-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeuralNetwork.cs
95 lines (78 loc) · 3.17 KB
/
NeuralNetwork.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
namespace NeuralNetwork
{
public class NeuralNetwork
{
private readonly Matrix _weightsIh;
private readonly Matrix _weightsHo;
private readonly Matrix _biasH;
private readonly Matrix _biasO;
public double LRate = 0.01; // Learning Rate
private double[] _lossArr;
public NeuralNetwork(int i, int h, int o)
{
_weightsIh = new Matrix(h, i); // Matrix of weights for the input and hidden layer
_weightsHo = new Matrix(o, h); // Matrix of weights for the hidden and output layer
_biasH = new Matrix(h, 1); // Offset matrix for the hidden layer
_biasO = new Matrix(o, 1); // Offset matrix for the output layer
}
public List<double> Predict(double[] x)
{
Matrix input = Matrix.FromArray(x);
Matrix hidden = Matrix.Multiply(_weightsIh, input);
hidden.Add(_biasH);
hidden.Sigmoid();
Matrix output = Matrix.Multiply(_weightsHo, hidden);
output.Add(_biasO);
output.Sigmoid();
return output.ToArray();
}
public void Fit(double[][] x, double[][] y, int epochs)
{
_lossArr = new double[epochs];
Random rnd = new();
for (int i = 0; i < epochs; i++)
{
int sampleN = rnd.Next(x.Length);
Train(x[sampleN], y[sampleN]);
Matrix input = Matrix.FromArray(x[sampleN]);
Matrix hidden = Matrix.Multiply(_weightsIh, input);
hidden.Add(_biasH);
hidden.Sigmoid();
Matrix output = Matrix.Multiply(_weightsHo, hidden);
output.Add(_biasO);
output.Sigmoid();
Matrix target = Matrix.FromArray(y[sampleN]);
Matrix error = Matrix.Subtract(target, output);
_lossArr[i] = Matrix.MseLoss(error);
}
}
public void Train(double[] x, double[] y)
{
Matrix input = Matrix.FromArray(x);
Matrix hidden = Matrix.Multiply(_weightsIh, input);
hidden.Add(_biasH);
hidden.Sigmoid();
Matrix output = Matrix.Multiply(_weightsHo, hidden);
output.Add(_biasO);
output.Sigmoid();
Matrix target = Matrix.FromArray(y);
Matrix error = Matrix.Subtract(target, output);
Matrix gradient = output.Dsigmoid();
gradient.Multiply(error);
gradient.Multiply(LRate);
Matrix hiddenT = Matrix.Transpose(hidden);
Matrix whoDelta = Matrix.Multiply(gradient, hiddenT);
_weightsHo.Add(whoDelta);
_biasO.Add(gradient);
Matrix whoT = Matrix.Transpose(_weightsHo);
Matrix hiddenErrors = Matrix.Multiply(whoT, error);
Matrix hGradient = hidden.Dsigmoid();
hGradient.Multiply(hiddenErrors);
hGradient.Multiply(LRate);
Matrix iT = Matrix.Transpose(input);
Matrix wihDelta = Matrix.Multiply(hGradient, iT);
_weightsIh.Add(wihDelta);
_biasH.Add(hGradient);
}
}
}