-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathglobal_run.py
82 lines (66 loc) · 2.83 KB
/
global_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import random
from copy import deepcopy
import pickle as pkl
from tqdm import tqdm
import os
import time
def subsample(samples, n=1000):
selected_idxes = list(range(len(samples)))
random.shuffle(selected_idxes)
selected_idxes = selected_idxes[:n]
return [samples[i] for i in sorted(selected_idxes)]
# flip the problem of describing corpus A to describing corpus B
def flip_problem(problem):
problem = deepcopy(problem)
problem['A_desc'], problem['B_desc'] = problem['B_desc'], problem['A_desc']
problem['split'] = {
k: {
'A_samples': v['B_samples'],
'B_samples': v['A_samples']
} for k, v in problem['split'].items()
}
return problem
if __name__ == '__main__':
from D5 import D5
from validator import DummyValidator, Validator
from lm_proposer import GPT3_Proposer
from get_representative import return_extreme_values
problems = pkl.load(open('OpenD5.pkl', 'rb'))
# the default validator has 11B parameters
validator = Validator()
if not os.path.exists('discoveries'):
os.mkdir('discoveries')
# randomly shuffle the problems to run our system on
problem_idxes = list(range(len(problems)))
random.shuffle(problem_idxes)
pbar = tqdm(problem_idxes)
for problem_id in pbar:
pbar.set_description(f'problem {problem_id}')
problem_orig = problems[problem_id]
def get_h2h_dicts(problem, save_path):
current_time = time.time()
if os.path.exists(save_path):
loaded_object = pkl.load(open(save_path, 'rb'))
if type(loaded_object) == dict:
return loaded_object
elif current_time - loaded_object < 60 * 60 * 8:
return None
pkl.dump(current_time, open(save_path, 'wb'))
extreme_vals = return_extreme_values(problem['split']['research']['A_samples'], problem['split']['research']['B_samples'])
problem['split']['research']['A_samples'] = subsample(extreme_vals['sorted_A_samples'])
problem['split']['research']['B_samples'] = subsample(extreme_vals['sorted_B_samples'])
proposer = GPT3_Proposer(problem)
d5 = D5(
problem['split']['research']['A_samples'],
problem['split']['research']['B_samples'],
validator,
proposer,
total_hypotheses_count=60,
early_stop=True
)
h2h_dicts = d5.run()
pkl.dump(h2h_dicts, open(save_path, 'wb'))
return h2h_dicts
get_h2h_dicts(deepcopy(problem_orig), f'discoveries/additional_describe_A_{problem_id}.pkl')
if problem_orig['flip']:
get_h2h_dicts(flip_problem(deepcopy(problem_orig)), f'discoveries/additional_describe_B_{problem_id}.pkl')