-
Notifications
You must be signed in to change notification settings - Fork 92
/
014.py
41 lines (29 loc) · 977 Bytes
/
014.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
"""
Problem:
The area of a circle is defined as r^2. Estimate pi to 3 decimal places using a Monte
Carlo method.
Hint: The basic equation of a circle is x^2 + y^2 = r^2.
"""
from random import random
from typing import Tuple
def coordinate_gen() -> Tuple[float, float]:
# Helper function to generate a random coordinate in the square bounded by
# x = -1, x = 1 and y = -1, y = 1
return random(), random()
def pi_approx(iterations: int = 1_000_000) -> float:
circle_area = 0
for _ in range(iterations):
x, y = coordinate_gen()
if pow(x, 2) + pow(y, 2) <= 1:
circle_area += 1
# Using Monte Carlo approximation [pi = 4 x (Area of circle / Area of square)]
# [Area of circle = number of points in circle,
# Area of square = total number of points]
return round(4 * circle_area / iterations, 3)
if __name__ == "__main__":
print(pi_approx())
"""
SPECS:
TIME COMPLEXITY: O(n)
SPACE COMPLEXITY: O(1)
"""