forked from adeshpande3/March-Madness-ML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataPreprocessing.py
386 lines (351 loc) · 18.9 KB
/
DataPreprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# Format:
# 1) Imports
# 2) Load CSVs
# 3) Data Structures
# 4) Data Preprocessing Helper Functions
# 5) Create Training Set
############################## IMPORTS ##############################
from __future__ import division
import pandas as pd
import numpy as np
import os.path
import math
import collections
############################## LOAD CSVs ##############################
reg_season_compact_pd = pd.read_csv('Data/KaggleData/RegularSeasonCompactResults.csv')
teams_pd = pd.read_csv('Data/KaggleData/Teams.csv')
tourney_compact_pd = pd.read_csv('Data/KaggleData/NCAATourneyCompactResults.csv')
conference_pd = pd.read_csv('Data/KaggleData/Conference.csv')
tourney_results_pd = pd.read_csv('Data/KaggleData/TourneyResults.csv')
tourney_seeds_pd = pd.read_csv('Data/KaggleData/NCAATourneySeeds.csv')
team_conferences_pd = pd.read_csv('Data/KaggleData/TeamConferences.csv')
############################## DATA STRUCTURES ##############################
teamList = teams_pd['TeamName'].tolist()
NCAAChampionsList = tourney_results_pd['NCAA Champion'].tolist()
############################## HELPER FUNCTIONS ##############################
def checkPower6Conference(team_id):
team_pd = team_conferences_pd[(team_conferences_pd['Season'] == 2018) & (team_conferences_pd['TeamID'] == team_id)]
# Can't find the team
if (len(team_pd) == 0):
return 0
confName = team_pd.iloc[0]['ConfAbbrev']
return int(confName == 'sec' or confName == 'acc'or confName == 'big_ten' or confName == 'big_twelve' or confName == 'big_east' or confName == 'pac_twelve')
def getTeamID(name):
return teams_pd[teams_pd['TeamName'] == name].values[0][0]
def getTeamName(team_id):
return teams_pd[teams_pd['TeamID'] == team_id].values[0][1]
def getNumChampionships(team_id):
name = getTeamName(team_id)
return NCAAChampionsList.count(name)
def getListForURL(team_list):
team_list = [x.lower() for x in team_list]
team_list = [t.replace(' ', '-') for t in team_list]
team_list = [t.replace('st', 'state') for t in team_list]
team_list = [t.replace('northern-dakota', 'north-dakota') for t in team_list]
team_list = [t.replace('nc-', 'north-carolina-') for t in team_list]
team_list = [t.replace('fl-', 'florida-') for t in team_list]
team_list = [t.replace('ga-', 'georgia-') for t in team_list]
team_list = [t.replace('lsu', 'louisiana-state') for t in team_list]
team_list = [t.replace('maristate', 'marist') for t in team_list]
team_list = [t.replace('stateate', 'state') for t in team_list]
team_list = [t.replace('northernorthern', 'northern') for t in team_list]
team_list = [t.replace('usc', 'southern-california') for t in team_list]
base = 'http://www.sports-reference.com/cbb/schools/'
for team in team_list:
url = base + team + '/'
getListForURL(teamList);
def handleCases(arr):
indices = []
listLen = len(arr)
for i in range(listLen):
if (arr[i] == 'St' or arr[i] == 'FL'):
indices.append(i)
for p in indices:
arr[p-1] = arr[p-1] + ' ' + arr[p]
for i in range(len(indices)):
arr.remove(arr[indices[i] - i])
return arr
def checkConferenceChamp(team_id, year):
year_conf_pd = conference_pd[conference_pd['Year'] == year]
champs = year_conf_pd['Regular Season Champ'].tolist()
# For handling cases where there is more than one champion
champs_separated = [words for segments in champs for words in segments.split()]
name = getTeamName(team_id)
champs_separated = handleCases(champs_separated)
if (name in champs_separated):
return 1
else:
return 0
def checkConferenceTourneyChamp(team_id, year):
year_conf_pd = conference_pd[conference_pd['Year'] == year]
champs = year_conf_pd['Tournament Champ'].tolist()
name = getTeamName(team_id)
if (name in champs):
return 1
else:
return 0
def getTourneyAppearances(team_id):
return len(tourney_seeds_pd[tourney_seeds_pd['TeamID'] == team_id].index)
def handleDifferentCSV(df):
# The stats CSV is a lit different in terms of naming so below is just some data cleaning
df['School'] = df['School'].replace('(State)', 'St', regex=True)
df['School'] = df['School'].replace('Albany (NY)', 'Albany NY')
df['School'] = df['School'].replace('Boston University', 'Boston Univ')
df['School'] = df['School'].replace('Central Michigan', 'C Michigan')
df['School'] = df['School'].replace('(Eastern)', 'E', regex=True)
df['School'] = df['School'].replace('Louisiana St', 'LSU')
df['School'] = df['School'].replace('North Carolina St', 'NC State')
df['School'] = df['School'].replace('Southern California', 'USC')
df['School'] = df['School'].replace('University of California', 'California', regex=True)
df['School'] = df['School'].replace('American', 'American Univ')
df['School'] = df['School'].replace('Arkansas-Little Rock', 'Ark Little Rock')
df['School'] = df['School'].replace('Arkansas-Pine Bluff', 'Ark Pine Bluff')
df['School'] = df['School'].replace('Bowling Green St', 'Bowling Green')
df['School'] = df['School'].replace('Brigham Young', 'BYU')
df['School'] = df['School'].replace('Cal Poly', 'Cal Poly SLO')
df['School'] = df['School'].replace('Centenary (LA)', 'Centenary')
df['School'] = df['School'].replace('Central Connecticut St', 'Central Conn')
df['School'] = df['School'].replace('Charleston Southern', 'Charleston So')
df['School'] = df['School'].replace('Coastal Carolina', 'Coastal Car')
df['School'] = df['School'].replace('College of Charleston', 'Col Charleston')
df['School'] = df['School'].replace('Cal St Fullerton', 'CS Fullerton')
df['School'] = df['School'].replace('Cal St Sacramento', 'CS Sacramento')
df['School'] = df['School'].replace('Cal St Bakersfield', 'CS Bakersfield')
df['School'] = df['School'].replace('Cal St Northridge', 'CS Northridge')
df['School'] = df['School'].replace('East Tennessee St', 'ETSU')
df['School'] = df['School'].replace('Detroit Mercy', 'Detroit')
df['School'] = df['School'].replace('Fairleigh Dickinson', 'F Dickinson')
df['School'] = df['School'].replace('Florida Atlantic', 'FL Atlantic')
df['School'] = df['School'].replace('Florida Gulf Coast', 'FL Gulf Coast')
df['School'] = df['School'].replace('Florida International', 'Florida Intl')
df['School'] = df['School'].replace('George Washington', 'G Washington')
df['School'] = df['School'].replace('Georgia Southern', 'Ga Southern')
df['School'] = df['School'].replace('Gardner-Webb', 'Gardner Webb')
df['School'] = df['School'].replace('Illinois-Chicago', 'IL Chicago')
df['School'] = df['School'].replace('Kent St', 'Kent')
df['School'] = df['School'].replace('Long Island University', 'Long Island')
df['School'] = df['School'].replace('Loyola Marymount', 'Loy Marymount')
df['School'] = df['School'].replace('Loyola (MD)', 'Loyola MD')
df['School'] = df['School'].replace('Loyola (IL)', 'Loyola-Chicago')
df['School'] = df['School'].replace('Massachusetts', 'MA Lowell')
df['School'] = df['School'].replace('Maryland-Eastern Shore', 'MD E Shore')
df['School'] = df['School'].replace('Miami (FL)', 'Miami FL')
df['School'] = df['School'].replace('Miami (OH)', 'Miami OH')
df['School'] = df['School'].replace('Missouri-Kansas City', 'Missouri KC')
df['School'] = df['School'].replace('Monmouth', 'Monmouth NJ')
df['School'] = df['School'].replace('Mississippi Valley St', 'MS Valley St')
df['School'] = df['School'].replace('Montana St', 'MTSU')
df['School'] = df['School'].replace('Northern Colorado', 'N Colorado')
df['School'] = df['School'].replace('North Dakota St', 'N Dakota St')
df['School'] = df['School'].replace('Northern Illinois', 'N Illinois')
df['School'] = df['School'].replace('Northern Kentucky', 'N Kentucky')
df['School'] = df['School'].replace('North Carolina A&T', 'NC A&T')
df['School'] = df['School'].replace('North Carolina Central', 'NC Central')
df['School'] = df['School'].replace('Pennsylvania', 'Penn')
df['School'] = df['School'].replace('South Carolina St', 'S Carolina St')
df['School'] = df['School'].replace('Southern Illinois', 'S Illinois')
df['School'] = df['School'].replace('UC-Santa Barbara', 'Santa Barbara')
df['School'] = df['School'].replace('Southeastern Louisiana', 'SE Louisiana')
df['School'] = df['School'].replace('Southeast Missouri St', 'SE Missouri St')
df['School'] = df['School'].replace('Stephen F. Austin', 'SF Austin')
df['School'] = df['School'].replace('Southern Methodist', 'SMU')
df['School'] = df['School'].replace('Southern Mississippi', 'Southern Miss')
df['School'] = df['School'].replace('Southern', 'Southern Univ')
df['School'] = df['School'].replace('St. Bonaventure', 'St Bonaventure')
df['School'] = df['School'].replace('St. Francis (NY)', 'St Francis NY')
df['School'] = df['School'].replace('Saint Francis (PA)', 'St Francis PA')
df['School'] = df['School'].replace('St. John\'s (NY)', 'St John\'s')
df['School'] = df['School'].replace('Saint Joseph\'s', 'St Joseph\'s PA')
df['School'] = df['School'].replace('Saint Louis', 'St Louis')
df['School'] = df['School'].replace('Saint Mary\'s (CA)', 'St Mary\'s CA')
df['School'] = df['School'].replace('Mount Saint Mary\'s', 'Mt St Mary\'s')
df['School'] = df['School'].replace('Saint Peter\'s', 'St Peter\'s')
df['School'] = df['School'].replace('Texas A&M-Corpus Christian', 'TAM C. Christian')
df['School'] = df['School'].replace('Texas Christian', 'TCU')
df['School'] = df['School'].replace('Tennessee-Martin', 'TN Martin')
df['School'] = df['School'].replace('Texas-Rio Grande Valley', 'UTRGV')
df['School'] = df['School'].replace('Texas Southern', 'TX Southern')
df['School'] = df['School'].replace('Alabama-Birmingham', 'UAB')
df['School'] = df['School'].replace('UC-Davis', 'UC Davis')
df['School'] = df['School'].replace('UC-Irvine', 'UC Irvine')
df['School'] = df['School'].replace('UC-Riverside', 'UC Riverside')
df['School'] = df['School'].replace('Central Florida', 'UCF')
df['School'] = df['School'].replace('Louisiana-Lafayette', 'ULL')
df['School'] = df['School'].replace('Louisiana-Monroe', 'ULM')
df['School'] = df['School'].replace('Maryland-Baltimore County', 'UMBC')
df['School'] = df['School'].replace('North Carolina-Asheville', 'UNC Asheville')
df['School'] = df['School'].replace('North Carolina-Greensboro', 'UNC Greensboro')
df['School'] = df['School'].replace('North Carolina-Wilmington', 'UNC Wilmington')
df['School'] = df['School'].replace('Nevada-Las Vegas', 'UNLV')
df['School'] = df['School'].replace('Texas-Arlington', 'UT Arlington')
df['School'] = df['School'].replace('Texas-San Antonio', 'UT San Antonio')
df['School'] = df['School'].replace('Texas-El Paso', 'UTEP')
df['School'] = df['School'].replace('Virginia Commonwealth', 'VA Commonwealth')
df['School'] = df['School'].replace('Western Carolina', 'W Carolina')
df['School'] = df['School'].replace('Western Illinois', 'W Illinois')
df['School'] = df['School'].replace('Western Kentucky', 'WKU')
df['School'] = df['School'].replace('Western Michigan', 'W Michigan')
df['School'] = df['School'].replace('Abilene Christian', 'Abilene Chr')
df['School'] = df['School'].replace('Montana State', 'Montana St')
df['School'] = df['School'].replace('Central Arkansas', 'Cent Arkansas')
df['School'] = df['School'].replace('Houston Baptist', 'Houston Bap')
df['School'] = df['School'].replace('South Dakota St', 'S Dakota St')
df['School'] = df['School'].replace('Maryland-Eastern Shore', 'MD E Shore')
return df
def getHomeStat(row):
if (row == 'H'):
home = 1
if (row == 'A'):
home = -1
if (row == 'N'):
home = 0
return home
def compareTwoTeams(id_1, id_2, year):
team_1 = getSeasonData(id_1, year)
team_2 = getSeasonData(id_2, year)
diff = [a - b for a, b in zip(team_1, team_2)]
return diff
def normalizeInput(arr):
for i in range(arr.shape[1]):
minVal = min(arr[:,i])
maxVal = max(arr[:,i])
arr[:,i] = (arr[:,i] - minVal) / (maxVal - minVal)
return arr
def normalizeInput2(X):
return (X - np.mean(X, axis = 0)) / np.std(X, axis = 0)
############################## MAIN PREPROCESSING FUNCTIONS ##############################
def getSeasonData(team_id, year):
stats_SOS_pd = pd.read_csv('Data/RegSeasonStats/MMStats_'+str(year)+'.csv')
stats_SOS_pd = handleDifferentCSV(stats_SOS_pd)
ratings_pd = pd.read_csv('Data/RatingStats/RatingStats_'+str(year)+'.csv')
ratings_pd = handleDifferentCSV(ratings_pd)
year_data_pd = reg_season_compact_pd[reg_season_compact_pd['Season'] == year]
numFeatures = 16
name = getTeamName(team_id)
team = stats_SOS_pd[stats_SOS_pd['School'] == name]
team_rating = ratings_pd[ratings_pd['School'] == name]
if (len(team.index) == 0 or len(team_rating.index) == 0): #Can't find the team
return [0 for x in range(numFeatures)]
gamesWon = team['W'].values[0]
gamesLost = team['L'].values[0]
total3sMade = team['X3P'].values[0]
totalTurnovers = 0 if math.isnan(team['TOV'].values[0]) else team['TOV'].values[0]
totalAssists = 0 if math.isnan(team['AST'].values[0]) else team['AST'].values[0]
totalRebounds = 0 if math.isnan(team['TRB'].values[0]) else team['TRB'].values[0]
totalSteals = 0 if math.isnan(team['STL'].values[0]) else team['STL'].values[0]
sos = team['SOS'].values[0]
srs = team['SRS'].values[0]
numWins = team['W'].values[0]
totalPointsScored = team['Tm.'].values[0]
totalPointsAllowed = team['Opp.'].values[0]
# MM_Stats 1993-1995 don't have these stats so we need to get it from somewhere else
if math.isnan(totalPointsAllowed):
gamesPlayed = year_data_pd[(year_data_pd.WTeamID == team_id) | (year_data_pd.LTeamID == team_id)]
totalPointsAllowed = gamesPlayed['LScore'].sum()
#Finding tournament seed for that year
tourneyYear = tourney_seeds_pd[tourney_seeds_pd['Season'] == year]
seed = tourneyYear[tourneyYear['TeamID'] == team_id]
if (len(seed.index) != 0):
seed = seed.values[0][1]
tournamentSeed = int(seed[1:3])
else:
tournamentSeed = 25 #Not sure how to represent if a team didn't make the tourney
numGames = team['G'].values[0]
avgPointsScored = totalPointsScored/numGames
avgPointsAllowed = totalPointsAllowed/numGames
avg3sMade = total3sMade/numGames
avgTurnovers = totalTurnovers/numGames
avgAssists = totalAssists/numGames
avgRebounds = totalRebounds/numGames
avgSteals = totalSteals/numGames
return [numWins, avgPointsScored, avgPointsAllowed, checkPower6Conference(team_id), avg3sMade, avgAssists, avgTurnovers,
checkConferenceChamp(team_id, year), checkConferenceTourneyChamp(team_id, year), tournamentSeed,
sos, srs, avgRebounds, avgSteals, getTourneyAppearances(team_id), getNumChampionships(team_id)]
def createSeasonDict(year):
seasonDictionary = collections.defaultdict(list)
for team in teamList:
team_id = teams_pd[teams_pd['TeamName'] == team].values[0][0]
team_vector = getSeasonData(team_id, year)
seasonDictionary[team_id] = team_vector
return seasonDictionary
def createTrainingSet(years, saveYears):
totalNumGames = 0
for year in years:
season = reg_season_compact_pd[reg_season_compact_pd['Season'] == year]
totalNumGames += len(season.index)
tourney = tourney_compact_pd[tourney_compact_pd['Season'] == year]
totalNumGames += len(tourney.index)
numFeatures = len(getSeasonData(1181,2012)) #Just choosing a random team and seeing the dimensionality of the vector
xTrain = np.zeros(( totalNumGames, numFeatures + 1))
yTrain = np.zeros(( totalNumGames ))
indexCounter = 0
for year in years:
team_vectors = createSeasonDict(year)
season = reg_season_compact_pd[reg_season_compact_pd['Season'] == year]
numGamesInSeason = len(season.index)
tourney = tourney_compact_pd[tourney_compact_pd['Season'] == year]
numGamesInSeason += len(tourney.index)
xTrainSeason = np.zeros(( numGamesInSeason, numFeatures + 1))
yTrainSeason = np.zeros(( numGamesInSeason ))
counter = 0
for index, row in season.iterrows():
w_team = row['WTeamID']
w_vector = team_vectors[w_team]
l_team = row['LTeamID']
l_vector = team_vectors[l_team]
diff = [a - b for a, b in zip(w_vector, l_vector)]
home = getHomeStat(row['WLoc'])
if (counter % 2 == 0):
diff.append(home)
xTrainSeason[counter] = diff
yTrainSeason[counter] = 1
else:
diff.append(-home)
xTrainSeason[counter] = [ -p for p in diff]
yTrainSeason[counter] = 0
counter += 1
for index, row in tourney.iterrows():
w_team = row['WTeamID']
w_vector = team_vectors[w_team]
l_team = row['LTeamID']
l_vector = team_vectors[l_team]
diff = [a - b for a, b in zip(w_vector, l_vector)]
home = 0 #All tournament games are neutral
if (counter % 2 == 0):
diff.append(home)
xTrainSeason[counter] = diff
yTrainSeason[counter] = 1
else:
diff.append(-home)
xTrainSeason[counter] = [ -p for p in diff]
yTrainSeason[counter] = 0
counter += 1
xTrain[indexCounter:numGamesInSeason+indexCounter] = xTrainSeason
yTrain[indexCounter:numGamesInSeason+indexCounter] = yTrainSeason
indexCounter += numGamesInSeason
print ('Finished year:', year)
if (year in saveYears):
np.save('Data/PrecomputedMatrices/TeamVectors/' + str(year) + 'TeamVectors', team_vectors)
return xTrain, yTrain
def createAndSave(years, saveYears):
xTrain, yTrain = createTrainingSet(years, saveYears)
print ("Shape of xTrain:", xTrain.shape)
print ("Shape of yTrain:", yTrain.shape)
np.save('Data/PrecomputedMatrices/xTrain', xTrain)
np.save('Data/PrecomputedMatrices/yTrain', yTrain)
############################## CREATE TRAINING SET ##############################
endYear = int(raw_input('What year do you have data until?\n'))
years = range(1993,endYear + 1)
# Saves the team vectors for the following years
saveYears = range(endYear - 4,endYear + 1)
if os.path.exists("Data/PrecomputedMatrices/xTrain.npy") and os.path.exists("Data/PrecomputedMatrices/yTrain.npy"):
print ('There is already a precomputed xTrain and yTrain.')
response = raw_input('Do you want to remove these files and create a new training set? (y/n) ')
if (response == 'y'):
os.remove("Data/PrecomputedMatrices/xTrain.npy")
os.remove("Data/PrecomputedMatrices/yTrain.npy")
createAndSave(years, saveYears)
else:
print ('Okay, going to exit now.')
else:
createAndSave(years, saveYears)