(internal) = cur_node.force() {
// Check if right-most child is underfull.
let mut last_edge = internal.last_edge();
let right_child_len = last_edge.reborrow().descend().len();
if right_child_len < node::MIN_LEN {
// We need to steal.
let mut last_kv = match last_edge.left_kv() {
Ok(left) => left,
Err(_) => unreachable!(),
};
last_kv.bulk_steal_left(node::MIN_LEN - right_child_len);
last_edge = last_kv.right_edge();
}
// Go further down.
cur_node = last_edge.descend();
}
}
/// Splits the collection into two at the given key. Returns everything after the given key,
/// including the key.
///
/// # Examples
///
/// Basic usage:
///
/// ```