From 977439d9b8c6f42cdccb40dab94f7328cfa9d022 Mon Sep 17 00:00:00 2001 From: Urgau Date: Wed, 19 Jun 2024 21:23:40 +0200 Subject: [PATCH] Use uplifted `rustc-stable-hash` crate in `rustc_data_structures` --- Cargo.lock | 7 + compiler/rustc_data_structures/Cargo.toml | 1 + .../rustc_data_structures/src/fingerprint.rs | 9 +- compiler/rustc_data_structures/src/hashes.rs | 17 +- compiler/rustc_data_structures/src/lib.rs | 2 - compiler/rustc_data_structures/src/sip128.rs | 505 ------------------ .../rustc_data_structures/src/sip128/tests.rs | 304 ----------- .../src/stable_hasher.rs | 162 +----- .../src/stable_hasher/tests.rs | 65 --- .../src/tagged_ptr/copy/tests.rs | 6 +- src/tools/tidy/src/deps.rs | 1 + 11 files changed, 30 insertions(+), 1049 deletions(-) delete mode 100644 compiler/rustc_data_structures/src/sip128.rs delete mode 100644 compiler/rustc_data_structures/src/sip128/tests.rs diff --git a/Cargo.lock b/Cargo.lock index afeb9faec097e..eba4eed3686ba 100644 --- a/Cargo.lock +++ b/Cargo.lock @@ -3514,6 +3514,12 @@ version = "1.1.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "5be1bdc7edf596692617627bbfeaba522131b18e06ca4df2b6b689e3c5d5ce84" +[[package]] +name = "rustc-stable-hash" +version = "0.1.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "e5c9f15eec8235d7cb775ee6f81891db79b98fd54ba1ad8fae565b88ef1ae4e2" + [[package]] name = "rustc-std-workspace-alloc" version = "1.99.0" @@ -3852,6 +3858,7 @@ dependencies = [ "portable-atomic", "rustc-hash", "rustc-rayon", + "rustc-stable-hash", "rustc_arena", "rustc_graphviz", "rustc_index", diff --git a/compiler/rustc_data_structures/Cargo.toml b/compiler/rustc_data_structures/Cargo.toml index c4b2e067bbeb4..e5e733439ea05 100644 --- a/compiler/rustc_data_structures/Cargo.toml +++ b/compiler/rustc_data_structures/Cargo.toml @@ -15,6 +15,7 @@ jobserver_crate = { version = "0.1.28", package = "jobserver" } measureme = "11" rustc-hash = "1.1.0" rustc-rayon = { version = "0.5.0", optional = true } +rustc-stable-hash = { version = "0.1.0", features = ["nightly"] } rustc_arena = { path = "../rustc_arena" } rustc_graphviz = { path = "../rustc_graphviz" } rustc_index = { path = "../rustc_index", package = "rustc_index" } diff --git a/compiler/rustc_data_structures/src/fingerprint.rs b/compiler/rustc_data_structures/src/fingerprint.rs index 1bee159489dc7..30e3d6aa86ce9 100644 --- a/compiler/rustc_data_structures/src/fingerprint.rs +++ b/compiler/rustc_data_structures/src/fingerprint.rs @@ -1,5 +1,5 @@ use crate::stable_hasher::impl_stable_traits_for_trivial_type; -use crate::stable_hasher::{Hash64, StableHasher, StableHasherResult}; +use crate::stable_hasher::{FromStableHash, Hash64, StableHasherHash}; use rustc_serialize::{Decodable, Decoder, Encodable, Encoder}; use std::hash::{Hash, Hasher}; @@ -154,10 +154,11 @@ impl FingerprintHasher for crate::unhash::Unhasher { } } -impl StableHasherResult for Fingerprint { +impl FromStableHash for Fingerprint { + type Hash = StableHasherHash; + #[inline] - fn finish(hasher: StableHasher) -> Self { - let (_0, _1) = hasher.finalize(); + fn from(StableHasherHash([_0, _1]): Self::Hash) -> Self { Fingerprint(_0, _1) } } diff --git a/compiler/rustc_data_structures/src/hashes.rs b/compiler/rustc_data_structures/src/hashes.rs index 1564eeb4baee2..ef5d2e845ef07 100644 --- a/compiler/rustc_data_structures/src/hashes.rs +++ b/compiler/rustc_data_structures/src/hashes.rs @@ -11,7 +11,7 @@ //! connect the fact that they can only be produced by a `StableHasher` to their //! `Encode`/`Decode` impls. -use crate::stable_hasher::{StableHasher, StableHasherResult}; +use crate::stable_hasher::{FromStableHash, StableHasherHash}; use rustc_serialize::{Decodable, Decoder, Encodable, Encoder}; use std::fmt; use std::ops::BitXorAssign; @@ -56,10 +56,12 @@ impl Decodable for Hash64 { } } -impl StableHasherResult for Hash64 { +impl FromStableHash for Hash64 { + type Hash = StableHasherHash; + #[inline] - fn finish(hasher: StableHasher) -> Self { - Self { inner: hasher.finalize().0 } + fn from(StableHasherHash([_0, __1]): Self::Hash) -> Self { + Self { inner: _0 } } } @@ -121,10 +123,11 @@ impl Decodable for Hash128 { } } -impl StableHasherResult for Hash128 { +impl FromStableHash for Hash128 { + type Hash = StableHasherHash; + #[inline] - fn finish(hasher: StableHasher) -> Self { - let (_0, _1) = hasher.finalize(); + fn from(StableHasherHash([_0, _1]): Self::Hash) -> Self { Self { inner: u128::from(_0) | (u128::from(_1) << 64) } } } diff --git a/compiler/rustc_data_structures/src/lib.rs b/compiler/rustc_data_structures/src/lib.rs index 356ddf014bee5..3f18b036940bf 100644 --- a/compiler/rustc_data_structures/src/lib.rs +++ b/compiler/rustc_data_structures/src/lib.rs @@ -24,7 +24,6 @@ #![feature(core_intrinsics)] #![feature(extend_one)] #![feature(hash_raw_entry)] -#![feature(hasher_prefixfree_extras)] #![feature(macro_metavar_expr)] #![feature(map_try_insert)] #![feature(min_specialization)] @@ -67,7 +66,6 @@ pub mod owned_slice; pub mod packed; pub mod profiling; pub mod sharded; -pub mod sip128; pub mod small_c_str; pub mod snapshot_map; pub mod sorted_map; diff --git a/compiler/rustc_data_structures/src/sip128.rs b/compiler/rustc_data_structures/src/sip128.rs deleted file mode 100644 index 812ed410a94b6..0000000000000 --- a/compiler/rustc_data_structures/src/sip128.rs +++ /dev/null @@ -1,505 +0,0 @@ -//! This is a copy of `core::hash::sip` adapted to providing 128 bit hashes. - -// This code is very hot and uses lots of arithmetic, avoid overflow checks for performance. -// See https://github.com/rust-lang/rust/pull/119440#issuecomment-1874255727 -use rustc_serialize::int_overflow::{DebugStrictAdd, DebugStrictSub}; -use std::hash::Hasher; -use std::mem::{self, MaybeUninit}; -use std::ptr; - -#[cfg(test)] -mod tests; - -// The SipHash algorithm operates on 8-byte chunks. -const ELEM_SIZE: usize = mem::size_of::(); - -// Size of the buffer in number of elements, not including the spill. -// -// The selection of this size was guided by rustc-perf benchmark comparisons of -// different buffer sizes. It should be periodically reevaluated as the compiler -// implementation and input characteristics change. -// -// Using the same-sized buffer for everything we hash is a performance versus -// complexity tradeoff. The ideal buffer size, and whether buffering should even -// be used, depends on what is being hashed. It may be worth it to size the -// buffer appropriately (perhaps by making SipHasher128 generic over the buffer -// size) or disable buffering depending on what is being hashed. But at this -// time, we use the same buffer size for everything. -const BUFFER_CAPACITY: usize = 8; - -// Size of the buffer in bytes, not including the spill. -const BUFFER_SIZE: usize = BUFFER_CAPACITY * ELEM_SIZE; - -// Size of the buffer in number of elements, including the spill. -const BUFFER_WITH_SPILL_CAPACITY: usize = BUFFER_CAPACITY + 1; - -// Size of the buffer in bytes, including the spill. -const BUFFER_WITH_SPILL_SIZE: usize = BUFFER_WITH_SPILL_CAPACITY * ELEM_SIZE; - -// Index of the spill element in the buffer. -const BUFFER_SPILL_INDEX: usize = BUFFER_WITH_SPILL_CAPACITY - 1; - -#[derive(Debug, Clone)] -#[repr(C)] -pub struct SipHasher128 { - // The access pattern during hashing consists of accesses to `nbuf` and - // `buf` until the buffer is full, followed by accesses to `state` and - // `processed`, and then repetition of that pattern until hashing is done. - // This is the basis for the ordering of fields below. However, in practice - // the cache miss-rate for data access is extremely low regardless of order. - nbuf: usize, // how many bytes in buf are valid - buf: [MaybeUninit; BUFFER_WITH_SPILL_CAPACITY], // unprocessed bytes le - state: State, // hash State - processed: usize, // how many bytes we've processed -} - -#[derive(Debug, Clone, Copy)] -#[repr(C)] -struct State { - // v0, v2 and v1, v3 show up in pairs in the algorithm, - // and simd implementations of SipHash will use vectors - // of v02 and v13. By placing them in this order in the struct, - // the compiler can pick up on just a few simd optimizations by itself. - v0: u64, - v2: u64, - v1: u64, - v3: u64, -} - -macro_rules! compress { - ($state:expr) => {{ compress!($state.v0, $state.v1, $state.v2, $state.v3) }}; - ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => {{ - $v0 = $v0.wrapping_add($v1); - $v2 = $v2.wrapping_add($v3); - $v1 = $v1.rotate_left(13); - $v1 ^= $v0; - $v3 = $v3.rotate_left(16); - $v3 ^= $v2; - $v0 = $v0.rotate_left(32); - - $v2 = $v2.wrapping_add($v1); - $v0 = $v0.wrapping_add($v3); - $v1 = $v1.rotate_left(17); - $v1 ^= $v2; - $v3 = $v3.rotate_left(21); - $v3 ^= $v0; - $v2 = $v2.rotate_left(32); - }}; -} - -// Copies up to 8 bytes from source to destination. This performs better than -// `ptr::copy_nonoverlapping` on microbenchmarks and may perform better on real -// workloads since all of the copies have fixed sizes and avoid calling memcpy. -// -// This is specifically designed for copies of up to 8 bytes, because that's the -// maximum of number bytes needed to fill an 8-byte-sized element on which -// SipHash operates. Note that for variable-sized copies which are known to be -// less than 8 bytes, this function will perform more work than necessary unless -// the compiler is able to optimize the extra work away. -#[inline] -unsafe fn copy_nonoverlapping_small(src: *const u8, dst: *mut u8, count: usize) { - debug_assert!(count <= 8); - - unsafe { - if count == 8 { - ptr::copy_nonoverlapping(src, dst, 8); - return; - } - - let mut i = 0; - if i.debug_strict_add(3) < count { - ptr::copy_nonoverlapping(src.add(i), dst.add(i), 4); - i = i.debug_strict_add(4); - } - - if i.debug_strict_add(1) < count { - ptr::copy_nonoverlapping(src.add(i), dst.add(i), 2); - i = i.debug_strict_add(2) - } - - if i < count { - *dst.add(i) = *src.add(i); - i = i.debug_strict_add(1); - } - - debug_assert_eq!(i, count); - } -} - -// # Implementation -// -// This implementation uses buffering to reduce the hashing cost for inputs -// consisting of many small integers. Buffering simplifies the integration of -// integer input--the integer write function typically just appends to the -// buffer with a statically sized write, updates metadata, and returns. -// -// Buffering also prevents alternating between writes that do and do not trigger -// the hashing process. Only when the entire buffer is full do we transition -// into hashing. This allows us to keep the hash state in registers for longer, -// instead of loading and storing it before and after processing each element. -// -// When a write fills the buffer, a buffer processing function is invoked to -// hash all of the buffered input. The buffer processing functions are marked -// `#[inline(never)]` so that they aren't inlined into the append functions, -// which ensures the more frequently called append functions remain inlineable -// and don't include register pushing/popping that would only be made necessary -// by inclusion of the complex buffer processing path which uses those -// registers. -// -// The buffer includes a "spill"--an extra element at the end--which simplifies -// the integer write buffer processing path. The value that fills the buffer can -// be written with a statically sized write that may spill over into the spill. -// After the buffer is processed, the part of the value that spilled over can be -// written from the spill to the beginning of the buffer with another statically -// sized write. This write may copy more bytes than actually spilled over, but -// we maintain the metadata such that any extra copied bytes will be ignored by -// subsequent processing. Due to the static sizes, this scheme performs better -// than copying the exact number of bytes needed into the end and beginning of -// the buffer. -// -// The buffer is uninitialized, which improves performance, but may preclude -// efficient implementation of alternative approaches. The improvement is not so -// large that an alternative approach should be disregarded because it cannot be -// efficiently implemented with an uninitialized buffer. On the other hand, an -// uninitialized buffer may become more important should a larger one be used. -// -// # Platform Dependence -// -// The SipHash algorithm operates on byte sequences. It parses the input stream -// as 8-byte little-endian integers. Therefore, given the same byte sequence, it -// produces the same result on big- and little-endian hardware. -// -// However, the Hasher trait has methods which operate on multi-byte integers. -// How they are converted into byte sequences can be endian-dependent (by using -// native byte order) or independent (by consistently using either LE or BE byte -// order). It can also be `isize` and `usize` size dependent (by using the -// native size), or independent (by converting to a common size), supposing the -// values can be represented in 32 bits. -// -// In order to make `SipHasher128` consistent with `SipHasher` in libstd, we -// choose to do the integer to byte sequence conversion in the platform- -// dependent way. Clients can achieve platform-independent hashing by widening -// `isize` and `usize` integers to 64 bits on 32-bit systems and byte-swapping -// integers on big-endian systems before passing them to the writing functions. -// This causes the input byte sequence to look identical on big- and little- -// endian systems (supposing `isize` and `usize` values can be represented in 32 -// bits), which ensures platform-independent results. -impl SipHasher128 { - #[inline] - pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher128 { - let mut hasher = SipHasher128 { - nbuf: 0, - buf: [MaybeUninit::uninit(); BUFFER_WITH_SPILL_CAPACITY], - state: State { - v0: key0 ^ 0x736f6d6570736575, - // The XOR with 0xee is only done on 128-bit algorithm version. - v1: key1 ^ (0x646f72616e646f6d ^ 0xee), - v2: key0 ^ 0x6c7967656e657261, - v3: key1 ^ 0x7465646279746573, - }, - processed: 0, - }; - - unsafe { - // Initialize spill because we read from it in `short_write_process_buffer`. - *hasher.buf.get_unchecked_mut(BUFFER_SPILL_INDEX) = MaybeUninit::zeroed(); - } - - hasher - } - - #[inline] - pub fn short_write(&mut self, bytes: [u8; LEN]) { - let nbuf = self.nbuf; - debug_assert!(LEN <= 8); - debug_assert!(nbuf < BUFFER_SIZE); - debug_assert!(nbuf + LEN < BUFFER_WITH_SPILL_SIZE); - - if nbuf.debug_strict_add(LEN) < BUFFER_SIZE { - unsafe { - // The memcpy call is optimized away because the size is known. - let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf); - ptr::copy_nonoverlapping(bytes.as_ptr(), dst, LEN); - } - - self.nbuf = nbuf.debug_strict_add(LEN); - - return; - } - - unsafe { self.short_write_process_buffer(bytes) } - } - - // A specialized write function for values with size <= 8 that should only - // be called when the write would cause the buffer to fill. - // - // SAFETY: the write of `x` into `self.buf` starting at byte offset - // `self.nbuf` must cause `self.buf` to become fully initialized (and not - // overflow) if it wasn't already. - #[inline(never)] - unsafe fn short_write_process_buffer(&mut self, bytes: [u8; LEN]) { - unsafe { - let nbuf = self.nbuf; - debug_assert!(LEN <= 8); - debug_assert!(nbuf < BUFFER_SIZE); - debug_assert!(nbuf + LEN >= BUFFER_SIZE); - debug_assert!(nbuf + LEN < BUFFER_WITH_SPILL_SIZE); - - // Copy first part of input into end of buffer, possibly into spill - // element. The memcpy call is optimized away because the size is known. - let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf); - ptr::copy_nonoverlapping(bytes.as_ptr(), dst, LEN); - - // Process buffer. - for i in 0..BUFFER_CAPACITY { - let elem = self.buf.get_unchecked(i).assume_init().to_le(); - self.state.v3 ^= elem; - Sip13Rounds::c_rounds(&mut self.state); - self.state.v0 ^= elem; - } - - // Copy remaining input into start of buffer by copying LEN - 1 - // elements from spill (at most LEN - 1 bytes could have overflowed - // into the spill). The memcpy call is optimized away because the size - // is known. And the whole copy is optimized away for LEN == 1. - let dst = self.buf.as_mut_ptr() as *mut u8; - let src = self.buf.get_unchecked(BUFFER_SPILL_INDEX) as *const _ as *const u8; - ptr::copy_nonoverlapping(src, dst, LEN - 1); - - // This function should only be called when the write fills the buffer. - // Therefore, when LEN == 1, the new `self.nbuf` must be zero. - // LEN is statically known, so the branch is optimized away. - self.nbuf = - if LEN == 1 { 0 } else { nbuf.debug_strict_add(LEN).debug_strict_sub(BUFFER_SIZE) }; - self.processed = self.processed.debug_strict_add(BUFFER_SIZE); - } - } - - // A write function for byte slices. - #[inline] - fn slice_write(&mut self, msg: &[u8]) { - let length = msg.len(); - let nbuf = self.nbuf; - debug_assert!(nbuf < BUFFER_SIZE); - - if nbuf.debug_strict_add(length) < BUFFER_SIZE { - unsafe { - let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf); - - if length <= 8 { - copy_nonoverlapping_small(msg.as_ptr(), dst, length); - } else { - // This memcpy is *not* optimized away. - ptr::copy_nonoverlapping(msg.as_ptr(), dst, length); - } - } - - self.nbuf = nbuf.debug_strict_add(length); - - return; - } - - unsafe { self.slice_write_process_buffer(msg) } - } - - // A write function for byte slices that should only be called when the - // write would cause the buffer to fill. - // - // SAFETY: `self.buf` must be initialized up to the byte offset `self.nbuf`, - // and `msg` must contain enough bytes to initialize the rest of the element - // containing the byte offset `self.nbuf`. - #[inline(never)] - unsafe fn slice_write_process_buffer(&mut self, msg: &[u8]) { - unsafe { - let length = msg.len(); - let nbuf = self.nbuf; - debug_assert!(nbuf < BUFFER_SIZE); - debug_assert!(nbuf + length >= BUFFER_SIZE); - - // Always copy first part of input into current element of buffer. - // This function should only be called when the write fills the buffer, - // so we know that there is enough input to fill the current element. - let valid_in_elem = nbuf % ELEM_SIZE; - let needed_in_elem = ELEM_SIZE.debug_strict_sub(valid_in_elem); - - let src = msg.as_ptr(); - let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf); - copy_nonoverlapping_small(src, dst, needed_in_elem); - - // Process buffer. - - // Using `nbuf / ELEM_SIZE + 1` rather than `(nbuf + needed_in_elem) / - // ELEM_SIZE` to show the compiler that this loop's upper bound is > 0. - // We know that is true, because last step ensured we have a full - // element in the buffer. - let last = (nbuf / ELEM_SIZE).debug_strict_add(1); - - for i in 0..last { - let elem = self.buf.get_unchecked(i).assume_init().to_le(); - self.state.v3 ^= elem; - Sip13Rounds::c_rounds(&mut self.state); - self.state.v0 ^= elem; - } - - // Process the remaining element-sized chunks of input. - let mut processed = needed_in_elem; - let input_left = length.debug_strict_sub(processed); - let elems_left = input_left / ELEM_SIZE; - let extra_bytes_left = input_left % ELEM_SIZE; - - for _ in 0..elems_left { - let elem = (msg.as_ptr().add(processed) as *const u64).read_unaligned().to_le(); - self.state.v3 ^= elem; - Sip13Rounds::c_rounds(&mut self.state); - self.state.v0 ^= elem; - processed = processed.debug_strict_add(ELEM_SIZE); - } - - // Copy remaining input into start of buffer. - let src = msg.as_ptr().add(processed); - let dst = self.buf.as_mut_ptr() as *mut u8; - copy_nonoverlapping_small(src, dst, extra_bytes_left); - - self.nbuf = extra_bytes_left; - self.processed = self.processed.debug_strict_add(nbuf.debug_strict_add(processed)); - } - } - - #[inline] - pub fn finish128(mut self) -> (u64, u64) { - debug_assert!(self.nbuf < BUFFER_SIZE); - - // Process full elements in buffer. - let last = self.nbuf / ELEM_SIZE; - - // Since we're consuming self, avoid updating members for a potential - // performance gain. - let mut state = self.state; - - for i in 0..last { - let elem = unsafe { self.buf.get_unchecked(i).assume_init().to_le() }; - state.v3 ^= elem; - Sip13Rounds::c_rounds(&mut state); - state.v0 ^= elem; - } - - // Get remaining partial element. - let elem = if self.nbuf % ELEM_SIZE != 0 { - unsafe { - // Ensure element is initialized by writing zero bytes. At most - // `ELEM_SIZE - 1` are required given the above check. It's safe - // to write this many because we have the spill and we maintain - // `self.nbuf` such that this write will start before the spill. - let dst = (self.buf.as_mut_ptr() as *mut u8).add(self.nbuf); - ptr::write_bytes(dst, 0, ELEM_SIZE - 1); - self.buf.get_unchecked(last).assume_init().to_le() - } - } else { - 0 - }; - - // Finalize the hash. - let length = self.processed.debug_strict_add(self.nbuf); - let b: u64 = ((length as u64 & 0xff) << 56) | elem; - - state.v3 ^= b; - Sip13Rounds::c_rounds(&mut state); - state.v0 ^= b; - - state.v2 ^= 0xee; - Sip13Rounds::d_rounds(&mut state); - let _0 = state.v0 ^ state.v1 ^ state.v2 ^ state.v3; - - state.v1 ^= 0xdd; - Sip13Rounds::d_rounds(&mut state); - let _1 = state.v0 ^ state.v1 ^ state.v2 ^ state.v3; - - (_0, _1) - } -} - -impl Hasher for SipHasher128 { - #[inline] - fn write_u8(&mut self, i: u8) { - self.short_write(i.to_ne_bytes()); - } - - #[inline] - fn write_u16(&mut self, i: u16) { - self.short_write(i.to_ne_bytes()); - } - - #[inline] - fn write_u32(&mut self, i: u32) { - self.short_write(i.to_ne_bytes()); - } - - #[inline] - fn write_u64(&mut self, i: u64) { - self.short_write(i.to_ne_bytes()); - } - - #[inline] - fn write_usize(&mut self, i: usize) { - self.short_write(i.to_ne_bytes()); - } - - #[inline] - fn write_i8(&mut self, i: i8) { - self.short_write((i as u8).to_ne_bytes()); - } - - #[inline] - fn write_i16(&mut self, i: i16) { - self.short_write((i as u16).to_ne_bytes()); - } - - #[inline] - fn write_i32(&mut self, i: i32) { - self.short_write((i as u32).to_ne_bytes()); - } - - #[inline] - fn write_i64(&mut self, i: i64) { - self.short_write((i as u64).to_ne_bytes()); - } - - #[inline] - fn write_isize(&mut self, i: isize) { - self.short_write((i as usize).to_ne_bytes()); - } - - #[inline] - fn write(&mut self, msg: &[u8]) { - self.slice_write(msg); - } - - #[inline] - fn write_str(&mut self, s: &str) { - // This hasher works byte-wise, and `0xFF` cannot show up in a `str`, - // so just hashing the one extra byte is enough to be prefix-free. - self.write(s.as_bytes()); - self.write_u8(0xFF); - } - - fn finish(&self) -> u64 { - panic!("SipHasher128 cannot provide valid 64 bit hashes") - } -} - -#[derive(Debug, Clone, Default)] -struct Sip13Rounds; - -impl Sip13Rounds { - #[inline] - fn c_rounds(state: &mut State) { - compress!(state); - } - - #[inline] - fn d_rounds(state: &mut State) { - compress!(state); - compress!(state); - compress!(state); - } -} diff --git a/compiler/rustc_data_structures/src/sip128/tests.rs b/compiler/rustc_data_structures/src/sip128/tests.rs deleted file mode 100644 index e9dd0f1176b91..0000000000000 --- a/compiler/rustc_data_structures/src/sip128/tests.rs +++ /dev/null @@ -1,304 +0,0 @@ -use super::*; - -use std::hash::Hash; - -// Hash just the bytes of the slice, without length prefix -struct Bytes<'a>(&'a [u8]); - -impl<'a> Hash for Bytes<'a> { - #[allow(unused_must_use)] - fn hash(&self, state: &mut H) { - for byte in self.0 { - state.write_u8(*byte); - } - } -} - -fn hash_with(mut st: SipHasher128, x: &T) -> (u64, u64) { - x.hash(&mut st); - st.finish128() -} - -fn hash(x: &T) -> (u64, u64) { - hash_with(SipHasher128::new_with_keys(0, 0), x) -} -#[rustfmt::skip] -const TEST_VECTOR: [[u8; 16]; 64] = [ - [0xe7, 0x7e, 0xbc, 0xb2, 0x27, 0x88, 0xa5, 0xbe, 0xfd, 0x62, 0xdb, 0x6a, 0xdd, 0x30, 0x30, 0x01], - [0xfc, 0x6f, 0x37, 0x04, 0x60, 0xd3, 0xed, 0xa8, 0x5e, 0x05, 0x73, 0xcc, 0x2b, 0x2f, 0xf0, 0x63], - [0x75, 0x78, 0x7f, 0x09, 0x05, 0x69, 0x83, 0x9b, 0x85, 0x5b, 0xc9, 0x54, 0x8c, 0x6a, 0xea, 0x95], - [0x6b, 0xc5, 0xcc, 0xfa, 0x1e, 0xdc, 0xf7, 0x9f, 0x48, 0x23, 0x18, 0x77, 0x12, 0xeb, 0xd7, 0x43], - [0x0c, 0x78, 0x4e, 0x71, 0xac, 0x2b, 0x28, 0x5a, 0x9f, 0x8e, 0x92, 0xe7, 0x8f, 0xbf, 0x2c, 0x25], - [0xf3, 0x28, 0xdb, 0x89, 0x34, 0x5b, 0x62, 0x0c, 0x79, 0x52, 0x29, 0xa4, 0x26, 0x95, 0x84, 0x3e], - [0xdc, 0xd0, 0x3d, 0x29, 0xf7, 0x43, 0xe7, 0x10, 0x09, 0x51, 0xb0, 0xe8, 0x39, 0x85, 0xa6, 0xf8], - [0x10, 0x84, 0xb9, 0x23, 0xf2, 0xaa, 0xe0, 0xc3, 0xa6, 0x2f, 0x2e, 0xc8, 0x08, 0x48, 0xab, 0x77], - [0xaa, 0x12, 0xfe, 0xe1, 0xd5, 0xe3, 0xda, 0xb4, 0x72, 0x4f, 0x16, 0xab, 0x35, 0xf9, 0xc7, 0x99], - [0x81, 0xdd, 0xb8, 0x04, 0x2c, 0xf3, 0x39, 0x94, 0xf4, 0x72, 0x0e, 0x00, 0x94, 0x13, 0x7c, 0x42], - [0x4f, 0xaa, 0x54, 0x1d, 0x5d, 0x49, 0x8e, 0x89, 0xba, 0x0e, 0xa4, 0xc3, 0x87, 0xb2, 0x2f, 0xb4], - [0x72, 0x3b, 0x9a, 0xf3, 0x55, 0x44, 0x91, 0xdb, 0xb1, 0xd6, 0x63, 0x3d, 0xfc, 0x6e, 0x0c, 0x4e], - [0xe5, 0x3f, 0x92, 0x85, 0x9e, 0x48, 0x19, 0xa8, 0xdc, 0x06, 0x95, 0x73, 0x9f, 0xea, 0x8c, 0x65], - [0xb2, 0xf8, 0x58, 0xc7, 0xc9, 0xea, 0x80, 0x1d, 0x53, 0xd6, 0x03, 0x59, 0x6d, 0x65, 0x78, 0x44], - [0x87, 0xe7, 0x62, 0x68, 0xdb, 0xc9, 0x22, 0x72, 0x26, 0xb0, 0xca, 0x66, 0x5f, 0x64, 0xe3, 0x78], - [0xc1, 0x7e, 0x55, 0x05, 0xb2, 0xbd, 0x52, 0x6c, 0x29, 0x21, 0xcd, 0xec, 0x1e, 0x7e, 0x01, 0x09], - [0xd0, 0xa8, 0xd9, 0x57, 0x15, 0x51, 0x8e, 0xeb, 0xb5, 0x13, 0xb0, 0xf8, 0x3d, 0x9e, 0x17, 0x93], - [0x23, 0x41, 0x26, 0xf9, 0x3f, 0xbb, 0x66, 0x8d, 0x97, 0x51, 0x12, 0xe8, 0xfe, 0xbd, 0xf7, 0xec], - [0xef, 0x42, 0xf0, 0x3d, 0xb7, 0x8f, 0x70, 0x4d, 0x02, 0x3c, 0x44, 0x9f, 0x16, 0xb7, 0x09, 0x2b], - [0xab, 0xf7, 0x62, 0x38, 0xc2, 0x0a, 0xf1, 0x61, 0xb2, 0x31, 0x4b, 0x4d, 0x55, 0x26, 0xbc, 0xe9], - [0x3c, 0x2c, 0x2f, 0x11, 0xbb, 0x90, 0xcf, 0x0b, 0xe3, 0x35, 0xca, 0x9b, 0x2e, 0x91, 0xe9, 0xb7], - [0x2a, 0x7a, 0x68, 0x0f, 0x22, 0xa0, 0x2a, 0x92, 0xf4, 0x51, 0x49, 0xd2, 0x0f, 0xec, 0xe0, 0xef], - [0xc9, 0xa8, 0xd1, 0x30, 0x23, 0x1d, 0xd4, 0x3e, 0x42, 0xe6, 0x45, 0x69, 0x57, 0xf8, 0x37, 0x79], - [0x1d, 0x12, 0x7b, 0x84, 0x40, 0x5c, 0xea, 0xb9, 0x9f, 0xd8, 0x77, 0x5a, 0x9b, 0xe6, 0xc5, 0x59], - [0x9e, 0x4b, 0xf8, 0x37, 0xbc, 0xfd, 0x92, 0xca, 0xce, 0x09, 0xd2, 0x06, 0x1a, 0x84, 0xd0, 0x4a], - [0x39, 0x03, 0x1a, 0x96, 0x5d, 0x73, 0xb4, 0xaf, 0x5a, 0x27, 0x4d, 0x18, 0xf9, 0x73, 0xb1, 0xd2], - [0x7f, 0x4d, 0x0a, 0x12, 0x09, 0xd6, 0x7e, 0x4e, 0xd0, 0x6f, 0x75, 0x38, 0xe1, 0xcf, 0xad, 0x64], - [0xe6, 0x1e, 0xe2, 0x40, 0xfb, 0xdc, 0xce, 0x38, 0x96, 0x9f, 0x4c, 0xd2, 0x49, 0x27, 0xdd, 0x93], - [0x4c, 0x3b, 0xa2, 0xb3, 0x7b, 0x0f, 0xdd, 0x8c, 0xfa, 0x5e, 0x95, 0xc1, 0x89, 0xb2, 0x94, 0x14], - [0xe0, 0x6f, 0xd4, 0xca, 0x06, 0x6f, 0xec, 0xdd, 0x54, 0x06, 0x8a, 0x5a, 0xd8, 0x89, 0x6f, 0x86], - [0x5c, 0xa8, 0x4c, 0x34, 0x13, 0x9c, 0x65, 0x80, 0xa8, 0x8a, 0xf2, 0x49, 0x90, 0x72, 0x07, 0x06], - [0x42, 0xea, 0x96, 0x1c, 0x5b, 0x3c, 0x85, 0x8b, 0x17, 0xc3, 0xe5, 0x50, 0xdf, 0xa7, 0x90, 0x10], - [0x40, 0x6c, 0x44, 0xde, 0xe6, 0x78, 0x57, 0xb2, 0x94, 0x31, 0x60, 0xf3, 0x0c, 0x74, 0x17, 0xd3], - [0xc5, 0xf5, 0x7b, 0xae, 0x13, 0x20, 0xfc, 0xf4, 0xb4, 0xe8, 0x68, 0xe7, 0x1d, 0x56, 0xc6, 0x6b], - [0x04, 0xbf, 0x73, 0x7a, 0x5b, 0x67, 0x6b, 0xe7, 0xc3, 0xde, 0x05, 0x01, 0x7d, 0xf4, 0xbf, 0xf9], - [0x51, 0x63, 0xc9, 0xc0, 0x3f, 0x19, 0x07, 0xea, 0x10, 0x44, 0xed, 0x5c, 0x30, 0x72, 0x7b, 0x4f], - [0x37, 0xa1, 0x10, 0xf0, 0x02, 0x71, 0x8e, 0xda, 0xd2, 0x4b, 0x3f, 0x9e, 0xe4, 0x53, 0xf1, 0x40], - [0xb9, 0x87, 0x7e, 0x38, 0x1a, 0xed, 0xd3, 0xda, 0x08, 0xc3, 0x3e, 0x75, 0xff, 0x23, 0xac, 0x10], - [0x7c, 0x50, 0x04, 0x00, 0x5e, 0xc5, 0xda, 0x4c, 0x5a, 0xc9, 0x44, 0x0e, 0x5c, 0x72, 0x31, 0x93], - [0x81, 0xb8, 0x24, 0x37, 0x83, 0xdb, 0xc6, 0x46, 0xca, 0x9d, 0x0c, 0xd8, 0x2a, 0xbd, 0xb4, 0x6c], - [0x50, 0x57, 0x20, 0x54, 0x3e, 0xb9, 0xb4, 0x13, 0xd5, 0x0b, 0x3c, 0xfa, 0xd9, 0xee, 0xf9, 0x38], - [0x94, 0x5f, 0x59, 0x4d, 0xe7, 0x24, 0x11, 0xe4, 0xd3, 0x35, 0xbe, 0x87, 0x44, 0x56, 0xd8, 0xf3], - [0x37, 0x92, 0x3b, 0x3e, 0x37, 0x17, 0x77, 0xb2, 0x11, 0x70, 0xbf, 0x9d, 0x7e, 0x62, 0xf6, 0x02], - [0x3a, 0xd4, 0xe7, 0xc8, 0x57, 0x64, 0x96, 0x46, 0x11, 0xeb, 0x0a, 0x6c, 0x4d, 0x62, 0xde, 0x56], - [0xcd, 0x91, 0x39, 0x6c, 0x44, 0xaf, 0x4f, 0x51, 0x85, 0x57, 0x8d, 0x9d, 0xd9, 0x80, 0x3f, 0x0a], - [0xfe, 0x28, 0x15, 0x8e, 0x72, 0x7b, 0x86, 0x8f, 0x39, 0x03, 0xc9, 0xac, 0xda, 0x64, 0xa2, 0x58], - [0x40, 0xcc, 0x10, 0xb8, 0x28, 0x8c, 0xe5, 0xf0, 0xbc, 0x3a, 0xc0, 0xb6, 0x8a, 0x0e, 0xeb, 0xc8], - [0x6f, 0x14, 0x90, 0xf5, 0x40, 0x69, 0x9a, 0x3c, 0xd4, 0x97, 0x44, 0x20, 0xec, 0xc9, 0x27, 0x37], - [0xd5, 0x05, 0xf1, 0xb7, 0x5e, 0x1a, 0x84, 0xa6, 0x03, 0xc4, 0x35, 0x83, 0xb2, 0xed, 0x03, 0x08], - [0x49, 0x15, 0x73, 0xcf, 0xd7, 0x2b, 0xb4, 0x68, 0x2b, 0x7c, 0xa5, 0x88, 0x0e, 0x1c, 0x8d, 0x6f], - [0x3e, 0xd6, 0x9c, 0xfe, 0x45, 0xab, 0x40, 0x3f, 0x2f, 0xd2, 0xad, 0x95, 0x9b, 0xa2, 0x76, 0x66], - [0x8b, 0xe8, 0x39, 0xef, 0x1b, 0x20, 0xb5, 0x7c, 0x83, 0xba, 0x7e, 0xb6, 0xa8, 0xc2, 0x2b, 0x6a], - [0x14, 0x09, 0x18, 0x6a, 0xb4, 0x22, 0x31, 0xfe, 0xde, 0xe1, 0x81, 0x62, 0xcf, 0x1c, 0xb4, 0xca], - [0x2b, 0xf3, 0xcc, 0xc2, 0x4a, 0xb6, 0x72, 0xcf, 0x15, 0x1f, 0xb8, 0xd2, 0xf3, 0xf3, 0x06, 0x9b], - [0xb9, 0xb9, 0x3a, 0x28, 0x82, 0xd6, 0x02, 0x5c, 0xdb, 0x8c, 0x56, 0xfa, 0x13, 0xf7, 0x53, 0x7b], - [0xd9, 0x7c, 0xca, 0x36, 0x94, 0xfb, 0x20, 0x6d, 0xb8, 0xbd, 0x1f, 0x36, 0x50, 0xc3, 0x33, 0x22], - [0x94, 0xec, 0x2e, 0x19, 0xa4, 0x0b, 0xe4, 0x1a, 0xf3, 0x94, 0x0d, 0x6b, 0x30, 0xc4, 0x93, 0x84], - [0x4b, 0x41, 0x60, 0x3f, 0x20, 0x9a, 0x04, 0x5b, 0xe1, 0x40, 0xa3, 0x41, 0xa3, 0xdf, 0xfe, 0x10], - [0x23, 0xfb, 0xcb, 0x30, 0x9f, 0x1c, 0xf0, 0x94, 0x89, 0x07, 0x55, 0xab, 0x1b, 0x42, 0x65, 0x69], - [0xe7, 0xd9, 0xb6, 0x56, 0x90, 0x91, 0x8a, 0x2b, 0x23, 0x2f, 0x2f, 0x5c, 0x12, 0xc8, 0x30, 0x0e], - [0xad, 0xe8, 0x3c, 0xf7, 0xe7, 0xf3, 0x84, 0x7b, 0x36, 0xfa, 0x4b, 0x54, 0xb0, 0x0d, 0xce, 0x61], - [0x06, 0x10, 0xc5, 0xf2, 0xee, 0x57, 0x1c, 0x8a, 0xc8, 0x0c, 0xbf, 0xe5, 0x38, 0xbd, 0xf1, 0xc7], - [0x27, 0x1d, 0x5d, 0x00, 0xfb, 0xdb, 0x5d, 0x15, 0x5d, 0x9d, 0xce, 0xa9, 0x7c, 0xb4, 0x02, 0x18], - [0x4c, 0x58, 0x00, 0xe3, 0x4e, 0xfe, 0x42, 0x6f, 0x07, 0x9f, 0x6b, 0x0a, 0xa7, 0x52, 0x60, 0xad], -]; - -#[test] -fn test_siphash_1_3_test_vector() { - let k0 = 0x_07_06_05_04_03_02_01_00; - let k1 = 0x_0f_0e_0d_0c_0b_0a_09_08; - - let mut input: Vec = Vec::new(); - - for i in 0..64 { - let out = hash_with(SipHasher128::new_with_keys(k0, k1), &Bytes(&input[..])); - let expected = ( - ((TEST_VECTOR[i][0] as u64) << 0) - | ((TEST_VECTOR[i][1] as u64) << 8) - | ((TEST_VECTOR[i][2] as u64) << 16) - | ((TEST_VECTOR[i][3] as u64) << 24) - | ((TEST_VECTOR[i][4] as u64) << 32) - | ((TEST_VECTOR[i][5] as u64) << 40) - | ((TEST_VECTOR[i][6] as u64) << 48) - | ((TEST_VECTOR[i][7] as u64) << 56), - ((TEST_VECTOR[i][8] as u64) << 0) - | ((TEST_VECTOR[i][9] as u64) << 8) - | ((TEST_VECTOR[i][10] as u64) << 16) - | ((TEST_VECTOR[i][11] as u64) << 24) - | ((TEST_VECTOR[i][12] as u64) << 32) - | ((TEST_VECTOR[i][13] as u64) << 40) - | ((TEST_VECTOR[i][14] as u64) << 48) - | ((TEST_VECTOR[i][15] as u64) << 56), - ); - - assert_eq!(out, expected); - input.push(i as u8); - } -} - -#[test] -#[cfg(target_arch = "arm")] -fn test_hash_usize() { - let val = 0xdeadbeef_deadbeef_u64; - assert!(hash(&(val as u64)) != hash(&(val as usize))); - assert_eq!(hash(&(val as u32)), hash(&(val as usize))); -} -#[test] -#[cfg(target_arch = "x86_64")] -fn test_hash_usize() { - let val = 0xdeadbeef_deadbeef_u64; - assert_eq!(hash(&(val as u64)), hash(&(val as usize))); - assert!(hash(&(val as u32)) != hash(&(val as usize))); -} -#[test] -#[cfg(target_arch = "x86")] -fn test_hash_usize() { - let val = 0xdeadbeef_deadbeef_u64; - assert!(hash(&(val as u64)) != hash(&(val as usize))); - assert_eq!(hash(&(val as u32)), hash(&(val as usize))); -} - -#[test] -fn test_hash_idempotent() { - let val64 = 0xdeadbeef_deadbeef_u64; - assert_eq!(hash(&val64), hash(&val64)); - let val32 = 0xdeadbeef_u32; - assert_eq!(hash(&val32), hash(&val32)); -} - -#[test] -fn test_hash_no_bytes_dropped_64() { - let val = 0xdeadbeef_deadbeef_u64; - - assert!(hash(&val) != hash(&zero_byte(val, 0))); - assert!(hash(&val) != hash(&zero_byte(val, 1))); - assert!(hash(&val) != hash(&zero_byte(val, 2))); - assert!(hash(&val) != hash(&zero_byte(val, 3))); - assert!(hash(&val) != hash(&zero_byte(val, 4))); - assert!(hash(&val) != hash(&zero_byte(val, 5))); - assert!(hash(&val) != hash(&zero_byte(val, 6))); - assert!(hash(&val) != hash(&zero_byte(val, 7))); - - fn zero_byte(val: u64, byte: usize) -> u64 { - assert!(byte < 8); - val & !(0xff << (byte * 8)) - } -} - -#[test] -fn test_hash_no_bytes_dropped_32() { - let val = 0xdeadbeef_u32; - - assert!(hash(&val) != hash(&zero_byte(val, 0))); - assert!(hash(&val) != hash(&zero_byte(val, 1))); - assert!(hash(&val) != hash(&zero_byte(val, 2))); - assert!(hash(&val) != hash(&zero_byte(val, 3))); - - fn zero_byte(val: u32, byte: usize) -> u32 { - assert!(byte < 4); - val & !(0xff << (byte * 8)) - } -} - -#[test] -fn test_hash_no_concat_alias() { - let s = ("aa", "bb"); - let t = ("aabb", ""); - let u = ("a", "abb"); - - assert!(s != t && t != u); - assert!(hash(&s) != hash(&t) && hash(&s) != hash(&u)); - - let u = [1, 0, 0, 0]; - let v = (&u[..1], &u[1..3], &u[3..]); - let w = (&u[..], &u[4..4], &u[4..4]); - - assert!(v != w); - assert!(hash(&v) != hash(&w)); -} - -#[test] -fn test_short_write_works() { - let test_u8 = 0xFF_u8; - let test_u16 = 0x1122_u16; - let test_u32 = 0x22334455_u32; - let test_u64 = 0x33445566_778899AA_u64; - let test_u128 = 0x11223344_55667788_99AABBCC_DDEEFF77_u128; - let test_usize = 0xD0C0B0A0_usize; - - let test_i8 = -1_i8; - let test_i16 = -2_i16; - let test_i32 = -3_i32; - let test_i64 = -4_i64; - let test_i128 = -5_i128; - let test_isize = -6_isize; - - let mut h1 = SipHasher128::new_with_keys(0, 0); - h1.write(b"bytes"); - h1.write(b"string"); - h1.write_u8(test_u8); - h1.write_u16(test_u16); - h1.write_u32(test_u32); - h1.write_u64(test_u64); - h1.write_u128(test_u128); - h1.write_usize(test_usize); - h1.write_i8(test_i8); - h1.write_i16(test_i16); - h1.write_i32(test_i32); - h1.write_i64(test_i64); - h1.write_i128(test_i128); - h1.write_isize(test_isize); - - let mut h2 = SipHasher128::new_with_keys(0, 0); - h2.write(b"bytes"); - h2.write(b"string"); - h2.write(&test_u8.to_ne_bytes()); - h2.write(&test_u16.to_ne_bytes()); - h2.write(&test_u32.to_ne_bytes()); - h2.write(&test_u64.to_ne_bytes()); - h2.write(&test_u128.to_ne_bytes()); - h2.write(&test_usize.to_ne_bytes()); - h2.write(&test_i8.to_ne_bytes()); - h2.write(&test_i16.to_ne_bytes()); - h2.write(&test_i32.to_ne_bytes()); - h2.write(&test_i64.to_ne_bytes()); - h2.write(&test_i128.to_ne_bytes()); - h2.write(&test_isize.to_ne_bytes()); - - let h1_hash = h1.finish128(); - let h2_hash = h2.finish128(); - - assert_eq!(h1_hash, h2_hash); -} - -macro_rules! test_fill_buffer { - ($type:ty, $write_method:ident) => {{ - // Test filling and overfilling the buffer from all possible offsets - // for a given integer type and its corresponding write method. - const SIZE: usize = std::mem::size_of::<$type>(); - let input = [42; BUFFER_SIZE]; - let x = 0x01234567_89ABCDEF_76543210_FEDCBA98_u128 as $type; - let x_bytes = &x.to_ne_bytes(); - - for i in 1..=SIZE { - let s = &input[..BUFFER_SIZE - i]; - - let mut h1 = SipHasher128::new_with_keys(7, 13); - h1.write(s); - h1.$write_method(x); - - let mut h2 = SipHasher128::new_with_keys(7, 13); - h2.write(s); - h2.write(x_bytes); - - let h1_hash = h1.finish128(); - let h2_hash = h2.finish128(); - - assert_eq!(h1_hash, h2_hash); - } - }}; -} - -#[test] -fn test_fill_buffer() { - test_fill_buffer!(u8, write_u8); - test_fill_buffer!(u16, write_u16); - test_fill_buffer!(u32, write_u32); - test_fill_buffer!(u64, write_u64); - test_fill_buffer!(u128, write_u128); - test_fill_buffer!(usize, write_usize); - - test_fill_buffer!(i8, write_i8); - test_fill_buffer!(i16, write_i16); - test_fill_buffer!(i32, write_i32); - test_fill_buffer!(i64, write_i64); - test_fill_buffer!(i128, write_i128); - test_fill_buffer!(isize, write_isize); -} diff --git a/compiler/rustc_data_structures/src/stable_hasher.rs b/compiler/rustc_data_structures/src/stable_hasher.rs index a57f5067dd8d2..83883eeba9ca0 100644 --- a/compiler/rustc_data_structures/src/stable_hasher.rs +++ b/compiler/rustc_data_structures/src/stable_hasher.rs @@ -1,8 +1,6 @@ -use crate::sip128::SipHasher128; use rustc_index::bit_set::{self, BitSet}; use rustc_index::{Idx, IndexSlice, IndexVec}; use smallvec::SmallVec; -use std::fmt; use std::hash::{BuildHasher, Hash, Hasher}; use std::marker::PhantomData; use std::mem; @@ -13,163 +11,9 @@ mod tests; pub use crate::hashes::{Hash128, Hash64}; -/// When hashing something that ends up affecting properties like symbol names, -/// we want these symbol names to be calculated independently of other factors -/// like what architecture you're compiling *from*. -/// -/// To that end we always convert integers to little-endian format before -/// hashing and the architecture dependent `isize` and `usize` types are -/// extended to 64 bits if needed. -pub struct StableHasher { - state: SipHasher128, -} - -impl fmt::Debug for StableHasher { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - write!(f, "{:?}", self.state) - } -} - -pub trait StableHasherResult: Sized { - fn finish(hasher: StableHasher) -> Self; -} - -impl StableHasher { - #[inline] - pub fn new() -> Self { - StableHasher { state: SipHasher128::new_with_keys(0, 0) } - } - - #[inline] - pub fn finish(self) -> W { - W::finish(self) - } -} - -impl StableHasher { - #[inline] - pub fn finalize(self) -> (u64, u64) { - self.state.finish128() - } -} - -impl Hasher for StableHasher { - fn finish(&self) -> u64 { - panic!("use StableHasher::finalize instead"); - } - - #[inline] - fn write(&mut self, bytes: &[u8]) { - self.state.write(bytes); - } - - #[inline] - fn write_str(&mut self, s: &str) { - self.state.write_str(s); - } - - #[inline] - fn write_length_prefix(&mut self, len: usize) { - // Our impl for `usize` will extend it if needed. - self.write_usize(len); - } - - #[inline] - fn write_u8(&mut self, i: u8) { - self.state.write_u8(i); - } - - #[inline] - fn write_u16(&mut self, i: u16) { - self.state.short_write(i.to_le_bytes()); - } - - #[inline] - fn write_u32(&mut self, i: u32) { - self.state.short_write(i.to_le_bytes()); - } - - #[inline] - fn write_u64(&mut self, i: u64) { - self.state.short_write(i.to_le_bytes()); - } - - #[inline] - fn write_u128(&mut self, i: u128) { - self.write_u64(i as u64); - self.write_u64((i >> 64) as u64); - } - - #[inline] - fn write_usize(&mut self, i: usize) { - // Always treat usize as u64 so we get the same results on 32 and 64 bit - // platforms. This is important for symbol hashes when cross compiling, - // for example. - self.state.short_write((i as u64).to_le_bytes()); - } - - #[inline] - fn write_i8(&mut self, i: i8) { - self.state.write_i8(i); - } - - #[inline] - fn write_i16(&mut self, i: i16) { - self.state.short_write((i as u16).to_le_bytes()); - } - - #[inline] - fn write_i32(&mut self, i: i32) { - self.state.short_write((i as u32).to_le_bytes()); - } - - #[inline] - fn write_i64(&mut self, i: i64) { - self.state.short_write((i as u64).to_le_bytes()); - } - - #[inline] - fn write_i128(&mut self, i: i128) { - self.state.write(&(i as u128).to_le_bytes()); - } - - #[inline] - fn write_isize(&mut self, i: isize) { - // Always treat isize as a 64-bit number so we get the same results on 32 and 64 bit - // platforms. This is important for symbol hashes when cross compiling, - // for example. Sign extending here is preferable as it means that the - // same negative number hashes the same on both 32 and 64 bit platforms. - let value = i as u64; - - // Cold path - #[cold] - #[inline(never)] - fn hash_value(state: &mut SipHasher128, value: u64) { - state.write_u8(0xFF); - state.short_write(value.to_le_bytes()); - } - - // `isize` values often seem to have a small (positive) numeric value in practice. - // To exploit this, if the value is small, we will hash a smaller amount of bytes. - // However, we cannot just skip the leading zero bytes, as that would produce the same hash - // e.g. if you hash two values that have the same bit pattern when they are swapped. - // See https://github.com/rust-lang/rust/pull/93014 for context. - // - // Therefore, we employ the following strategy: - // 1) When we encounter a value that fits within a single byte (the most common case), we - // hash just that byte. This is the most common case that is being optimized. However, we do - // not do this for the value 0xFF, as that is a reserved prefix (a bit like in UTF-8). - // 2) When we encounter a larger value, we hash a "marker" 0xFF and then the corresponding - // 8 bytes. Since this prefix cannot occur when we hash a single byte, when we hash two - // `isize`s that fit within a different amount of bytes, they should always produce a different - // byte stream for the hasher. - if value < 0xFF { - self.state.write_u8(value as u8); - } else { - hash_value(&mut self.state, value); - } - } -} +pub use rustc_stable_hash::FromStableHash; +pub use rustc_stable_hash::SipHasher128Hash as StableHasherHash; +pub use rustc_stable_hash::StableSipHasher128 as StableHasher; /// Something that implements `HashStable` can be hashed in a way that is /// stable across multiple compilation sessions. diff --git a/compiler/rustc_data_structures/src/stable_hasher/tests.rs b/compiler/rustc_data_structures/src/stable_hasher/tests.rs index c8921f6a7784f..aab50a13af0e6 100644 --- a/compiler/rustc_data_structures/src/stable_hasher/tests.rs +++ b/compiler/rustc_data_structures/src/stable_hasher/tests.rs @@ -7,71 +7,6 @@ use super::*; // ways). The expected values depend on the hashing algorithm used, so they // need to be updated whenever StableHasher changes its hashing algorithm. -#[test] -fn test_hash_integers() { - // Test that integers are handled consistently across platforms. - let test_u8 = 0xAB_u8; - let test_u16 = 0xFFEE_u16; - let test_u32 = 0x445577AA_u32; - let test_u64 = 0x01234567_13243546_u64; - let test_u128 = 0x22114433_66557788_99AACCBB_EEDDFF77_u128; - let test_usize = 0xD0C0B0A0_usize; - - let test_i8 = -100_i8; - let test_i16 = -200_i16; - let test_i32 = -300_i32; - let test_i64 = -400_i64; - let test_i128 = -500_i128; - let test_isize = -600_isize; - - let mut h = StableHasher::new(); - test_u8.hash(&mut h); - test_u16.hash(&mut h); - test_u32.hash(&mut h); - test_u64.hash(&mut h); - test_u128.hash(&mut h); - test_usize.hash(&mut h); - test_i8.hash(&mut h); - test_i16.hash(&mut h); - test_i32.hash(&mut h); - test_i64.hash(&mut h); - test_i128.hash(&mut h); - test_isize.hash(&mut h); - - // This depends on the hashing algorithm. See note at top of file. - let expected = (13997337031081104755, 6178945012502239489); - - assert_eq!(h.finalize(), expected); -} - -#[test] -fn test_hash_usize() { - // Test that usize specifically is handled consistently across platforms. - let test_usize = 0xABCDEF01_usize; - - let mut h = StableHasher::new(); - test_usize.hash(&mut h); - - // This depends on the hashing algorithm. See note at top of file. - let expected = (12037165114281468837, 3094087741167521712); - - assert_eq!(h.finalize(), expected); -} - -#[test] -fn test_hash_isize() { - // Test that isize specifically is handled consistently across platforms. - let test_isize = -7_isize; - - let mut h = StableHasher::new(); - test_isize.hash(&mut h); - - // This depends on the hashing algorithm. See note at top of file. - let expected = (3979067582695659080, 2322428596355037273); - - assert_eq!(h.finalize(), expected); -} - fn hash>(t: &T) -> Hash128 { let mut h = StableHasher::new(); let ctx = &mut (); diff --git a/compiler/rustc_data_structures/src/tagged_ptr/copy/tests.rs b/compiler/rustc_data_structures/src/tagged_ptr/copy/tests.rs index bfcc2e603de43..160af8a65d9c2 100644 --- a/compiler/rustc_data_structures/src/tagged_ptr/copy/tests.rs +++ b/compiler/rustc_data_structures/src/tagged_ptr/copy/tests.rs @@ -1,5 +1,6 @@ use std::ptr; +use crate::hashes::Hash128; use crate::stable_hasher::{HashStable, StableHasher}; use crate::tagged_ptr::{CopyTaggedPtr, Pointer, Tag, Tag2}; @@ -31,14 +32,13 @@ fn stable_hash_hashes_as_tuple() { let hash_packed = { let mut hasher = StableHasher::new(); tag_ptr(&12, Tag2::B11).hash_stable(&mut (), &mut hasher); - - hasher.finalize() + hasher.finish::() }; let hash_tupled = { let mut hasher = StableHasher::new(); (&12, Tag2::B11).hash_stable(&mut (), &mut hasher); - hasher.finalize() + hasher.finish::() }; assert_eq!(hash_packed, hash_tupled); diff --git a/src/tools/tidy/src/deps.rs b/src/tools/tidy/src/deps.rs index 82fa43f581fde..3c72fae0881e9 100644 --- a/src/tools/tidy/src/deps.rs +++ b/src/tools/tidy/src/deps.rs @@ -353,6 +353,7 @@ const PERMITTED_RUSTC_DEPENDENCIES: &[&str] = &[ "rustc-hash", "rustc-rayon", "rustc-rayon-core", + "rustc-stable-hash", "rustc_apfloat", "rustc_version", "rustix",