forked from adeshpande3/March-Madness-ML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MarchMadness.py
188 lines (160 loc) · 6.62 KB
/
MarchMadness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Format:
# 1) Imports
# 2) Load Training Set and CSV Files
# 3) Train Model
# 4) Test Model
# 5) Create Kaggle Submission
############################## IMPORTS ##############################
from __future__ import division
import sklearn
import pandas as pd
import numpy as np
import collections
import os.path
from sklearn.cross_validation import train_test_split
from sklearn import svm
from sklearn.svm import SVC
from sklearn import linear_model
from sklearn import tree
from sklearn.cross_validation import cross_val_score
from keras.utils import np_utils
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import GradientBoostingClassifier
import sys
from sklearn.ensemble import GradientBoostingRegressor
import math
import csv
from sklearn.ensemble import VotingClassifier
from sklearn.metrics import classification_report
from sklearn.calibration import CalibratedClassifierCV
import urllib
from sklearn.svm import LinearSVC
import xgboost as xgb
from sklearn.model_selection import GridSearchCV
from datetime import datetime
import random
############################## LOAD TRAINING SET ##############################
if os.path.exists("Data/PrecomputedMatrices/xTrain.npy") and os.path.exists("Data/PrecomputedMatrices/yTrain.npy"):
xTrain = np.load("Data/PrecomputedMatrices/xTrain.npy")
yTrain = np.load("Data/PrecomputedMatrices/yTrain.npy")
print ("Shape of xTrain:", xTrain.shape)
print ("Shape of yTrain:", yTrain.shape)
else:
print ('We need a training set! Run dataPreprocessing.py')
sys.exit()
curYear = int(raw_input('What year are these predictions for?\n'))
############################## LOAD CSV FILES ##############################
sample_sub_pd = pd.read_csv('Data/KaggleData/SampleSubmissionStage1.csv')
sample_sub_pd2 = pd.read_csv('Data/KaggleData/SampleSubmissionStage2.csv')
teams_pd = pd.read_csv('Data/KaggleData/Teams.csv')
############################## TRAIN MODEL ##############################
model = GradientBoostingRegressor(n_estimators=100, max_depth=5)
categories=['Wins','PPG','PPGA','PowerConf','3PG', 'APG','TOP','Conference Champ','Tourney Conference Champ',
'Seed','SOS','SRS', 'RPG', 'SPG', 'Tourney Appearances','National Championships','Location']
accuracy=[]
numTrials = 0
for i in range(numTrials):
X_train, X_test, Y_train, Y_test = train_test_split(xTrain, yTrain)
startTime = datetime.now() # For some timing stuff
results = model.fit(X_train, Y_train)
preds = model.predict(X_test)
preds[preds < .5] = 0
preds[preds >= .5] = 1
localAccuracy = np.mean(preds == Y_test)
accuracy.append(localAccuracy)
print ("Finished run #" + str(i) + ". Accuracy = " + str(localAccuracy))
print ("Time taken: " + str(datetime.now() - startTime))
if numTrials != 0:
print ("The average accuracy is", sum(accuracy)/len(accuracy))
############################## TEST MODEL ##############################
def predictGame(team_1_vector, team_2_vector, home, modelUsed):
diff = [a - b for a, b in zip(team_1_vector, team_2_vector)]
diff.append(home)
# Depending on the model you use, you will either need to return model.predict_proba or model.predict
# predict_proba = Linear Reg, Linear SVC
# predict = Gradient Boosted, Ridge, HuberRegressor
return modelUsed.predict_proba([diff])[0][1]
#return modelUsed.predict([diff])[0]
############################## CREATE KAGGLE SUBMISSION ##############################
def loadTeamVectors(years):
listDictionaries = []
for year in years:
curVectors = np.load("Data/PrecomputedMatrices/TeamVectors/" + str(year) + "TeamVectors.npy").item()
listDictionaries.append(curVectors)
return listDictionaries
def createPrediction(stage2 = False):
if stage2:
years = [curYear]
localPd = sample_sub_pd2
else:
# The years that we want to predict for
years = range(curYear - 4,curYear)
localPd = sample_sub_pd
if os.path.exists("result.csv"):
os.remove("result.csv")
listDictionaries = loadTeamVectors(years)
print ("Loaded the team vectors")
results = [[0 for x in range(2)] for x in range(len(localPd.index))]
predictionModel = linear_model.LogisticRegression()
predictionModel.fit(xTrain, yTrain)
for index, row in localPd.iterrows():
matchupId = row['ID']
year = int(matchupId[0:4])
teamVectors = listDictionaries[year - years[0]]
team1Id = int(matchupId[5:9])
team2Id = int(matchupId[10:14])
team1Vector = teamVectors[team1Id]
team2Vector = teamVectors[team2Id]
pred1 = predictGame(team1Vector, team2Vector, 0, predictionModel)
pred = pred1.clip(0.,1.)
results[index][0] = matchupId
results[index][1] = pred
results = pd.np.array(results)
firstRow = [[0 for x in range(2)] for x in range(1)]
firstRow[0][0] = 'ID'
firstRow[0][1] = 'Pred'
with open("result.csv", "wb") as f:
writer = csv.writer(f)
writer.writerows(firstRow)
writer.writerows(results)
#createPrediction()
#createPrediction(stage2=True)
############################## PREDICTING THIS YEAR'S BRACKET ##############################
def trainModel():
model = GradientBoostingRegressor(n_estimators=100, max_depth=5)
model.fit(xTrain, yTrain)
return model
def randomWinner(team1, team2, modelUsed):
year = [curYear]
teamVectors = loadTeamVectors(year)[0]
team1Vector = teamVectors[int(teams_pd[teams_pd['TeamName'] == team1].values[0][0])]
team2Vector = teamVectors[int(teams_pd[teams_pd['TeamName'] == team2].values[0][0])]
prediction = predictGame(team1Vector, team2Vector, 0, modelUsed)
for i in range(10):
if (prediction > random.random()):
print ("{0} Wins".format(team1))
else:
print ("{0} Wins".format(team2))
def findWinner(team1, team2, modelUsed):
year = [curYear]
teamVectors = loadTeamVectors(year)[0]
team1Vector = teamVectors[int(teams_pd[teams_pd['TeamName'] == team1].values[0][0])]
team2Vector = teamVectors[int(teams_pd[teams_pd['TeamName'] == team2].values[0][0])]
prediction = predictGame(team1Vector, team2Vector, 0, modelUsed)
if (prediction < 0.5):
print ("Probability that {0} wins: {1}".format(team2, 1 - prediction))
else:
print ("Probability that {0} wins: {1}".format(team1, prediction))
trainedModel = trainModel()
# First round games in the East for example
findWinner('Duke', 'NC Central', trainedModel)
findWinner('VA Commonwealth', 'UCF', trainedModel)
findWinner('Mississippi St', 'Liberty', trainedModel)
findWinner('Virginia Tech', 'St Louis', trainedModel)
findWinner('Maryland', 'Belmont', trainedModel)
findWinner('LSU', 'Yale', trainedModel)
findWinner('Louisville', 'Minnesota', trainedModel)
findWinner('Michigan St', 'Bradley', trainedModel)