diff --git a/DESCRIPTION b/DESCRIPTION index ea7f2979..2492f3e1 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Package: rpact Title: Confirmatory Adaptive Clinical Trial Design and Analysis -Version: 4.0.0.9239 -Date: 2024-04-05 +Version: 4.0.0.9243 +Date: 2024-05-28 Authors@R: c( person( given = "Gernot", diff --git a/NAMESPACE b/NAMESPACE index 86e9bd59..0ec6664d 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -101,7 +101,6 @@ export(getSampleSizeCounts) export(getSampleSizeMeans) export(getSampleSizeRates) export(getSampleSizeSurvival) -export(getSimulationCounts) export(getSimulationEnrichmentMeans) export(getSimulationEnrichmentRates) export(getSimulationEnrichmentSurvival) diff --git a/NEWS.md b/NEWS.md index 734ca698..74233464 100644 --- a/NEWS.md +++ b/NEWS.md @@ -3,13 +3,16 @@ ## New features +* All reference classes in the package have been replaced by [R6](https://cran.r-project.org/package=R6) classes. This change brings significant advantages, including improved performance, more flexible and cleaner object-oriented programming, and enhanced encapsulation of methods and properties. The transition to R6 classes allows for more efficient memory management and faster execution, making the package more robust and scalable. Additionally, R6 classes provide a more intuitive and user-friendly interface for developers, facilitating the creation and maintenance of complex data structures and workflows. * Extension of the function `getPerformanceScore()` for sample size recalculation rules to the setting of binary endpoints according to [Bokelmann et al. (2024)](https://doi.org/10.1186/s12874-024-02150-4) -* The new functions `getSimulationCounts()` can be used to perform power simulations and the assessment of test characteristics for clinical trials with negative binomial distributed count data. +* The `getSimulationMultiArmMeans()`, `getSimulationMultiArmRates()`, and `getSimulationMultiArmSurvival()` functions now support an enhanced `selectArmsFunction` argument. Previously, only `effectVector` and `stage` were allowed as arguments. Now, users can optionally utilize additional arguments for more powerful custom function implementations, including `conditionalPower`, `conditionalCriticalValue`, `plannedSubjects/plannedEvents`, `allocationRatioPlanned`, `selectedArms`, `thetaH1` (for means and survival), `stDevH1` (for means), `overallEffects`, and for rates additionally: `piTreatmentsH1`, `piControlH1`, `overallRates`, and `overallRatesControl`. +* Same as above for`getSimulationEnrichmentMeans()`, `getSimulationEnrichmentRates()`, and `getSimulationEnrichmentSurvival()`. Specifically, support for population selection with `selectPopulationsFunction` argument based on predictive/posterior probabilities added (see [#32](https://github.com/rpact-com/rpact/issues/32)) + ## Improvements, issues, and changes -* All reference classes were replaced by [R6](https://cran.r-project.org/package=R6) classes due to better performance -* Issue [#25](https://github.com/rpact-com/rpact/issues/25) fixed +* Issues [#25](https://github.com/rpact-com/rpact/issues/25), [#35](https://github.com/rpact-com/rpact/issues/35), and [#36](https://github.com/rpact-com/rpact/issues/36) fixed +* Minor improvements # rpact 3.5.1 diff --git a/R/class_core_plot_settings.R b/R/class_core_plot_settings.R index b23843b1..601903af 100644 --- a/R/class_core_plot_settings.R +++ b/R/class_core_plot_settings.R @@ -13,8 +13,8 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7742 $ -## | Last changed: $Date: 2024-03-22 13:46:29 +0100 (Fr, 22 Mrz 2024) $ +## | File version: $Revision: 7916 $ +## | Last changed: $Date: 2024-05-22 17:52:27 +0200 (Mi, 22 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -476,22 +476,22 @@ PlotSettings <- R6::R6Class("PlotSettings", p <- p + ggplot2::theme(aspect.ratio = 1) }, "1" = { - p <- p + ggplot2::theme(legend.position = c(0.05, 1), legend.justification = c(0, 1)) + p <- p + ggplot2::theme(legend.position = "inside", legend.position.inside = c(0.05, 1), legend.justification = c(0, 1)) }, "2" = { - p <- p + ggplot2::theme(legend.position = c(0.05, 0.5), legend.justification = c(0, 0.5)) + p <- p + ggplot2::theme(legend.position = "inside", legend.position.inside = c(0.05, 0.5), legend.justification = c(0, 0.5)) }, "3" = { - p <- p + ggplot2::theme(legend.position = c(0.05, 0.05), legend.justification = c(0, 0)) + p <- p + ggplot2::theme(legend.position = "inside", legend.position.inside = c(0.05, 0.05), legend.justification = c(0, 0)) }, "4" = { - p <- p + ggplot2::theme(legend.position = c(0.95, 1), legend.justification = c(1, 1)) + p <- p + ggplot2::theme(legend.position = "inside", legend.position.inside = c(0.95, 1), legend.justification = c(1, 1)) }, "5" = { - p <- p + ggplot2::theme(legend.position = c(0.95, 0.5), legend.justification = c(1, 0.5)) + p <- p + ggplot2::theme(legend.position = "inside", legend.position.inside = c(0.95, 0.5), legend.justification = c(1, 0.5)) }, "6" = { - p <- p + ggplot2::theme(legend.position = c(0.95, 0.05), legend.justification = c(1, 0)) + p <- p + ggplot2::theme(legend.position = "inside", legend.position.inside = c(0.95, 0.05), legend.justification = c(1, 0)) } ) diff --git a/R/class_design_plan.R b/R/class_design_plan.R index cfd24134..fbe3df6b 100644 --- a/R/class_design_plan.R +++ b/R/class_design_plan.R @@ -13,8 +13,8 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7750 $ -## | Last changed: $Date: 2024-03-26 15:44:44 +0100 (Di, 26 Mrz 2024) $ +## | File version: $Revision: 7940 $ +## | Last changed: $Date: 2024-05-27 15:47:41 +0200 (Mo, 27 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -898,16 +898,23 @@ TrialDesignPlanSurvival <- R6::R6Class("TrialDesignPlanSurvival", if (any(is.na(pi1))) { pi1Temp <- self$pi1 } + } else { + if (self$.objectType == "sampleSize") { + pi1Temp <- C_PI_1_SAMPLE_SIZE_DEFAULT + } else { + pi1Temp <- C_PI_1_DEFAULT + } } accrualTimeTemp <- self$.getParameterValueIfUserDefinedOrDefault("accrualTime") if (!is.null(accrualTimeTemp) && length(accrualTimeTemp) > 0 && - !all(is.na(accrualTimeTemp)) && accrualTimeTemp[1] != 0) { - accrualTimeTemp <- c(0, accrualTimeTemp) + !all(is.na(accrualTimeTemp)) && accrualTimeTemp[1] != 0L) { + accrualTimeTemp <- c(0L, as.integer(accrualTimeTemp)) } accrualIntensityTemp <- self$.getParameterValueIfUserDefinedOrDefault("accrualIntensity") if (all(is.na(accrualIntensityTemp))) { accrualIntensityTemp <- C_ACCRUAL_INTENSITY_DEFAULT } + if (self$.objectType == "sampleSize") { return(getSampleSizeSurvival( design = self$.design, @@ -917,7 +924,7 @@ TrialDesignPlanSurvival <- R6::R6Class("TrialDesignPlanSurvival", pi2 = self$.getParameterValueIfUserDefinedOrDefault("pi2"), allocationRatioPlanned = self$allocationRatioPlanned, accountForObservationTimes = self$.getParameterValueIfUserDefinedOrDefault("accountForObservationTimes"), - eventTime = self$eventTime, + eventTime = ifelse(all(is.na(self$eventTime)), C_EVENT_TIME_DEFAULT, self$eventTime), accrualTime = accrualTimeTemp, accrualIntensity = accrualIntensityTemp, kappa = self$kappa, @@ -944,7 +951,7 @@ TrialDesignPlanSurvival <- R6::R6Class("TrialDesignPlanSurvival", pi2 = self$.getParameterValueIfUserDefinedOrDefault("pi2"), directionUpper = directionUpperTemp, allocationRatioPlanned = self$allocationRatioPlanned, - eventTime = self$eventTime, + eventTime = ifelse(all(is.na(self$eventTime)), C_EVENT_TIME_DEFAULT, self$eventTime), accrualTime = accrualTimeTemp, accrualIntensity = accrualIntensityTemp, kappa = self$kappa, diff --git a/R/class_summary.R b/R/class_summary.R index fbf9377d..1f2de7bb 100644 --- a/R/class_summary.R +++ b/R/class_summary.R @@ -13,8 +13,8 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7763 $ -## | Last changed: $Date: 2024-03-28 14:35:29 +0100 (Do, 28 Mrz 2024) $ +## | File version: $Revision: 7946 $ +## | Last changed: $Date: 2024-05-28 12:08:57 +0200 (Di, 28 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -123,7 +123,7 @@ knit_print.SummaryFactory <- function(x, ...) { paste0(utils::capture.output(x$object$.catMarkdownText()), collapse = "\n") ) } - + if (isTRUE(x[["markdown"]])) { sep <- "\n-----\n\n" result <- paste0(sep, result) @@ -2190,11 +2190,14 @@ SummaryFactory <- R6::R6Class("SummaryFactory", )) } if (!is.null(designPlan[["followUpTime"]]) && - designPlan$.getParameterType("followUpTime") == C_PARAM_USER_DEFINED && + designPlan$.getParameterType("followUpTime") %in% c(C_PARAM_USER_DEFINED, C_PARAM_DEFAULT_VALUE) && length(designPlan$followUpTime) == 1 && !is.na(designPlan$followUpTime)) { header <- .concatenateSummaryText(header, paste0( - "follow-up time = ", designPlan$followUpTime[1] + "follow-up time = ", round( + designPlan$followUpTime[1], + as.integer(getOption("rpact.summary.digits", 3)) + ) )) } if (settings$survivalEnabled && !is.null(designPlan[["dropoutTime"]])) { @@ -2378,20 +2381,24 @@ SummaryFactory <- R6::R6Class("SummaryFactory", .createSummary <- function(object, digits = NA_integer_, output = c("all", "title", "overview", "body")) { output <- match.arg(output) - + markdown <- attr(object, "markdown") if (is.null(markdown) || length(markdown) == 0 || !is.logical(markdown)) { markdown <- FALSE } - + if (inherits(object, "TrialDesignCharacteristics")) { - return(.createSummaryDesignPlan(object, digits = digits, output = output, - showStageLevels = TRUE, markdown = markdown)) + return(.createSummaryDesignPlan(object, + digits = digits, output = output, + showStageLevels = TRUE, markdown = markdown + )) } if (.isTrialDesign(object) || .isTrialDesignPlan(object) || inherits(object, "SimulationResults")) { - return(.createSummaryDesignPlan(object, digits = digits, output = output, - showStageLevels = !.isTrialDesignPlan(object), markdown = markdown)) + return(.createSummaryDesignPlan(object, + digits = digits, output = output, + showStageLevels = !.isTrialDesignPlan(object), markdown = markdown + )) } if (inherits(object, "AnalysisResults")) { @@ -2405,9 +2412,9 @@ SummaryFactory <- R6::R6Class("SummaryFactory", stop(C_EXCEPTION_TYPE_RUNTIME_ISSUE, "function 'summary' not implemented yet for class ", .getClassName(object)) } -.createSummaryPerformanceScore <- function(object, ..., - digits = NA_integer_, - output = c("all", "title", "overview", "body"), +.createSummaryPerformanceScore <- function(object, ..., + digits = NA_integer_, + output = c("all", "title", "overview", "body"), markdown = FALSE) { .createSummaryDesignPlan(object$.simulationResults, digits = digits, output = output, @@ -2440,7 +2447,7 @@ SummaryFactory <- R6::R6Class("SummaryFactory", #' #' @noRd #' -.createSummaryAnalysisResults <- function(object, ..., digits = NA_integer_, +.createSummaryAnalysisResults <- function(object, ..., digits = NA_integer_, output = c("all", "title", "overview", "body"), markdown = FALSE) { output <- match.arg(output) if (!inherits(object, "AnalysisResults")) { @@ -2478,8 +2485,10 @@ SummaryFactory <- R6::R6Class("SummaryFactory", } } - summaryFactory <- SummaryFactory$new(object = object, - intervalFormat = intervalFormat, output = output, markdown = markdown) + summaryFactory <- SummaryFactory$new( + object = object, + intervalFormat = intervalFormat, output = output, markdown = markdown + ) .addDesignInformationToSummary(design, object, summaryFactory, output = output) @@ -2788,6 +2797,7 @@ SummaryFactory <- R6::R6Class("SummaryFactory", .assertIsInClosedInterval(digits, "digits", lower = -1, upper = 12, naAllowed = TRUE) digitsSampleSize <- 1 + digitsTime <- 2 if (digits > 0) { digitsGeneral <- digits digitsProbabilities <- NA_integer_ @@ -2807,12 +2817,14 @@ SummaryFactory <- R6::R6Class("SummaryFactory", digitsSampleSize <- digits digitsGeneral <- digits digitsProbabilities <- digits + digitsTime <- digits } return(list( digits = digits, digitsSampleSize = digitsSampleSize, digitsGeneral = digitsGeneral, - digitsProbabilities = digitsProbabilities + digitsProbabilities = digitsProbabilities, + digitsTime = digitsTime )) } @@ -2843,31 +2855,26 @@ SummaryFactory <- R6::R6Class("SummaryFactory", ) return(invisible(summaryFactory)) } - - informationRatesCaption <- ifelse(inherits(designPlan, "SimulationResults") || - inherits(designPlan, "AnalysisResults"), "Fixed weight", "Information") - - if (inherits(designPlan, "SimulationResults") || inherits(designPlan, "AnalysisResults")) { - if (.isTrialDesignFisher(design)) { - weights <- .getWeightsFisher(design) - } else if (.isTrialDesignInverseNormal(design)) { - weights <- .getWeightsInverseNormal(design) - } else { - weights <- design$informationRates - } - summaryFactory$addItem(informationRatesCaption, .getSummaryValuesInPercent(weights, FALSE)) + + informationRatesCaption <- "Planned information rate" + percentFormatEnabled <- TRUE + if (.isTrialDesignFisher(design)) { + weights <- .getWeightsFisher(design) + informationRatesCaption <- "Fixed weight" + percentFormatEnabled <- FALSE + } else if (.isTrialDesignInverseNormal(design)) { + weights <- .getWeightsInverseNormal(design) + informationRatesCaption <- "Fixed weight" + percentFormatEnabled <- FALSE } else { - summaryFactory$addItem( - paste0( - informationRatesCaption, - ifelse(inherits(designPlan, "SimulationResults"), "", " rate") - ), - .getSummaryValuesInPercent(design$informationRates) - ) + weights <- design$informationRates } + summaryFactory$addItem(informationRatesCaption, + .getSummaryValuesInPercent(weights, percentFormatEnabled = percentFormatEnabled)) if (design$.isDelayedResponseDesign()) { - summaryFactory$addItem("Delayed information", .getSummaryValuesInPercent(design$delayedInformation, TRUE)) + summaryFactory$addItem("Delayed information", + .getSummaryValuesInPercent(design$delayedInformation, percentFormatEnabled = TRUE)) } return(invisible(summaryFactory)) @@ -2912,7 +2919,7 @@ SummaryFactory <- R6::R6Class("SummaryFactory", if (!is.null(powerObject)) { summaryFactory$addParameter(powerObject, parameterName = "power", - parameterCaption = ifelse(design$kMax == 1, "Power", "Overall power"), + parameterCaption = ifelse(design$kMax == 1, "Power", "Cumulative power"), roundDigits = digitsProbabilities, smoothedZeroFormat = TRUE ) } @@ -3003,6 +3010,7 @@ SummaryFactory <- R6::R6Class("SummaryFactory", digitsSampleSize <- digitSettings$digitsSampleSize digitsGeneral <- digitSettings$digitsGeneral digitsProbabilities <- digitSettings$digitsProbabilities + digitsTime <- digitSettings$digitsTime outputSize <- getOption("rpact.summary.output.size", C_SUMMARY_OUTPUT_SIZE_DEFAULT) @@ -3266,7 +3274,7 @@ SummaryFactory <- R6::R6Class("SummaryFactory", if (any(!is.na(designPlan[[parameterName]]))) { summaryFactory$addParameter(designPlan, parameterName = parameterName, - parameterCaption = ifelse(design$kMax == 1, "Power", "Overall power"), + parameterCaption = ifelse(design$kMax == 1, "Power", "Cumulative power"), roundDigits = digitsProbabilities, cumsumEnabled = TRUE, smoothedZeroFormat = TRUE ) } @@ -3299,7 +3307,7 @@ SummaryFactory <- R6::R6Class("SummaryFactory", summaryFactory$addParameter(designPlan, parameterName = "calendarTime", parameterCaption = "Calendar time", - roundDigits = digitsGeneral + roundDigits = digitsTime ) } @@ -3308,7 +3316,7 @@ SummaryFactory <- R6::R6Class("SummaryFactory", summaryFactory$addParameter(designPlan, parameterName = "expectedStudyDurationH1", parameterCaption = "Expected study duration under H1", - roundDigits = digitsGeneral, + roundDigits = digitsTime, transpose = TRUE ) } @@ -3318,7 +3326,7 @@ SummaryFactory <- R6::R6Class("SummaryFactory", summaryFactory$addParameter(designPlan, parameterName = "studyTime", parameterCaption = "Study time", - roundDigits = digitsGeneral + roundDigits = digitsTime ) } @@ -3435,14 +3443,17 @@ SummaryFactory <- R6::R6Class("SummaryFactory", if (outputSize == "large") { summaryFactory$addParameter(designPlan, parameterName = "analysisTime", - parameterCaption = "Analysis time", roundDigits = digitsGeneral + parameterCaption = "Analysis time", + roundDigits = digitsTime ) } summaryFactory$addParameter(designPlan, parameterName = "studyDuration", parameterCaption = "Expected study duration", - roundDigits = digitsSampleSize, smoothedZeroFormat = TRUE, transpose = TRUE + roundDigits = digitsTime, + smoothedZeroFormat = TRUE, + transpose = TRUE ) } } diff --git a/R/class_time.R b/R/class_time.R index 8226ba10..d4f11c52 100644 --- a/R/class_time.R +++ b/R/class_time.R @@ -13,8 +13,8 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7742 $ -## | Last changed: $Date: 2024-03-22 13:46:29 +0100 (Fr, 22 Mrz 2024) $ +## | File version: $Revision: 7823 $ +## | Last changed: $Date: 2024-04-16 08:27:22 +0200 (Di, 16 Apr 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -847,7 +847,8 @@ PiecewiseSurvivalTime <- R6::R6Class("PiecewiseSurvivalTime", hazardRatioCalculationEnabled <- TRUE if (all(is.na(self$pi1))) { - if (length(self$hazardRatio) > 0 && !all(is.na(self$hazardRatio))) { + if ((all(is.na(self$median1)) || all(is.na(self$median2))) && + length(self$hazardRatio) > 0 && !all(is.na(self$hazardRatio))) { self$.setParameterType("hazardRatio", C_PARAM_USER_DEFINED) hazardRatioCalculationEnabled <- FALSE } @@ -931,7 +932,7 @@ PiecewiseSurvivalTime <- R6::R6Class("PiecewiseSurvivalTime", ) } - if (!any(is.na(self$lambda1)) && !is.na(self$lambda2)) { + if (!any(is.na(self$lambda1)) && !any(is.na(self$lambda2))) { .logDebug(".init: calculate hazardRatio by lambda1 and lambda2") self$hazardRatio <- (self$lambda1 / self$lambda2)^self$kappa self$.setParameterType("hazardRatio", C_PARAM_GENERATED) @@ -1163,10 +1164,12 @@ PiecewiseSurvivalTime <- R6::R6Class("PiecewiseSurvivalTime", }, .initHazardRatio = function() { .logDebug(".initHazardRatio") - + if (!is.null(self$hazardRatio) && length(self$hazardRatio) > 0 && !all(is.na(self$hazardRatio))) { if ((length(self$lambda1) == 1 && is.na(self$lambda1)) || - self$.getParameterType("lambda1") == C_PARAM_GENERATED) { + (self$.getParameterType("lambda1") == C_PARAM_GENERATED && + (self$.getParameterType("median1") != C_PARAM_USER_DEFINED || + self$.getParameterType("median2") != C_PARAM_USER_DEFINED))) { self$.setParameterType("hazardRatio", C_PARAM_USER_DEFINED) return(invisible()) } diff --git a/R/f_analysis_base_survival.R b/R/f_analysis_base_survival.R index 9b7d0e67..053c533f 100644 --- a/R/f_analysis_base_survival.R +++ b/R/f_analysis_base_survival.R @@ -13,8 +13,8 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7742 $ -## | Last changed: $Date: 2024-03-22 13:46:29 +0100 (Fr, 22 Mrz 2024) $ +## | File version: $Revision: 7879 $ +## | Last changed: $Date: 2024-05-13 10:19:43 +0200 (Mo, 13 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -1121,12 +1121,11 @@ NULL directionUpperSign <- ifelse(directionUpper, 1, -1) if (stageGroupSeq == 1) { - finalConfidenceInterval <- exp(stderr * finalConfidenceIntervalGeneral) - medianUnbiased <- exp(stderr * medianUnbiasedGeneral) + finalConfidenceInterval <- exp(stderr * finalConfidenceIntervalGeneral + log(thetaH0)) + medianUnbiased <- exp(stderr * medianUnbiasedGeneral + log(thetaH0)) } else { finalConfidenceInterval[1] <- exp(finalConfidenceIntervalGeneral[1] * - (1 + y$overallAllocationRatios[finalStage]) / - sqrt(y$overallAllocationRatios[finalStage]) + + (1 + y$overallAllocationRatios[finalStage]) / sqrt(y$overallAllocationRatios[finalStage]) + directionUpperSign * log(thetaH0)) finalConfidenceInterval[2] <- exp(finalConfidenceIntervalGeneral[2] * (1 + y$overallAllocationRatios[finalStage]) / @@ -1247,8 +1246,8 @@ NULL directionUpperSign <- ifelse(directionUpper, 1, -1) if (stageInvNormal == 1) { - finalConfidenceInterval <- exp(stderr * finalConfidenceIntervalGeneral) - medianUnbiased <- exp(stderr * medianUnbiasedGeneral) + finalConfidenceInterval <- exp(stderr * finalConfidenceIntervalGeneral + log(thetaH0)) + medianUnbiased <- exp(stderr * medianUnbiasedGeneral + log(thetaH0)) } else { finalConfidenceInterval[1] <- exp(finalConfidenceIntervalGeneral[1] * (1 + y$overallAllocationRatios[finalStage]) / sqrt(y$overallAllocationRatios[finalStage]) + diff --git a/R/f_as251.R b/R/f_as251.R index 73aa4ad4..6785fb81 100644 --- a/R/f_as251.R +++ b/R/f_as251.R @@ -13,8 +13,8 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7742 $ -## | Last changed: $Date: 2024-03-22 13:46:29 +0100 (Fr, 22 Mrz 2024) $ +## | File version: $Revision: 7947 $ +## | Last changed: $Date: 2024-05-28 14:25:47 +0200 (Di, 28 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -36,7 +36,7 @@ #' #' @description #' Calculates the Multivariate Normal Distribution with Product Correlation Structure published -#' by Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3 \doi{10.2307/2347754}. +#' by Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3, \doi{10.2307/2347754}. #' #' @details #' This is a wrapper function for the original Fortran 77 code. @@ -82,7 +82,7 @@ mvnprd <- function(..., A, B, BPD, EPS = 1e-06, INF, IERC = 1, HINC = 0) { #' #' @description #' Calculates the Multivariate Normal Distribution with Product Correlation Structure published -#' by Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3 \doi{10.2307/2347754}. +#' by Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3, \doi{10.2307/2347754}. #' #' @details #' For a multivariate normal vector with correlation structure @@ -142,7 +142,7 @@ as251Normal <- function(lower, upper, sigma, ..., #' #' @description #' Calculates the Multivariate Normal Distribution with Product Correlation Structure published -#' by Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3 \doi{10.2307/2347754}. +#' by Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3, \doi{10.2307/2347754}. #' #' @details #' This is a wrapper function for the original Fortran 77 code. @@ -201,7 +201,7 @@ mvstud <- function(..., NDF, A, B, BPD, D, EPS = 1e-06, INF, IERC = 1, HINC = 0) #' #' @description #' Calculates the Multivariate Normal Distribution with Product Correlation Structure published -#' by Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3 \doi{10.2307/2347754}. +#' by Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3, \doi{10.2307/2347754}. #' #' @details #' For a multivariate normal vector with correlation structure diff --git a/R/f_core_constants.R b/R/f_core_constants.R index a4f8ba02..2ae17e61 100644 --- a/R/f_core_constants.R +++ b/R/f_core_constants.R @@ -13,8 +13,8 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7742 $ -## | Last changed: $Date: 2024-03-22 13:46:29 +0100 (Fr, 22 Mrz 2024) $ +## | File version: $Revision: 7946 $ +## | Last changed: $Date: 2024-05-28 12:08:57 +0200 (Di, 28 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -165,7 +165,7 @@ C_ALLOCATION_1_DEFAULT <- 1 C_ALLOCATION_2_DEFAULT <- 1 C_MAX_ITERATIONS_DEFAULT <- 10L C_MAX_SIMULATION_ITERATIONS_DEFAULT <- 1000L -C_ACCRUAL_TIME_DEFAULT <- c(0, 12) +C_ACCRUAL_TIME_DEFAULT <- c(0L, 12L) C_ACCRUAL_INTENSITY_DEFAULT <- 0.1 C_FOLLOW_UP_TIME_DEFAULT <- 6 @@ -1023,6 +1023,40 @@ C_PARAMETER_NAMES_PLOT_SETTINGS <- createDictionary("C_PARAMETER_NAMES_PLOT_SETT "scalingFactor" = "Scaling factor" )) +.getParameterNameTrialDesign <- function(parameterName, obj) { + if (inherits(obj, "TrialDesignSet") && length(obj$designs) > 0) { + obj <- obj$designs[[1]] + } + + if (!inherits(obj, "TrialDesign")) { + return(parameterName) + } + + if (identical(parameterName, "futilityBounds")) { + if (.isDelayedInformationEnabled(design = obj)) { + if (!is.na(obj$bindingFutility) && !obj$bindingFutility) { + return("futilityBoundsDelayedInformationNonBinding") + } + return("futilityBoundsDelayedInformation") + } else if (!is.na(obj$bindingFutility) && !obj$bindingFutility) { + return("futilityBoundsNonBinding") + } + } + if (identical(parameterName, "criticalValues") && .isDelayedInformationEnabled(design = obj)) { + return("criticalValuesDelayedInformation") + } + if (identical(parameterName, "criticalValuesEffectScale") && .isDelayedInformationEnabled(design = obj)) { + return("criticalValuesEffectScaleDelayedInformation") + } + if (identical(parameterName, "futilityBoundsEffectScale") && .isDelayedInformationEnabled(design = obj)) { + return("futilityBoundsEffectScaleDelayedInformation") + } + if (identical(parameterName, "futilityBoundsPValueScale") && .isDelayedInformationEnabled(design = obj)) { + return("futilityBoundsPValueScaleDelayedInformation") + } + return(parameterName) +} + .getParameterCaption <- function(parameterName, obj = NULL, ..., tableOutputEnabled = FALSE) { if (is.null(obj)) { if (tableOutputEnabled) { @@ -1031,35 +1065,16 @@ C_PARAMETER_NAMES_PLOT_SETTINGS <- createDictionary("C_PARAMETER_NAMES_PLOT_SETT return(C_PARAMETER_NAMES[[parameterName]]) } + + parameterName <- .getParameterNameTrialDesign(parameterName, obj) if (inherits(obj, "PlotSettings")) { return(C_PARAMETER_NAMES_PLOT_SETTINGS[[parameterName]]) } - if (inherits(obj, "TrialDesign")) { - if (identical(parameterName, "futilityBounds")) { - if (.isDelayedInformationEnabled(design = obj)) { - if (!is.na(obj$bindingFutility) && !obj$bindingFutility) { - return("futilityBoundsDelayedInformationNonBinding") - } - return("futilityBoundsDelayedInformation") - } else if (!is.na(obj$bindingFutility) && !obj$bindingFutility) { - return("futilityBoundsNonBinding") - } - } - if (identical(parameterName, "criticalValues") && .isDelayedInformationEnabled(design = obj)) { - return("criticalValuesDelayedInformation") - } - if (identical(parameterName, "criticalValuesEffectScale") && .isDelayedInformationEnabled(design = obj)) { - return("criticalValuesEffectScaleDelayedInformation") - } - if (identical(parameterName, "futilityBoundsEffectScale") && .isDelayedInformationEnabled(design = obj)) { - return("futilityBoundsEffectScaleDelayedInformation") - } - if (identical(parameterName, "futilityBoundsPValueScale") && .isDelayedInformationEnabled(design = obj)) { - return("futilityBoundsPValueScaleDelayedInformation") - } - } + parameterName <- .getParameterNameTrialDesign(parameterName, obj) + + pluralExt <- ifelse(tableOutputEnabled, "", "s") if (identical(parameterName, "futilityBounds") && inherits(obj, "TrialDesignSet") && length(obj$designs) > 1) { @@ -1068,7 +1083,7 @@ C_PARAMETER_NAMES_PLOT_SETTINGS <- createDictionary("C_PARAMETER_NAMES_PLOT_SETT bindingFutilityValues <- unique(c(bindingFutilityValues, design$bindingFutility)) } if (length(bindingFutilityValues) > 1) { - return("Futility bound") + return(paste0("Futility bound", pluralExt)) } } @@ -1105,7 +1120,6 @@ C_PARAMETER_NAMES_PLOT_SETTINGS <- createDictionary("C_PARAMETER_NAMES_PLOT_SETT } if (inherits(obj, "AnalysisResults")) { - pluralExt <- ifelse(tableOutputEnabled, "", "s") if (identical(parameterName, "repeatedConfidenceIntervalLowerBounds")) { if (.isTrialDesignConditionalDunnett(obj$.design)) { return(paste0("Overall confidence interval", pluralExt, " (lower)")) diff --git a/R/f_core_utilities.R b/R/f_core_utilities.R index bd9b4cb6..9c633145 100644 --- a/R/f_core_utilities.R +++ b/R/f_core_utilities.R @@ -13,8 +13,8 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7750 $ -## | Last changed: $Date: 2024-03-26 15:44:44 +0100 (Di, 26 Mrz 2024) $ +## | File version: $Revision: 7940 $ +## | Last changed: $Date: 2024-05-27 15:47:41 +0200 (Mo, 27 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -166,17 +166,20 @@ NULL if (length(arg) > 1) { return(FALSE) } + + return(is.na(arg)) }, - error = function(e) { + warning = function(w) { paramName <- deparse(substitute(arg)) .logWarn( "Failed to execute '.isUndefinedArgument(%s)' ('%s' is an instance of class '%s'): %s", - paramName, paramName, .getClassName(arg), e + paramName, paramName, .getClassName(arg), w$message ) + return(FALSE) } ) - - return(is.na(arg)) + + return(FALSE) } .isDefinedArgument <- function(arg, argumentExistsValidationEnabled = TRUE) { @@ -212,8 +215,10 @@ NULL if (length(arg) > 1) { return(TRUE) } + + return(!is.na(arg)) }, - error = function(e) { + warning = function(e) { paramName <- deparse(substitute(arg)) .logWarn( "Failed to execute '.isDefinedArgument(%s)' ('%s' is an instance of class '%s'): %s", @@ -222,7 +227,7 @@ NULL } ) - return(!is.na(arg)) + return(FALSE) } .getConcatenatedValues <- function(x, separator = ", ", mode = c("csv", "vector", "and", "or")) { diff --git a/R/f_design_plan_survival.R b/R/f_design_plan_survival.R index 4542d985..21dee798 100644 --- a/R/f_design_plan_survival.R +++ b/R/f_design_plan_survival.R @@ -13,8 +13,8 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7742 $ -## | Last changed: $Date: 2024-03-22 13:46:29 +0100 (Fr, 22 Mrz 2024) $ +## | File version: $Revision: 7902 $ +## | Last changed: $Date: 2024-05-21 08:44:08 +0200 (Di, 21 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -2067,6 +2067,13 @@ getSampleSizeSurvival <- function(design = NULL, ..., accrualSetup$followUpTimeMustBeUserDefined) { if (is.na(followUpTime)) { if (accrualSetup$piecewiseAccrualEnabled && !accrualSetup$endOfAccrualIsUserDefined) { + if (length(accrualIntensity) + 1 < length(accrualTime)) { + stop( + C_EXCEPTION_TYPE_CONFLICTING_ARGUMENTS, + "length of 'accrualTime' (", length(accrualTime), ") must be greater ", + "than length of 'accrualIntensity' (", length(accrualIntensity), ") + 1" + ) + } stop( C_EXCEPTION_TYPE_MISSING_ARGUMENT, "'followUpTime', 'maxNumberOfSubjects' or end of accrual must be defined" diff --git a/R/f_quality_assurance.R b/R/f_quality_assurance.R index ce8df6b5..3baf6198 100644 --- a/R/f_quality_assurance.R +++ b/R/f_quality_assurance.R @@ -13,8 +13,8 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7742 $ -## | Last changed: $Date: 2024-03-22 13:46:29 +0100 (Fr, 22 Mrz 2024) $ +## | File version: $Revision: 7920 $ +## | Last changed: $Date: 2024-05-23 13:56:24 +0200 (Do, 23 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -29,6 +29,19 @@ NULL } } +.skipTestIfCppCompilerIsMissing <- function() { + if (.Platform$OS.type != "windows") { + return(invisible()) + } + + if (.isPackageInstalled("pkgbuild") && + isTRUE(eval(parse(text = "pkgbuild::has_build_tools(debug = FALSE)")))) { + return(invisible()) + } + + testthat::skip("The test requires a C++ compiler") +} + .skipTestIfNotX64 <- function() { if (!.isMachine64Bit() && !.isMinimumRVersion4() && base::requireNamespace("testthat", quietly = TRUE)) { testthat::skip("The test is only intended for R version 4.x or 64-bit computers (x86-64)") diff --git a/R/f_simulation_base_count_data.R b/R/f_simulation_base_count_data.R index 0e7a165a..ec8faf01 100644 --- a/R/f_simulation_base_count_data.R +++ b/R/f_simulation_base_count_data.R @@ -13,9 +13,9 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7747 $ -## | Last changed: $Date: 2024-03-25 17:58:00 +0100 (Mo, 25 Mrz 2024) $ -## | Last changed by: $Author: wassmer $ +## | File version: $Revision: 7920 $ +## | Last changed: $Date: 2024-05-23 13:56:24 +0200 (Do, 23 Mai 2024) $ +## | Last changed by: $Author: pahlke $ ## | .getInformationCountData <- function(lambda1, @@ -126,15 +126,6 @@ #' \code{$show(showStatistics = FALSE)} or \code{$setShowStatistics(FALSE)} can be used to disable #' the output of the aggregated simulated data.\cr #' -#' Example 1: \cr -#' \code{simulationResults <- getSimulationRates(plannedSubjects = 40)} \cr -#' \code{simulationResults$show(showStatistics = FALSE)}\cr -#' -#' Example 2: \cr -#' \code{simulationResults <- getSimulationRates(plannedSubjects = 40)} \cr -#' \code{simulationResults$setShowStatistics(FALSE)}\cr -#' \code{simulationResults}\cr -#' #' \code{\link[=getData]{getData()}} can be used to get the aggregated simulated data from the #' object as \code{\link[base]{data.frame}}. The data frame contains the following columns: #' \enumerate{ @@ -166,14 +157,12 @@ #' @template return_object_simulation_results #' @template how_to_get_help_for_generics #' -#' @template examples_get_simulation_count_data -#' -#' @export +#' @keywords internal #' getSimulationCounts <- function(design = NULL, ..., plannedCalendarTime, - maxNumberOfSubjects = NA_real_, + plannedMaxSubjects = NA_real_, lambda1 = NA_real_, lambda2 = NA_real_, lambda = NA_real_, @@ -225,7 +214,7 @@ getSimulationCounts <- function(design = NULL, sided <- design$sided sampleSizeEnabled <- FALSE - allocationRatioPlanned <- .assertIsValidAllocationRatioPlannedSampleSize(allocationRatioPlanned, maxNumberOfSubjects) + allocationRatioPlanned <- .assertIsValidAllocationRatioPlannedSampleSize(allocationRatioPlanned, plannedMaxSubjects) .assertIsValidEffectCountData( sampleSizeEnabled, sided, lambda1, lambda2, lambda, theta, thetaH0, overdispersion @@ -242,7 +231,7 @@ getSimulationCounts <- function(design = NULL, followUpTime = followUpTime, accrualTime = accrualTime, accrualIntensity = accrualIntensity, - maxNumberOfSubjects = maxNumberOfSubjects + maxNumberOfSubjects = plannedMaxSubjects ) .assertAreValidCalendarTimes(plannedCalendarTime, kMax) if (any(is.na(accrualTime))) { @@ -266,7 +255,7 @@ getSimulationCounts <- function(design = NULL, } .setValueAndParameterType(simulationResults, "plannedCalendarTime", plannedCalendarTime, NA_real_) - .setValueAndParameterType(simulationResults, "maxNumberOfSubjects", maxNumberOfSubjects, NA_real_, notApplicableIfNA = TRUE) + .setValueAndParameterType(simulationResults, "plannedMaxSubjects", plannedMaxSubjects, NA_real_, notApplicableIfNA = TRUE) .setValueAndParameterType(simulationResults, "lambda1", lambda1, NA_real_, notApplicableIfNA = TRUE) .setValueAndParameterType(simulationResults, "lambda2", lambda2, NA_real_, notApplicableIfNA = TRUE) .setValueAndParameterType(simulationResults, "lambda", lambda, NA_real_, notApplicableIfNA = TRUE) @@ -350,7 +339,7 @@ getSimulationCounts <- function(design = NULL, n2 <- length(recruit2) nTotal <- n1 + n2 } else { - n2 <- maxNumberOfSubjects / (1 + allocationRatioPlanned) + n2 <- plannedMaxSubjects / (1 + allocationRatioPlanned) n1 <- allocationRatioPlanned * n2 nTotal <- n1 + n2 recruit1 <- seq(0, accrualTime, length.out = n1) diff --git a/R/f_simulation_calc_subjects_function.R b/R/f_simulation_calc_subjects_function.R index c5a496d3..c0b07077 100644 --- a/R/f_simulation_calc_subjects_function.R +++ b/R/f_simulation_calc_subjects_function.R @@ -13,8 +13,8 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7019 $ -## | Last changed: $Date: 2023-05-31 07:23:47 +0200 (Mi, 31 Mai 2023) $ +## | File version: $Revision: 7920 $ +## | Last changed: $Date: 2024-05-23 13:56:24 +0200 (Do, 23 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -397,6 +397,12 @@ C_SIMULATION_CALC_SUBJECTS_FUNCTION_ARGUMENTS[[C_SIMULATION_CALC_SUBJECTS_FUNCTI if (.isCppCode(calcFunction)) { tryCatch( { + if (.isPackageInstalled("pkgbuild") && + !isTRUE(eval(parse(text = "pkgbuild::has_build_tools(debug = FALSE)")))) { + stop("no C++ compiler found", ifelse(.Platform$OS.type == "windows", + " (install RTools to solve the issue)", "")) + } + survivalEnabled <- inherits(simulationResults, "SimulationResultsSurvival") expectedFunctionName <- ifelse(survivalEnabled, "calcEventsFunctionCppTemp", "calcSubjectsFunctionCppTemp" diff --git a/R/f_simulation_enrichment.R b/R/f_simulation_enrichment.R index 8598f91f..d6331c3b 100644 --- a/R/f_simulation_enrichment.R +++ b/R/f_simulation_enrichment.R @@ -13,8 +13,8 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7742 $ -## | Last changed: $Date: 2024-03-22 13:46:29 +0100 (Fr, 22 Mrz 2024) $ +## | File version: $Revision: 7910 $ +## | Last changed: $Date: 2024-05-22 10:02:23 +0200 (Mi, 22 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -69,9 +69,13 @@ NULL return(selectedVector) } - -.selectPopulations <- function(stage, effectVector, typeOfSelection, - epsilonValue, rValue, threshold, selectPopulationsFunction) { +.selectPopulations <- function(typeOfSelection, + epsilonValue, + rValue, + threshold, + selectPopulationsFunction, + selectPopulationsFunctionArgs) { + effectVector <- selectPopulationsFunctionArgs$effectVector gMax <- length(effectVector) if (typeOfSelection != "userDefined") { @@ -92,26 +96,20 @@ NULL selectedPopulations[effectVector <= threshold] <- FALSE } else { functionArgumentNames <- .getFunctionArgumentNames(selectPopulationsFunction, ignoreThreeDots = TRUE) - if (length(functionArgumentNames) == 1) { - .assertIsValidFunction( - fun = selectPopulationsFunction, - funArgName = "selectPopulationsFunction", - expectedArguments = c("effectVector"), validateThreeDots = FALSE - ) - selectedPopulations <- selectPopulationsFunction(effectVector) - } else { - .assertIsValidFunction( - fun = selectPopulationsFunction, - funArgName = "selectPopulationsFunction", - expectedArguments = c("effectVector", "stage"), validateThreeDots = FALSE - ) - selectedPopulations <- selectPopulationsFunction(effectVector = effectVector, stage = stage) - } + .assertIsValidFunction( + fun = selectPopulationsFunction, + funArgName = "selectPopulationsFunction", + expectedArguments = names(selectPopulationsFunctionArgs), + validateThreeDots = FALSE + ) + selectedPopulations <- do.call(what = selectPopulationsFunction, + args = selectPopulationsFunctionArgs[functionArgumentNames]) selectedPopulations[is.na(effectVector)] <- FALSE msg <- paste0( C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, - "'selectPopulationsFunction' returned an illegal or undefined result (", .arrayToString(selectedPopulations), "); " + "'selectPopulationsFunction' returned an illegal or undefined result (", + .arrayToString(selectedPopulations), "); " ) if (length(selectedPopulations) != gMax) { stop(msg, "the output must be a logical vector of length 'gMax' (", gMax, ")") @@ -727,7 +725,5 @@ NULL .setValueAndParameterType(simulationResults, "successCriterion", successCriterion, C_SUCCESS_CRITERION_DEFAULT) .setValueAndParameterType(simulationResults, "effectMeasure", effectMeasure, C_EFFECT_MEASURE_DEFAULT) - warning("Simulation of enrichment designs is experimental and hence not fully validated (see www.rpact.com/experimental)", call. = FALSE) - return(simulationResults) } diff --git a/R/f_simulation_enrichment_means.R b/R/f_simulation_enrichment_means.R index 8f3d2b4f..19cd0542 100644 --- a/R/f_simulation_enrichment_means.R +++ b/R/f_simulation_enrichment_means.R @@ -13,8 +13,8 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7383 $ -## | Last changed: $Date: 2023-11-02 15:18:21 +0100 (Do, 02 Nov 2023) $ +## | File version: $Revision: 7910 $ +## | Last changed: $Date: 2024-05-22 10:02:23 +0200 (Mi, 22 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -273,18 +273,35 @@ NULL } if (adaptations[k]) { + selectPopulationsFunctionArgs <- list( + effectVector = NULL, + stage = k, + conditionalPower = conditionalPower, + conditionalCriticalValue = conditionalCriticalValue, + plannedSubjects = plannedSubjects, + allocationRatioPlanned = allocationRatioPlanned, + selectedPopulations = selectedPopulations, + thetaH1 = thetaH1, + stDevH1 = stDevH1, + overallEffects = overallEffects + ) if (effectMeasure == "testStatistic") { - selectedPopulations[, k + 1] <- (selectedPopulations[, k] & .selectPopulations( - k, overallTestStatistics[, k], - typeOfSelection, epsilonValue, rValue, threshold, selectPopulationsFunction - )) + selectPopulationsFunctionArgs$effectVector <- overallTestStatistics[, k] } else if (effectMeasure == "effectEstimate") { - selectedPopulations[, k + 1] <- (selectedPopulations[, k] & .selectPopulations( - k, overallEffects[, k], - typeOfSelection, epsilonValue, rValue, threshold, selectPopulationsFunction - )) + selectPopulationsFunctionArgs$effectVector <- overallEffects[, k] } + args <- list( + typeOfSelection = typeOfSelection, + epsilonValue = epsilonValue, + rValue = rValue, + threshold = threshold, + selectPopulationsFunction = selectPopulationsFunction, + selectPopulationsFunctionArgs = selectPopulationsFunctionArgs + ) + + selectedPopulations[, k + 1] <- (selectedPopulations[, k] & do.call(.selectPopulations, args)) + newSubjects <- calcSubjectsFunction( stage = k + 1, # to be consistent with non-enrichment situation, cf. line 36 conditionalPower = conditionalPower, diff --git a/R/f_simulation_enrichment_rates.R b/R/f_simulation_enrichment_rates.R index 967dd97a..3c51f113 100644 --- a/R/f_simulation_enrichment_rates.R +++ b/R/f_simulation_enrichment_rates.R @@ -13,8 +13,8 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7742 $ -## | Last changed: $Date: 2024-03-22 13:46:29 +0100 (Fr, 22 Mrz 2024) $ +## | File version: $Revision: 7910 $ +## | Last changed: $Date: 2024-05-22 10:02:23 +0200 (Mi, 22 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -169,7 +169,6 @@ NULL round(subjectsPerStage[selsubs, k] / (1 + const)), piControls[selsubs] ) - if (gMax == 1) { rm <- (simEventsControl[1, k] + simEventsTreatment[1, k]) / subjectsPerStage[1, k] if (rm <= 0 || rm >= 1) { @@ -195,6 +194,7 @@ NULL sqrt(rm * (1 - rm)) * sqrt(sum(subjectsPerStage[1, 1:k]) * const / (1 + const)^2) } } else if (gMax == 2) { + # Population S1 rm <- (simEventsControl[1, k] + simEventsTreatment[1, k]) / subjectsPerStage[1, k] if (!is.na(rm)) { @@ -223,6 +223,7 @@ NULL sqrt(rm * (1 - rm)) * sqrt(sum(subjectsPerStage[1, 1:k]) * const / (1 + const)^2) } } + # Full population if (stratifiedAnalysis) { rm <- (simEventsControl[1:2, k] + simEventsTreatment[1:2, k]) / subjectsPerStage[1:2, k] @@ -271,6 +272,7 @@ NULL } } } else if (gMax == 3) { + # Population S1 if (stratifiedAnalysis) { rm <- (simEventsControl[c(1, 3), k] + simEventsTreatment[c(1, 3), k]) / subjectsPerStage[c(1, 3), k] @@ -318,6 +320,7 @@ NULL sqrt(rm * (1 - rm)) * sqrt(sum(subjectsPerStage[c(1, 3), 1:k], na.rm = TRUE) * const / (1 + const)^2) } } + # Population S2 if (stratifiedAnalysis) { rm <- (simEventsControl[c(2, 3), k] + simEventsTreatment[c(2, 3), k]) / subjectsPerStage[c(2, 3), k] @@ -365,6 +368,7 @@ NULL sqrt(rm * (1 - rm)) * sqrt(sum(subjectsPerStage[c(2, 3), 1:k], na.rm = TRUE) * const / (1 + const)^2) } } + # Full population if (stratifiedAnalysis) { rm <- (simEventsControl[1:4, k] + simEventsTreatment[1:4, k]) / subjectsPerStage[1:4, k] @@ -413,6 +417,7 @@ NULL } } } else if (gMax == 4) { + # Population S1 if (stratifiedAnalysis) { rm <- (simEventsControl[c(1, 4, 5, 7), k] + simEventsTreatment[c(1, 4, 5, 7), k]) / subjectsPerStage[c(1, 4, 5, 7), k] @@ -460,6 +465,7 @@ NULL sqrt(rm * (1 - rm)) * sqrt(sum(subjectsPerStage[c(1, 4, 5, 7), 1:k], na.rm = TRUE) * const / (1 + const)^2) } } + # Population S2 if (stratifiedAnalysis) { rm <- (simEventsControl[c(2, 4, 6, 7), k] + simEventsTreatment[c(2, 4, 6, 7), k]) / subjectsPerStage[c(2, 4, 6, 7), k] @@ -507,6 +513,7 @@ NULL sqrt(rm * (1 - rm)) * sqrt(sum(subjectsPerStage[c(2, 4, 6, 7), 1:k], na.rm = TRUE) * const / (1 + const)^2) } } + # Population S3 if (stratifiedAnalysis) { rm <- (simEventsControl[c(3, 5, 6, 7), k] + simEventsTreatment[c(3, 5, 6, 7), k]) / subjectsPerStage[c(3, 5, 6, 7), k] @@ -554,6 +561,7 @@ NULL sqrt(rm * (1 - rm)) * sqrt(sum(subjectsPerStage[c(3, 5, 6, 7), 1:k], na.rm = TRUE) * const / (1 + const)^2) } } + # Full population if (stratifiedAnalysis) { rm <- (simEventsControl[1:8, k] + simEventsTreatment[1:8, k]) / subjectsPerStage[1:8, k] @@ -633,20 +641,37 @@ NULL } if (adaptations[k]) { + selectPopulationsFunctionArgs <- list( + effectVector = NULL, + stage = k, + directionUpper = directionUpper, + conditionalPower = conditionalPower, + conditionalCriticalValue = conditionalCriticalValue, + plannedSubjects = plannedSubjects, + allocationRatioPlanned = allocationRatioPlanned, + selectedPopulations = selectedPopulations, + piTreatmentH1 = piTreatmentH1, + piControlH1 = piControlH1, + overallRatesTreatment = overallRatesTreatment, + overallRatesControl = overallRatesControl + ) if (effectMeasure == "testStatistic") { - selectedPopulations[, k + 1] <- (selectedPopulations[, k] & - .selectPopulations( - k, overallTestStatistics[, k] + runif(gMax, -1e-05, 1e-05), - typeOfSelection, epsilonValue, rValue, threshold, selectPopulationsFunction - )) + selectPopulationsFunctionArgs$effectVector <- overallTestStatistics[, k] + runif(gMax, -1e-05, 1e-05) } else if (effectMeasure == "effectEstimate") { - selectedPopulations[, k + 1] <- (selectedPopulations[, k] & - .selectPopulations( - k, overallEffectSizes[, k] + runif(gMax, -1e-05, 1e-05), - typeOfSelection, epsilonValue, rValue, threshold, selectPopulationsFunction - )) + selectPopulationsFunctionArgs$effectVector <- overallEffectSizes[, k] + runif(gMax, -1e-05, 1e-05) } + args <- list( + typeOfSelection = typeOfSelection, + epsilonValue = epsilonValue, + rValue = rValue, + threshold = threshold, + selectPopulationsFunction = selectPopulationsFunction, + selectPopulationsFunctionArgs = selectPopulationsFunctionArgs + ) + + selectedPopulations[, k + 1] <- (selectedPopulations[, k] & do.call(.selectPopulations, args)) + newSubjects <- calcSubjectsFunction( stage = k + 1, # to be consistent with non-enrichment situation, cf. line 40 directionUpper = directionUpper, diff --git a/R/f_simulation_enrichment_survival.R b/R/f_simulation_enrichment_survival.R index 657cba7d..e14fb401 100644 --- a/R/f_simulation_enrichment_survival.R +++ b/R/f_simulation_enrichment_survival.R @@ -13,8 +13,8 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7742 $ -## | Last changed: $Date: 2024-03-22 13:46:29 +0100 (Fr, 22 Mrz 2024) $ +## | File version: $Revision: 7910 $ +## | Last changed: $Date: 2024-05-22 10:02:23 +0200 (Mi, 22 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -278,25 +278,42 @@ NULL } if (adaptations[k]) { + selectPopulationsFunctionArgs <- list( + effectVector = NULL, + stage = k, + directionUpper = directionUpper, + conditionalPower = conditionalPower, + conditionalCriticalValue = conditionalCriticalValue, + plannedEvents = plannedEvents, + allocationRatioPlanned = allocationRatioPlanned, + selectedPopulations = selectedPopulations, + thetaH1 = thetaH1, + overallEffects = overallEffects + ) + + args <- list( + typeOfSelection = typeOfSelection, + epsilonValue = epsilonValue, + rValue = rValue, + threshold = threshold, + selectPopulationsFunction = selectPopulationsFunction + ) + if (effectMeasure == "testStatistic") { - selectedPopulations[, k + 1] <- (selectedPopulations[, k] & .selectPopulations( - k, overallTestStatistics[, k], - typeOfSelection, epsilonValue, rValue, threshold, selectPopulationsFunction - )) + selectPopulationsFunctionArgs$effectVector <- overallTestStatistics[, k] } else if (effectMeasure == "effectEstimate") { if (directionUpper) { - selectedPopulations[, k + 1] <- (selectedPopulations[, k] & .selectPopulations( - k, overallEffects[, k], - typeOfSelection, epsilonValue, rValue, threshold, selectPopulationsFunction - )) + selectPopulationsFunctionArgs$effectVector <- overallEffects[, k] } else { - selectedPopulations[, k + 1] <- (selectedPopulations[, k] & .selectPopulations( - k, 1 / overallEffects[, k], - typeOfSelection, epsilonValue, rValue, 1 / threshold, selectPopulationsFunction - )) + selectPopulationsFunctionArgs$effectVector <- 1 / overallEffects[, k] + args$threshold <- 1 / threshold } } + args$selectPopulationsFunctionArgs <- selectPopulationsFunctionArgs + + selectedPopulations[, k + 1] <- (selectedPopulations[, k] & do.call(.selectPopulations, args)) + newEvents <- calcEventsFunction( stage = k + 1, # to be consistent with non-enrichment situation, cf. line 38 directionUpper = directionUpper, diff --git a/R/f_simulation_multiarm.R b/R/f_simulation_multiarm.R index 6a47e898..43d78beb 100644 --- a/R/f_simulation_multiarm.R +++ b/R/f_simulation_multiarm.R @@ -13,8 +13,8 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7742 $ -## | Last changed: $Date: 2024-03-22 13:46:29 +0100 (Fr, 22 Mrz 2024) $ +## | File version: $Revision: 7910 $ +## | Last changed: $Date: 2024-05-22 10:02:23 +0200 (Mi, 22 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -29,8 +29,14 @@ NULL return(indices) } -.selectTreatmentArms <- function(stage, effectVector, typeOfSelection, - epsilonValue, rValue, threshold, selectArmsFunction, survival = FALSE) { +.selectTreatmentArms <- function(typeOfSelection, + epsilonValue, + rValue, + threshold, + selectArmsFunction, + selectArmsFunctionArgs, + survival = FALSE) { + effectVector <- selectArmsFunctionArgs$effectVector gMax <- length(effectVector) if (typeOfSelection != "userDefined") { @@ -51,21 +57,13 @@ NULL selectedArms[effectVector <= threshold] <- FALSE } else { functionArgumentNames <- .getFunctionArgumentNames(selectArmsFunction, ignoreThreeDots = TRUE) - if (length(functionArgumentNames) == 1) { - .assertIsValidFunction( - fun = selectArmsFunction, - funArgName = "selectArmsFunction", - expectedArguments = c("effectVector"), validateThreeDots = FALSE - ) - selectedArms <- selectArmsFunction(effectVector) - } else { - .assertIsValidFunction( - fun = selectArmsFunction, - funArgName = "selectArmsFunction", - expectedArguments = c("effectVector", "stage"), validateThreeDots = FALSE - ) - selectedArms <- selectArmsFunction(effectVector = effectVector, stage = stage) - } + .assertIsValidFunction( + fun = selectArmsFunction, + funArgName = "selectArmsFunction", + expectedArguments = names(selectArmsFunctionArgs), + validateThreeDots = FALSE + ) + selectedArms <- do.call(what = selectArmsFunction, args = selectArmsFunctionArgs[functionArgumentNames]) msg <- paste0( C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, diff --git a/R/f_simulation_multiarm_means.R b/R/f_simulation_multiarm_means.R index 7a687365..5576ab16 100644 --- a/R/f_simulation_multiarm_means.R +++ b/R/f_simulation_multiarm_means.R @@ -13,8 +13,8 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7383 $ -## | Last changed: $Date: 2023-11-02 15:18:21 +0100 (Do, 02 Nov 2023) $ +## | File version: $Revision: 7910 $ +## | Last changed: $Date: 2024-05-22 10:02:23 +0200 (Mi, 22 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -157,18 +157,37 @@ NULL } if (adaptations[k]) { + selectArmsFunctionArgs <- list( + effectVector = NULL, + stage = k, + conditionalPower = conditionalPower, + conditionalCriticalValue = conditionalCriticalValue, + plannedSubjects = plannedSubjects, + allocationRatioPlanned = allocationRatioPlanned, + selectedArms = selectedArms, + thetaH1 = thetaH1, + stDevH1 = stDevH1, + overallEffects = overallEffects + ) + if (effectMeasure == "testStatistic") { - selectedArms[, k + 1] <- (selectedArms[, k] & .selectTreatmentArms( - k, overallTestStatistics[, k], - typeOfSelection, epsilonValue, rValue, threshold, selectArmsFunction - )) + selectArmsFunctionArgs$effectVector <- overallTestStatistics[, k] } else if (effectMeasure == "effectEstimate") { - selectedArms[, k + 1] <- (selectedArms[, k] & .selectTreatmentArms( - k, overallEffects[, k], - typeOfSelection, epsilonValue, rValue, threshold, selectArmsFunction - )) + selectArmsFunctionArgs$effectVector <- overallEffects[, k] } + args <- list( + typeOfSelection = typeOfSelection, + epsilonValue = epsilonValue, + rValue = rValue, + threshold = threshold, + selectArmsFunction = selectArmsFunction, + selectArmsFunctionArgs = selectArmsFunctionArgs, + survival = FALSE + ) + + selectedArms[, k + 1] <- (selectedArms[, k] & do.call(.selectTreatmentArms, args)) + newSubjects <- calcSubjectsFunction( stage = k + 1, # to be consistent with non-multiarm situation, cf. line 37 conditionalPower = conditionalPower, @@ -416,7 +435,7 @@ getSimulationMultiArmMeans <- function(design = NULL, ..., simulatedNumberOfActiveArms <- matrix(0, nrow = kMax, ncol = cols) simulatedSubjectsPerStage <- array(0, dim = c(kMax, cols, gMax + 1)) simulatedSuccessStopping <- matrix(0, nrow = kMax, ncol = cols) - simulatedFutilityStopping <- matrix(0, cols * (kMax - 1), nrow = kMax - 1, ncol = cols) + simulatedFutilityStopping <- matrix(0, nrow = kMax - 1, ncol = cols) simulatedConditionalPower <- matrix(0, nrow = kMax, ncol = cols) simulatedRejectAtLeastOne <- rep(0, cols) expectedNumberOfSubjects <- rep(0, cols) @@ -434,7 +453,6 @@ getSimulationMultiArmMeans <- function(design = NULL, ..., dataNumberOfSubjects <- rep(NA_real_, len) dataNumberOfCumulatedSubjects <- rep(NA_real_, len) dataRejectPerStage <- rep(NA, len) - dataFutilityStop <- rep(NA_real_, len) dataSuccessStop <- rep(NA, len) dataFutilityStop <- rep(NA, len) dataTestStatistics <- rep(NA_real_, len) diff --git a/R/f_simulation_multiarm_rates.R b/R/f_simulation_multiarm_rates.R index f231aa8b..f36fe909 100644 --- a/R/f_simulation_multiarm_rates.R +++ b/R/f_simulation_multiarm_rates.R @@ -13,8 +13,8 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7383 $ -## | Last changed: $Date: 2023-11-02 15:18:21 +0100 (Do, 02 Nov 2023) $ +## | File version: $Revision: 7910 $ +## | Last changed: $Date: 2024-05-22 10:02:23 +0200 (Mi, 22 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -190,18 +190,39 @@ NULL } if (adaptations[k]) { + selectArmsFunctionArgs <- list( + effectVector = NULL, + stage = k, + directionUpper = directionUpper, + conditionalPower = conditionalPower, + conditionalCriticalValue = conditionalCriticalValue, + plannedSubjects = plannedSubjects, + allocationRatioPlanned = allocationRatioPlanned, + selectedArms = selectedArms, + piTreatmentsH1 = piTreatmentsH1, + piControlH1 = piControlH1, + overallRates = overallRates, + overallRatesControl = overallRatesControl + ) + if (effectMeasure == "testStatistic") { - selectedArms[, k + 1] <- (selectedArms[, k] & .selectTreatmentArms( - k, overallTestStatistics[, k] + runif(gMax, -1e-05, 1e-05), - typeOfSelection, epsilonValue, rValue, threshold, selectArmsFunction - )) + selectArmsFunctionArgs$effectVector <- overallTestStatistics[, k] + runif(gMax, -1e-05, 1e-05) } else if (effectMeasure == "effectEstimate") { - selectedArms[, k + 1] <- (selectedArms[, k] & .selectTreatmentArms( - k, overallEffectSizes[, k] + runif(gMax, -1e-05, 1e-05), - typeOfSelection, epsilonValue, rValue, threshold, selectArmsFunction - )) + selectArmsFunctionArgs$effectVector <- overallEffectSizes[, k] + runif(gMax, -1e-05, 1e-05) } + args <- list( + typeOfSelection = typeOfSelection, + epsilonValue = epsilonValue, + rValue = rValue, + threshold = threshold, + selectArmsFunction = selectArmsFunction, + selectArmsFunctionArgs = selectArmsFunctionArgs, + survival = FALSE + ) + + selectedArms[, k + 1] <- (selectedArms[, k] & do.call(.selectTreatmentArms, args)) + newSubjects <- calcSubjectsFunction( stage = k + 1, # to be consistent with non-multiarm situation, cf. line 39 directionUpper = directionUpper, diff --git a/R/f_simulation_multiarm_survival.R b/R/f_simulation_multiarm_survival.R index 08a32ef2..f4aebea6 100644 --- a/R/f_simulation_multiarm_survival.R +++ b/R/f_simulation_multiarm_survival.R @@ -13,8 +13,8 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7742 $ -## | Last changed: $Date: 2024-03-22 13:46:29 +0100 (Fr, 22 Mrz 2024) $ +## | File version: $Revision: 7910 $ +## | Last changed: $Date: 2024-05-22 10:02:23 +0200 (Mi, 22 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -211,25 +211,44 @@ NULL } if (adaptations[k]) { + selectArmsFunctionArgs <- list( + effectVector = NULL, + stage = k, + directionUpper = directionUpper, + conditionalPower = conditionalPower, + conditionalCriticalValue = conditionalCriticalValue, + plannedEvents = plannedEvents, + allocationRatioPlanned = allocationRatioPlanned, + selectedArms = selectedArms, + thetaH1 = thetaH1, + overallEffects = overallEffects + ) + + args <- list( + typeOfSelection = typeOfSelection, + epsilonValue = epsilonValue, + rValue = rValue, + threshold = threshold, + selectArmsFunction = selectArmsFunction, + selectArmsFunctionArgs = NULL, + survival = TRUE + ) + if (effectMeasure == "testStatistic") { - selectedArms[, k + 1] <- (selectedArms[, k] & .selectTreatmentArms(k, overallTestStatistics[, k], - typeOfSelection, epsilonValue, rValue, threshold, selectArmsFunction, - survival = TRUE - )) + selectArmsFunctionArgs$effectVector <- overallTestStatistics[, k] } else if (effectMeasure == "effectEstimate") { if (directionUpper) { - selectedArms[, k + 1] <- (selectedArms[, k] & .selectTreatmentArms(k, overallEffects[, k], - typeOfSelection, epsilonValue, rValue, threshold, selectArmsFunction, - survival = TRUE - )) + selectArmsFunctionArgs$effectVector <- overallEffects[, k] } else { - selectedArms[, k + 1] <- (selectedArms[, k] & .selectTreatmentArms(k, 1 / overallEffects[, k], - typeOfSelection, epsilonValue, rValue, 1 / threshold, selectArmsFunction, - survival = TRUE - )) + selectArmsFunctionArgs$effectVector <- 1 / overallEffects[, k] + args$threshold <- 1 / threshold } } + args$selectArmsFunctionArgs <- selectArmsFunctionArgs + + selectedArms[, k + 1] <- (selectedArms[, k] & do.call(.selectTreatmentArms, args)) + newEvents <- calcEventsFunction( stage = k + 1, # to be consistent with non-multiarm situation, cf. line 38 directionUpper = directionUpper, diff --git a/R/f_simulation_performance_score.R b/R/f_simulation_performance_score.R index 0c5072d6..aac2aedb 100644 --- a/R/f_simulation_performance_score.R +++ b/R/f_simulation_performance_score.R @@ -13,8 +13,8 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7742 $ -## | Last changed: $Date: 2024-03-22 13:46:29 +0100 (Fr, 22 Mrz 2024) $ +## | File version: $Revision: 7947 $ +## | Last changed: $Date: 2024-05-28 14:25:47 +0200 (Di, 28 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -24,8 +24,8 @@ #' #' @description #' Calculates the conditional performance score, its sub-scores and components according to -#' [Herrmann et al. (2020)](https://doi.org/10.1002/sim.8534) and -#' [Bokelmann et al. (2024)](https://doi.org/10.1186/s12874-024-02150-4) for a given +#' (Herrmann et al. (2020), \doi{10.1002/sim.8534}) and +#' (Bokelmann et al. (2024), \doi{10.1186/s12874-024-02150-4}) for a given #' simulation result from a two-stage design with continuous or binary endpoint. #' Larger (sub-)score and component values refer to a better performance. #' @@ -178,10 +178,12 @@ getPerformanceScore <- function(simulationResult) { performanceScore$.setParameterType(paramName, C_PARAM_GENERATED) } - warning("The performance score function is experimental and hence not fully validated ", - "(see www.rpact.com/experimental)", - call. = FALSE - ) + if (inherits(simulationResult, "SimulationResultsRates")) { + warning("The performance score function is experimental and hence not fully validated ", + "(see www.rpact.com/experimental)", + call. = FALSE + ) + } return(performanceScore) } diff --git a/R/parameter_descriptions.R b/R/parameter_descriptions.R index 564fb012..61672665 100644 --- a/R/parameter_descriptions.R +++ b/R/parameter_descriptions.R @@ -13,9 +13,9 @@ ## | ## | Contact us for information about our services: info@rpact.com ## | -## | File version: $Revision: 7747 $ -## | Last changed: $Date: 2024-03-25 17:58:00 +0100 (Mo, 25 Mrz 2024) $ -## | Last changed by: $Author: wassmer $ +## | File version: $Revision: 7941 $ +## | Last changed: $Date: 2024-05-28 08:44:36 +0200 (Di, 28 Mai 2024) $ +## | Last changed by: $Author: pahlke $ ## | #' Parameter Description: "..." @@ -56,14 +56,17 @@ NULL NULL #' Parameter Description: Sided -#' @param sided Is the alternative one-sided (\code{1}) or two-sided (\code{2}), default is \code{1}. Must be a positive integer of length 1. +#' @param sided Is the alternative one-sided (\code{1}) or two-sided (\code{2}), default is \code{1}. +#' Must be a positive integer of length 1. #' @name param_sided #' @keywords internal NULL #' Parameter Description: Information Rates -#' @param informationRates The information rates (that must be fixed prior to the trial), -#' default is \code{(1:kMax) / kMax}. +#' @param informationRates The information rates t_1, ..., t_kMax (that must be fixed prior to the trial), +#' default is \code{(1:kMax) / kMax}. For the weighted inverse normal design, the weights are derived +#' through w_1 = sqrt(t_1), and w_k = sqrt(t_k - t_(k-1)). For the weighted Fisher's combination test, the +#' weights (scales) are w_k = sqrt((t_k - t_(k-1)) / t_1) (see the documentation). #' @name param_informationRates #' @keywords internal NULL @@ -815,8 +818,11 @@ NULL #' Parameter Description: Select Arms Function #' @param selectArmsFunction Optionally, a function can be entered that defines the way of how treatment arms -#' are selected. This function is allowed to depend on \code{effectVector} with length \code{activeArms} -#' and \code{stage} (see examples). +#' are selected. This function is allowed to depend on \code{effectVector} with length \code{activeArms}, +#' \code{stage}, \code{"conditionalPower"}, \code{"conditionalCriticalValue"}, \code{"plannedSubjects/plannedEvents"}, +#' \code{"allocationRatioPlanned"}, \code{"selectedArms"}, \code{"thetaH1"} (for means and survival), \code{"stDevH1"} (for means), +#' \code{"overallEffects"}, and for rates additionally: \code{"piTreatmentsH1"}, \code{"piControlH1"}, \code{"overallRates"}, and +#' \code{"overallRatesControl"}. #' @name param_selectArmsFunction #' @keywords internal NULL @@ -824,7 +830,10 @@ NULL #' Parameter Description: Select Populations Function #' @param selectPopulationsFunction Optionally, a function can be entered that defines the way of how populations #' are selected. This function is allowed to depend on \code{effectVector} with length \code{populations} -#' and \code{stage} (see examples). +#' \code{stage}, \code{"conditionalPower"}, \code{"conditionalCriticalValue"}, \code{"plannedSubjects/plannedEvents"}, +#' \code{"allocationRatioPlanned"}, \code{"selectedPopulations"}, \code{"thetaH1"} (for means and survival), \code{"stDevH1"} (for means), +#' \code{"overallEffects"}, and for rates additionally: \code{"piTreatmentsH1"}, \code{"piControlH1"}, \code{"overallRates"}, and +#' \code{"overallRatesControl"}. #' @name param_selectPopulationsFunction #' @keywords internal NULL diff --git a/inst/doc/rpact_getting_started.html b/inst/doc/rpact_getting_started.html index 3d6053bc..f8760d03 100644 --- a/inst/doc/rpact_getting_started.html +++ b/inst/doc/rpact_getting_started.html @@ -12,7 +12,7 @@ - + Getting started with rpact @@ -239,7 +239,7 @@

Getting started with rpact

Friedrich Pahlke and Gernot Wassmer

-

2024-04-05

+

2024-05-28

diff --git a/man-roxygen/examples_get_simulation_count_data.R b/man-roxygen/examples_get_simulation_count_data.R deleted file mode 100644 index 9cdbc024..00000000 --- a/man-roxygen/examples_get_simulation_count_data.R +++ /dev/null @@ -1,220 +0,0 @@ -library(rpact) - -## Fixed sample size ### -alpha <- 0.025 -beta <- 0.15 -accrualTime <- 24/52 -lambda1 <- 0.55 -lambda2 <- 5.5 -overdispersion <- (7.3 + 14) / 2 -directionUpper <- (lambda1 > lambda2) - -design <- getDesignGroupSequential(typeOfDesign = "asHSD", gammaA = -4, futilityBounds = c(0, 0)) - -y <- getSampleSizeCounts(design = design, - accrualTime = accrualTime, - lambda1 = lambda1, - lambda2 = lambda2, - overdispersion = overdispersion, - fixedExposureTime = 24/52) -y$nFixed -y$calendarTime - -z <- getPowerCounts(alpha = alpha, - directionUpper = directionUpper, - maxNumberOfSubjects = 100, - lambda1 = lambda1, - lambda2 = lambda2, - overdispersion = overdispersion, - fixedExposureTime = 24/52) - -z$overallReject - -tictoc::tic() -s <- getSimulationCounts(design = design, - directionUpper = directionUpper, - plannedMaxSubjects = 100, - plannedCalendarTime = as.numeric(y$calendarTime), - lambda1 = lambda2, - lambda2 = lambda2, - overdispersion = overdispersion, - maxNumberOfIterations = 10000, - accrualTime = accrualTime, - fixedExposureTime = 24/52) -s$overallReject -tictoc::toc() - - -## Fixed sample size ### -alpha <- 0.025 -beta <- 0.1 -accrualTime <- 12 -lambda1 <- 0.6 -lambda2 <- 0.3 -overdispersion <- 2 -directionUpper <- (lambda1 > lambda2) - -# Case variable exposure -followUpTime <- 6 -y <- getSampleSizeCounts(alpha = alpha, beta = beta, - lambda1 = lambda1, lambda2 = lambda2, overdispersion = overdispersion, - accrualTime = accrualTime, followUpTime = followUpTime) - -y$calendarTime -y$nFixed - - -z <- getPowerCounts(alpha = alpha, - directionUpper = directionUpper, - maxNumberOfSubjects = y$nFixed, - lambda1 = c(lambda2, lambda1), - lambda2 = lambda2, - overdispersion = overdispersion, - accrualTime = accrualTime, - followUpTime = followUpTime) - -z$overallReject - -tictoc::tic() -s <- getSimulationCounts(alpha = alpha, - directionUpper = directionUpper, - plannedMaxSubjects = y$nFixed, - plannedCalendarTime = as.numeric(y$calendarTime), - lambda1 = c(lambda2, lambda1), - lambda2 = lambda2, - overdispersion = overdispersion, - maxNumberOfIterations = 500, - accrualTime = accrualTime, - followUpTime = followUpTime) -s$overallReject -tictoc::toc() - - -# Case fixed exposure -fixedExposureTime <- 1 -y <- getSampleSizeCounts(alpha = alpha, beta = beta, - lambda1 = lambda1, lambda2 = lambda2, overdispersion = overdispersion, - accrualTime = accrualTime, fixedExposureTime = fixedExposureTime) -y$calendarTime -y$nFixed - -z <- getPowerCounts(alpha = alpha, - directionUpper = directionUpper, - maxNumberOfSubjects = y$nFixed, - lambda1 = c(lambda2, lambda1), - lambda2 = lambda2, - overdispersion = overdispersion, - fixedExposureTime = fixedExposureTime, - accrualTime = accrualTime -) -z$overallReject - -tictoc::tic() -s <- getSimulationCounts(alpha = alpha, - directionUpper = directionUpper, - plannedMaxSubjects = y$nFixed, - plannedCalendarTime = y$calendarTime, - lambda1 = c(lambda2, lambda1), - lambda2 = lambda2, - overdispersion = overdispersion, - maxNumberOfIterations = 500, - fixedExposureTime = fixedExposureTime, - accrualTime = accrualTime) -s$overallReject -tictoc::toc() - - -################################################################# -################################################################# - -## Group sequential design -alpha <- 0.025 -beta <- 0.2 -accrualTime <- 12 -lambda1 <- 0.3 -lambda2 <- 0.7 -overdispersion <- 2 -directionUpper <- (lambda1 > lambda2) -informationRates <- c(0.3, 0.55, 1) - -design <- getDesignGroupSequential(informationRates = informationRates, alpha = alpha, beta = beta, - typeOfDesign = "asOF", typeBetaSpending = "bsOF", bindingFutility = TRUE) - -# Case variable exposure -y <- getSampleSizeCounts(design, - lambda1 = lambda1, lambda2 = lambda2, overdispersion = overdispersion, - accrualTime = accrualTime, followUpTime = followUpTime -) - -y$calendarTime -y$maxNumberOfSubjects - -z <- getPowerCounts(design = design, - directionUpper = directionUpper, - maxNumberOfSubjects = y$maxNumberOfSubjects, - lambda1 = c(lambda2, lambda1), - lambda2 = lambda2, - overdispersion = overdispersion, - accrualTime = accrualTime, - followUpTime = followUpTime) - -z$rejectPerStage -z$futilityPerStage -z$overallReject - -tictoc::tic() -s <- getSimulationCounts(design = design, - directionUpper = directionUpper, - plannedMaxSubjects = 400, - plannedCalendarTime = y$calendarTime, - lambda1 = c(lambda2), - lambda2 = lambda2, - overdispersion = overdispersion, - maxNumberOfIterations = 10000, - accrualTime = accrualTime, - followUpTime = followUpTime) - -s$rejectPerStage -s$futilityPerStage -s$overallReject -tictoc::toc() - -sqrt((1- 0.025)*0.025) / 100 - -# Case fixed exposure -fixedExposureTime <- 1 -y <- getSampleSizeCounts(design, - lambda1 = lambda1, lambda2 = lambda2, overdispersion = overdispersion, - accrualTime = accrualTime, fixedExposureTime = fixedExposureTime -) -y$calendarTime -y$maxNumberOfSubjects - -z <- getPowerCounts(design = design, - directionUpper = directionUpper, - maxNumberOfSubjects = y$maxNumberOfSubjects, - lambda1 = c(lambda2, lambda1), - lambda2 = lambda2, - overdispersion = overdispersion, - fixedExposureTime = fixedExposureTime) - -z$rejectPerStage -z$futilityPerStage -z$overallReject - -tictoc::tic() -s <- getSimulationCounts(design = design, - directionUpper = directionUpper, - plannedMaxSubjects = y$maxNumberOfSubjects, - plannedCalendarTime = y$calendarTime, - lambda1 = c(lambda2, lambda1), - lambda2 = lambda2, - overdispersion = overdispersion, - accrualTime = accrualTime, - fixedExposureTime = fixedExposureTime, - maxNumberOfIterations = 500 -) -s$rejectPerStage -s$futilityPerStage -s$overallReject -tictoc::toc() diff --git a/man/as251Normal.Rd b/man/as251Normal.Rd index 9486e74d..df3afd9e 100644 --- a/man/as251Normal.Rd +++ b/man/as251Normal.Rd @@ -33,7 +33,7 @@ fourth derivative is used. If set to zero, error control based on halving interv } \description{ Calculates the Multivariate Normal Distribution with Product Correlation Structure published -by Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3 \doi{10.2307/2347754}. +by Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3, \doi{10.2307/2347754}. } \details{ For a multivariate normal vector with correlation structure diff --git a/man/as251StudentT.Rd b/man/as251StudentT.Rd index 4c405fa5..8df5b554 100644 --- a/man/as251StudentT.Rd +++ b/man/as251StudentT.Rd @@ -36,7 +36,7 @@ fourth derivative is used. If set to zero, error control based on halving interv } \description{ Calculates the Multivariate Normal Distribution with Product Correlation Structure published -by Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3 \doi{10.2307/2347754}. +by Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3, \doi{10.2307/2347754}. } \details{ For a multivariate normal vector with correlation structure diff --git a/man/getDesignFisher.Rd b/man/getDesignFisher.Rd index 1b02f42f..696dff3e 100644 --- a/man/getDesignFisher.Rd +++ b/man/getDesignFisher.Rd @@ -39,10 +39,13 @@ alpha-spending (Type I error rate) up to each interim stage: \code{0 <= alpha_1 \item{alpha0Vec}{Stopping for futility bounds for stage-wise p-values.} -\item{informationRates}{The information rates (that must be fixed prior to the trial), -default is \code{(1:kMax) / kMax}.} +\item{informationRates}{The information rates t_1, ..., t_kMax (that must be fixed prior to the trial), +default is \code{(1:kMax) / kMax}. For the weighted inverse normal design, the weights are derived +through w_1 = sqrt(t_1), and w_k = sqrt(t_k - t_(k-1)). For the weighted Fisher's combination test, the +weights (scales) are w_k = sqrt((t_k - t_(k-1)) / t_1) (see the documentation).} -\item{sided}{Is the alternative one-sided (\code{1}) or two-sided (\code{2}), default is \code{1}. Must be a positive integer of length 1.} +\item{sided}{Is the alternative one-sided (\code{1}) or two-sided (\code{2}), default is \code{1}. +Must be a positive integer of length 1.} \item{bindingFutility}{If \code{bindingFutility = TRUE} is specified the calculation of the critical values is affected by the futility bounds (default is \code{TRUE}).} diff --git a/man/getDesignGroupSequential.Rd b/man/getDesignGroupSequential.Rd index dbadd18d..63d66255 100644 --- a/man/getDesignGroupSequential.Rd +++ b/man/getDesignGroupSequential.Rd @@ -46,10 +46,13 @@ The maximum selectable \code{kMax} is \code{20} for group sequential or inverse (e.g., \code{\link[=getSampleSizeMeans]{getSampleSizeMeans()}}), beta spending function designs, or optimum designs, default is \code{0.20}. Must be a positive numeric of length 1.} -\item{sided}{Is the alternative one-sided (\code{1}) or two-sided (\code{2}), default is \code{1}. Must be a positive integer of length 1.} +\item{sided}{Is the alternative one-sided (\code{1}) or two-sided (\code{2}), default is \code{1}. +Must be a positive integer of length 1.} -\item{informationRates}{The information rates (that must be fixed prior to the trial), -default is \code{(1:kMax) / kMax}.} +\item{informationRates}{The information rates t_1, ..., t_kMax (that must be fixed prior to the trial), +default is \code{(1:kMax) / kMax}. For the weighted inverse normal design, the weights are derived +through w_1 = sqrt(t_1), and w_k = sqrt(t_k - t_(k-1)). For the weighted Fisher's combination test, the +weights (scales) are w_k = sqrt((t_k - t_(k-1)) / t_1) (see the documentation).} \item{futilityBounds}{The futility bounds, defined on the test statistic z scale (numeric vector of length \code{kMax - 1}).} diff --git a/man/getDesignInverseNormal.Rd b/man/getDesignInverseNormal.Rd index 0634cd43..0753586f 100644 --- a/man/getDesignInverseNormal.Rd +++ b/man/getDesignInverseNormal.Rd @@ -45,10 +45,13 @@ The maximum selectable \code{kMax} is \code{20} for group sequential or inverse (e.g., \code{\link[=getSampleSizeMeans]{getSampleSizeMeans()}}), beta spending function designs, or optimum designs, default is \code{0.20}. Must be a positive numeric of length 1.} -\item{sided}{Is the alternative one-sided (\code{1}) or two-sided (\code{2}), default is \code{1}. Must be a positive integer of length 1.} +\item{sided}{Is the alternative one-sided (\code{1}) or two-sided (\code{2}), default is \code{1}. +Must be a positive integer of length 1.} -\item{informationRates}{The information rates (that must be fixed prior to the trial), -default is \code{(1:kMax) / kMax}.} +\item{informationRates}{The information rates t_1, ..., t_kMax (that must be fixed prior to the trial), +default is \code{(1:kMax) / kMax}. For the weighted inverse normal design, the weights are derived +through w_1 = sqrt(t_1), and w_k = sqrt(t_k - t_(k-1)). For the weighted Fisher's combination test, the +weights (scales) are w_k = sqrt((t_k - t_(k-1)) / t_1) (see the documentation).} \item{futilityBounds}{The futility bounds, defined on the test statistic z scale (numeric vector of length \code{kMax - 1}).} diff --git a/man/getGroupSequentialProbabilities.Rd b/man/getGroupSequentialProbabilities.Rd index 1b67ee52..c26d10a9 100644 --- a/man/getGroupSequentialProbabilities.Rd +++ b/man/getGroupSequentialProbabilities.Rd @@ -9,8 +9,10 @@ getGroupSequentialProbabilities(decisionMatrix, informationRates) \arguments{ \item{decisionMatrix}{A matrix with either 2 or 4 rows and kMax = length(informationRates) columns, see details.} -\item{informationRates}{The information rates (that must be fixed prior to the trial), -default is \code{(1:kMax) / kMax}.} +\item{informationRates}{The information rates t_1, ..., t_kMax (that must be fixed prior to the trial), +default is \code{(1:kMax) / kMax}. For the weighted inverse normal design, the weights are derived +through w_1 = sqrt(t_1), and w_k = sqrt(t_k - t_(k-1)). For the weighted Fisher's combination test, the +weights (scales) are w_k = sqrt((t_k - t_(k-1)) / t_1) (see the documentation).} } \value{ Returns a numeric matrix containing the probabilities described in the details section. diff --git a/man/getPerformanceScore.Rd b/man/getPerformanceScore.Rd index 3ff783db..81e3ceb8 100644 --- a/man/getPerformanceScore.Rd +++ b/man/getPerformanceScore.Rd @@ -11,8 +11,8 @@ getPerformanceScore(simulationResult) } \description{ Calculates the conditional performance score, its sub-scores and components according to -\href{https://doi.org/10.1002/sim.8534}{Herrmann et al. (2020)} and -\href{https://doi.org/10.1186/s12874-024-02150-4}{Bokelmann et al. (2024)} for a given +(Herrmann et al. (2020), \doi{10.1002/sim.8534}) and +(Bokelmann et al. (2024), \doi{10.1186/s12874-024-02150-4}) for a given simulation result from a two-stage design with continuous or binary endpoint. Larger (sub-)score and component values refer to a better performance. } diff --git a/man/getSimulationCounts.Rd b/man/getSimulationCounts.Rd index e394c827..fedc6bb9 100644 --- a/man/getSimulationCounts.Rd +++ b/man/getSimulationCounts.Rd @@ -8,7 +8,7 @@ getSimulationCounts( design = NULL, ..., plannedCalendarTime, - maxNumberOfSubjects = NA_real_, + plannedMaxSubjects = NA_real_, lambda1 = NA_real_, lambda2 = NA_real_, lambda = NA_real_, @@ -38,9 +38,6 @@ that a warning will be displayed if unknown arguments are passed.} \item{plannedCalendarTime}{For simulating count data, the time points where an analysis is planned to be performed. Should be a vector of length \code{kMax}} -\item{maxNumberOfSubjects}{\code{maxNumberOfSubjects > 0} needs to be specified for power calculations or calculation -of necessary follow-up (count data). For two treatment arms, it is the maximum number of subjects for both treatment arms.} - \item{lambda1}{A numeric value or vector that represents the assumed rate of a homogeneous Poisson process in the active treatment group, there is no default.} @@ -132,15 +129,6 @@ The summary statistics "Simulated data" contains the following parameters: media \code{$show(showStatistics = FALSE)} or \code{$setShowStatistics(FALSE)} can be used to disable the output of the aggregated simulated data.\cr -Example 1: \cr -\code{simulationResults <- getSimulationRates(plannedSubjects = 40)} \cr -\code{simulationResults$show(showStatistics = FALSE)}\cr - -Example 2: \cr -\code{simulationResults <- getSimulationRates(plannedSubjects = 40)} \cr -\code{simulationResults$setShowStatistics(FALSE)}\cr -\code{simulationResults}\cr - \code{\link[=getData]{getData()}} can be used to get the aggregated simulated data from the object as \code{\link[base]{data.frame}}. The data frame contains the following columns: \enumerate{ @@ -181,3 +169,4 @@ There you can find, e.g., \code{plot.AnalysisResults} and obtain the specific help documentation linked above by typing \code{?plot.AnalysisResults}. } +\keyword{internal} diff --git a/man/getSimulationEnrichmentMeans.Rd b/man/getSimulationEnrichmentMeans.Rd index d510003b..29ad14a9 100644 --- a/man/getSimulationEnrichmentMeans.Rd +++ b/man/getSimulationEnrichmentMeans.Rd @@ -135,7 +135,10 @@ recalculation. By default, sample size recalculation is performed with condition \item{selectPopulationsFunction}{Optionally, a function can be entered that defines the way of how populations are selected. This function is allowed to depend on \code{effectVector} with length \code{populations} -and \code{stage} (see examples).} +\code{stage}, \code{"conditionalPower"}, \code{"conditionalCriticalValue"}, \code{"plannedSubjects/plannedEvents"}, +\code{"allocationRatioPlanned"}, \code{"selectedPopulations"}, \code{"thetaH1"} (for means and survival), \code{"stDevH1"} (for means), +\code{"overallEffects"}, and for rates additionally: \code{"piTreatmentsH1"}, \code{"piControlH1"}, \code{"overallRates"}, and +\code{"overallRatesControl"}.} \item{showStatistics}{Logical. If \code{TRUE}, summary statistics of the simulated data are displayed for the \code{print} command, otherwise the output is suppressed, default diff --git a/man/getSimulationEnrichmentRates.Rd b/man/getSimulationEnrichmentRates.Rd index eda5c78c..1b9badd6 100644 --- a/man/getSimulationEnrichmentRates.Rd +++ b/man/getSimulationEnrichmentRates.Rd @@ -141,7 +141,10 @@ recalculation. By default, sample size recalculation is performed with condition \item{selectPopulationsFunction}{Optionally, a function can be entered that defines the way of how populations are selected. This function is allowed to depend on \code{effectVector} with length \code{populations} -and \code{stage} (see examples).} +\code{stage}, \code{"conditionalPower"}, \code{"conditionalCriticalValue"}, \code{"plannedSubjects/plannedEvents"}, +\code{"allocationRatioPlanned"}, \code{"selectedPopulations"}, \code{"thetaH1"} (for means and survival), \code{"stDevH1"} (for means), +\code{"overallEffects"}, and for rates additionally: \code{"piTreatmentsH1"}, \code{"piControlH1"}, \code{"overallRates"}, and +\code{"overallRatesControl"}.} \item{showStatistics}{Logical. If \code{TRUE}, summary statistics of the simulated data are displayed for the \code{print} command, otherwise the output is suppressed, default diff --git a/man/getSimulationEnrichmentSurvival.Rd b/man/getSimulationEnrichmentSurvival.Rd index 39b526be..e83d46d5 100644 --- a/man/getSimulationEnrichmentSurvival.Rd +++ b/man/getSimulationEnrichmentSurvival.Rd @@ -130,7 +130,10 @@ recalculation. By default, event number recalculation is performed with conditio \item{selectPopulationsFunction}{Optionally, a function can be entered that defines the way of how populations are selected. This function is allowed to depend on \code{effectVector} with length \code{populations} -and \code{stage} (see examples).} +\code{stage}, \code{"conditionalPower"}, \code{"conditionalCriticalValue"}, \code{"plannedSubjects/plannedEvents"}, +\code{"allocationRatioPlanned"}, \code{"selectedPopulations"}, \code{"thetaH1"} (for means and survival), \code{"stDevH1"} (for means), +\code{"overallEffects"}, and for rates additionally: \code{"piTreatmentsH1"}, \code{"piControlH1"}, \code{"overallRates"}, and +\code{"overallRatesControl"}.} \item{showStatistics}{Logical. If \code{TRUE}, summary statistics of the simulated data are displayed for the \code{print} command, otherwise the output is suppressed, default diff --git a/man/getSimulationMultiArmMeans.Rd b/man/getSimulationMultiArmMeans.Rd index 2a686b6a..36495753 100644 --- a/man/getSimulationMultiArmMeans.Rd +++ b/man/getSimulationMultiArmMeans.Rd @@ -161,8 +161,11 @@ recalculation. By default, sample size recalculation is performed with condition \code{minNumberOfSubjectsPerStage} and \code{maxNumberOfSubjectsPerStage} (see details and examples).} \item{selectArmsFunction}{Optionally, a function can be entered that defines the way of how treatment arms -are selected. This function is allowed to depend on \code{effectVector} with length \code{activeArms} -and \code{stage} (see examples).} +are selected. This function is allowed to depend on \code{effectVector} with length \code{activeArms}, +\code{stage}, \code{"conditionalPower"}, \code{"conditionalCriticalValue"}, \code{"plannedSubjects/plannedEvents"}, +\code{"allocationRatioPlanned"}, \code{"selectedArms"}, \code{"thetaH1"} (for means and survival), \code{"stDevH1"} (for means), +\code{"overallEffects"}, and for rates additionally: \code{"piTreatmentsH1"}, \code{"piControlH1"}, \code{"overallRates"}, and +\code{"overallRatesControl"}.} \item{showStatistics}{Logical. If \code{TRUE}, summary statistics of the simulated data are displayed for the \code{print} command, otherwise the output is suppressed, default diff --git a/man/getSimulationMultiArmRates.Rd b/man/getSimulationMultiArmRates.Rd index cb5fd819..b85e6bac 100644 --- a/man/getSimulationMultiArmRates.Rd +++ b/man/getSimulationMultiArmRates.Rd @@ -164,8 +164,11 @@ recalculation. By default, sample size recalculation is performed with condition \code{minNumberOfSubjectsPerStage} and \code{maxNumberOfSubjectsPerStage} (see details and examples).} \item{selectArmsFunction}{Optionally, a function can be entered that defines the way of how treatment arms -are selected. This function is allowed to depend on \code{effectVector} with length \code{activeArms} -and \code{stage} (see examples).} +are selected. This function is allowed to depend on \code{effectVector} with length \code{activeArms}, +\code{stage}, \code{"conditionalPower"}, \code{"conditionalCriticalValue"}, \code{"plannedSubjects/plannedEvents"}, +\code{"allocationRatioPlanned"}, \code{"selectedArms"}, \code{"thetaH1"} (for means and survival), \code{"stDevH1"} (for means), +\code{"overallEffects"}, and for rates additionally: \code{"piTreatmentsH1"}, \code{"piControlH1"}, \code{"overallRates"}, and +\code{"overallRatesControl"}.} \item{showStatistics}{Logical. If \code{TRUE}, summary statistics of the simulated data are displayed for the \code{print} command, otherwise the output is suppressed, default diff --git a/man/getSimulationMultiArmSurvival.Rd b/man/getSimulationMultiArmSurvival.Rd index 8e85bab2..11992066 100644 --- a/man/getSimulationMultiArmSurvival.Rd +++ b/man/getSimulationMultiArmSurvival.Rd @@ -159,8 +159,11 @@ recalculation. By default, event number recalculation is performed with conditio \code{minNumberOfEventsPerStage} and \code{maxNumberOfEventsPerStage} (see details and examples).} \item{selectArmsFunction}{Optionally, a function can be entered that defines the way of how treatment arms -are selected. This function is allowed to depend on \code{effectVector} with length \code{activeArms} -and \code{stage} (see examples).} +are selected. This function is allowed to depend on \code{effectVector} with length \code{activeArms}, +\code{stage}, \code{"conditionalPower"}, \code{"conditionalCriticalValue"}, \code{"plannedSubjects/plannedEvents"}, +\code{"allocationRatioPlanned"}, \code{"selectedArms"}, \code{"thetaH1"} (for means and survival), \code{"stDevH1"} (for means), +\code{"overallEffects"}, and for rates additionally: \code{"piTreatmentsH1"}, \code{"piControlH1"}, \code{"overallRates"}, and +\code{"overallRatesControl"}.} \item{showStatistics}{Logical. If \code{TRUE}, summary statistics of the simulated data are displayed for the \code{print} command, otherwise the output is suppressed, default diff --git a/man/mvnprd.Rd b/man/mvnprd.Rd index 8604c820..29b2eb7a 100644 --- a/man/mvnprd.Rd +++ b/man/mvnprd.Rd @@ -31,7 +31,7 @@ fourth derivative is used. If set to zero, error control based on halving inter } \description{ Calculates the Multivariate Normal Distribution with Product Correlation Structure published -by Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3 \doi{10.2307/2347754}. +by Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3, \doi{10.2307/2347754}. } \details{ This is a wrapper function for the original Fortran 77 code. diff --git a/man/mvstud.Rd b/man/mvstud.Rd index e5a726e6..9aa31cab 100644 --- a/man/mvstud.Rd +++ b/man/mvstud.Rd @@ -35,7 +35,7 @@ fourth derivative is used. If set to zero, error control based on halving inter } \description{ Calculates the Multivariate Normal Distribution with Product Correlation Structure published -by Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3 \doi{10.2307/2347754}. +by Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3, \doi{10.2307/2347754}. } \details{ This is a wrapper function for the original Fortran 77 code. diff --git a/man/param_informationRates.Rd b/man/param_informationRates.Rd index 732f5ac0..a82a3b71 100644 --- a/man/param_informationRates.Rd +++ b/man/param_informationRates.Rd @@ -4,8 +4,10 @@ \alias{param_informationRates} \title{Parameter Description: Information Rates} \arguments{ -\item{informationRates}{The information rates (that must be fixed prior to the trial), -default is \code{(1:kMax) / kMax}.} +\item{informationRates}{The information rates t_1, ..., t_kMax (that must be fixed prior to the trial), +default is \code{(1:kMax) / kMax}. For the weighted inverse normal design, the weights are derived +through w_1 = sqrt(t_1), and w_k = sqrt(t_k - t_(k-1)). For the weighted Fisher's combination test, the +weights (scales) are w_k = sqrt((t_k - t_(k-1)) / t_1) (see the documentation).} } \description{ Parameter Description: Information Rates diff --git a/man/param_selectArmsFunction.Rd b/man/param_selectArmsFunction.Rd index 14f5c524..be231373 100644 --- a/man/param_selectArmsFunction.Rd +++ b/man/param_selectArmsFunction.Rd @@ -5,8 +5,11 @@ \title{Parameter Description: Select Arms Function} \arguments{ \item{selectArmsFunction}{Optionally, a function can be entered that defines the way of how treatment arms -are selected. This function is allowed to depend on \code{effectVector} with length \code{activeArms} -and \code{stage} (see examples).} +are selected. This function is allowed to depend on \code{effectVector} with length \code{activeArms}, +\code{stage}, \code{"conditionalPower"}, \code{"conditionalCriticalValue"}, \code{"plannedSubjects/plannedEvents"}, +\code{"allocationRatioPlanned"}, \code{"selectedArms"}, \code{"thetaH1"} (for means and survival), \code{"stDevH1"} (for means), +\code{"overallEffects"}, and for rates additionally: \code{"piTreatmentsH1"}, \code{"piControlH1"}, \code{"overallRates"}, and +\code{"overallRatesControl"}.} } \description{ Parameter Description: Select Arms Function diff --git a/man/param_selectPopulationsFunction.Rd b/man/param_selectPopulationsFunction.Rd index 3e1cac20..e1ddcd49 100644 --- a/man/param_selectPopulationsFunction.Rd +++ b/man/param_selectPopulationsFunction.Rd @@ -6,7 +6,10 @@ \arguments{ \item{selectPopulationsFunction}{Optionally, a function can be entered that defines the way of how populations are selected. This function is allowed to depend on \code{effectVector} with length \code{populations} -and \code{stage} (see examples).} +\code{stage}, \code{"conditionalPower"}, \code{"conditionalCriticalValue"}, \code{"plannedSubjects/plannedEvents"}, +\code{"allocationRatioPlanned"}, \code{"selectedPopulations"}, \code{"thetaH1"} (for means and survival), \code{"stDevH1"} (for means), +\code{"overallEffects"}, and for rates additionally: \code{"piTreatmentsH1"}, \code{"piControlH1"}, \code{"overallRates"}, and +\code{"overallRatesControl"}.} } \description{ Parameter Description: Select Populations Function diff --git a/man/param_sided.Rd b/man/param_sided.Rd index 3ddaaeb2..1913f5b6 100644 --- a/man/param_sided.Rd +++ b/man/param_sided.Rd @@ -4,7 +4,8 @@ \alias{param_sided} \title{Parameter Description: Sided} \arguments{ -\item{sided}{Is the alternative one-sided (\code{1}) or two-sided (\code{2}), default is \code{1}. Must be a positive integer of length 1.} +\item{sided}{Is the alternative one-sided (\code{1}) or two-sided (\code{2}), default is \code{1}. +Must be a positive integer of length 1.} } \description{ Parameter Description: Sided diff --git a/tests/testthat/test-class_design_plan.R b/tests/testthat/test-class_design_plan.R index 32326d82..b36d2248 100644 --- a/tests/testthat/test-class_design_plan.R +++ b/tests/testthat/test-class_design_plan.R @@ -14,9 +14,9 @@ ## | Contact us for information about our services: info@rpact.com ## | ## | File name: test-class_design_plan.R -## | Creation date: 26 February 2024, 10:31:43 -## | File version: $Revision: 7742 $ -## | Last changed: $Date: 2024-03-22 13:46:29 +0100 (Fr, 22 Mrz 2024) $ +## | Creation date: 27 May 2024, 11:11:19 +## | File version: $Revision: 7940 $ +## | Last changed: $Date: 2024-05-27 15:47:41 +0200 (Mo, 27 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -102,6 +102,7 @@ test_that("Sample size rates result object clone function", { expect_equal(x1$thetaH0, x2$thetaH0, tolerance = 1e-07) expect_equal(x1$normalApproximation, x2$normalApproximation) expect_equal(x1$pi1, x2$pi1, tolerance = 1e-07) + expect_equal(x1$pi2, x2$pi2, tolerance = 1e-07) expect_equal(x1$groups, x2$groups) expect_equal(x1$allocationRatioPlanned, x2$allocationRatioPlanned) expect_equal(x1$optimumAllocationRatio, x2$optimumAllocationRatio) @@ -130,6 +131,7 @@ test_that("Power rates result object clone function", { expect_equal(x1$thetaH0, x2$thetaH0, tolerance = 1e-07) expect_equal(x1$normalApproximation, x2$normalApproximation) expect_equal(x1$pi1, x2$pi1, tolerance = 1e-07) + expect_equal(x1$pi2, x2$pi2, tolerance = 1e-07) expect_equal(x1$groups, x2$groups) expect_equal(x1$allocationRatioPlanned, x2$allocationRatioPlanned) expect_equal(x1$optimumAllocationRatio, x2$optimumAllocationRatio) @@ -172,12 +174,18 @@ test_that("Sample size survival result object clone function", { expect_equal(x1$lambda1, x2$lambda1, tolerance = 1e-07) expect_equal(x1$lambda2, x2$lambda2, tolerance = 1e-07) expect_equal(x1$hazardRatio, x2$hazardRatio, tolerance = 1e-07) + expect_equal(x1$maxNumberOfSubjects, x2$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(x2$numberOfSubjects[1, ], x1$numberOfSubjects[1, ], tolerance = 1e-07) + expect_equal(x2$numberOfSubjects1[1, ], x1$numberOfSubjects1[1, ], tolerance = 1e-07) + expect_equal(x2$numberOfSubjects2[1, ], x1$numberOfSubjects2[1, ], tolerance = 1e-07) expect_equal(x1$maxNumberOfEvents, x2$maxNumberOfEvents, tolerance = 1e-07) expect_equal(x1$allocationRatioPlanned, x2$allocationRatioPlanned) expect_equal(x1$optimumAllocationRatio, x2$optimumAllocationRatio) + expect_equal(x1$accountForObservationTimes, x2$accountForObservationTimes) expect_equal(x1$eventTime, x2$eventTime) expect_equal(x1$accrualTime, x2$accrualTime) expect_equal(x1$totalAccrualTime, x2$totalAccrualTime) + expect_equal(x1$accrualIntensity, x2$accrualIntensity, tolerance = 1e-07) expect_equal(x1$accrualIntensityRelative, x2$accrualIntensityRelative, tolerance = 1e-07) expect_equal(x1$kappa, x2$kappa) expect_equal(x1$piecewiseSurvivalTime, x2$piecewiseSurvivalTime) @@ -185,7 +193,14 @@ test_that("Sample size survival result object clone function", { expect_equal(x1$dropoutRate1, x2$dropoutRate1) expect_equal(x1$dropoutRate2, x2$dropoutRate2) expect_equal(x1$dropoutTime, x2$dropoutTime) + expect_equal(x1$chi, x2$chi, tolerance = 1e-07) expect_equal(x1$eventsFixed, x2$eventsFixed, tolerance = 1e-07) + expect_equal(x1$nFixed, x2$nFixed, tolerance = 1e-07) + expect_equal(x1$nFixed1, x2$nFixed1, tolerance = 1e-07) + expect_equal(x1$nFixed2, x2$nFixed2, tolerance = 1e-07) + expect_equal(x2$analysisTime[1, ], x1$analysisTime[1, ]) + expect_equal(x1$studyDuration, x2$studyDuration) + expect_equal(x1$maxStudyDuration, x2$maxStudyDuration) expect_equal(x2$singleEventsPerStage[1, ], x1$singleEventsPerStage[1, ], tolerance = 1e-07) expect_equal(x2$cumulativeEventsPerStage[1, ], x1$cumulativeEventsPerStage[1, ], tolerance = 1e-07) expect_equal(x1$expectedEventsH1, x2$expectedEventsH1, tolerance = 1e-07) @@ -194,6 +209,8 @@ test_that("Sample size survival result object clone function", { }) test_that("Sample size survival result object utility functions", { + .skipTestIfDisabled() + sampleSizeResult <- getSampleSizeSurvival(alpha = 0.01) expect_true(R6::is.R6(sampleSizeResult$getPlotSettings())) expect_true(any(grepl("Technical developer summary", utils::capture.output(sampleSizeResult$show(showType = 2))))) @@ -248,6 +265,8 @@ test_that("Power survival result object clone function", { }) test_that("Power survival result object utility functions", { + .skipTestIfDisabled() + powerResult <- getPowerSurvival(maxNumberOfEvents = 40, maxNumberOfSubjects = 200) expect_true(R6::is.R6(powerResult$getPlotSettings())) expect_true(any(grepl("Technical developer summary", utils::capture.output(powerResult$show(showType = 2))))) @@ -292,6 +311,8 @@ test_that("Sample size counts result object clone function", { }) test_that("Sample size counts result object utility functions", { + .skipTestIfDisabled() + sampleSizeResult <- getSampleSizeCounts( alpha = 0.01, beta = 0.05, lambda = 0.234, theta = 0.7, overdispersion = 0.71, accrualTime = 7, fixedExposureTime = 1 @@ -302,6 +323,8 @@ test_that("Sample size counts result object utility functions", { }) test_that("Power counts result object clone function", { + .skipTestIfDisabled() + x1 <- getPowerCounts( maxNumberOfSubjects = 400, directionUpper = FALSE, overdispersion = 1, fixedExposureTime = 1, lambda1 = seq(1.05, 1.55, 0.1), lambda2 = 1.4 @@ -342,3 +365,75 @@ test_that("Power counts result object utility functions", { expect_true(any(grepl("Technical developer summary", utils::capture.output(powerResult$show(showType = 2))))) expect_true(any(grepl("Power calculation for a count data endpoint", utils::capture.output(powerResult$show(showType = 3))))) }) + +test_that("Design plan utility functions", { + .skipTestIfDisabled() + + trialDesignPlan <- TrialDesignPlan$new(design = NULL) + + expect_error(trialDesignPlan$.isSampleSizeObject()) + expect_error(trialDesignPlan$.isPowerObject()) + expect_equal(trialDesignPlan$getBeta(), NA_real_) + expect_equal(trialDesignPlan$getTwoSidedPower(), NA) + expect_equal(trialDesignPlan$.toString(), "unknown data class 'TrialDesignPlan'") + expect_error(trialDesignPlan$.setObjectType("xxx")) +}) + +test_that("Sample size means recreate function", { + trialDesignPlan <- getSampleSizeMeans() + trialDesignPlanCopy <- trialDesignPlan$recreate() + + ## Pairwise comparison of the results of trialDesignPlan with the results of trialDesignPlanCopy + expect_equal(trialDesignPlan$nFixed, trialDesignPlanCopy$nFixed, tolerance = 1e-07) + expect_equal(trialDesignPlan$nFixed1, trialDesignPlanCopy$nFixed1, tolerance = 1e-07) + expect_equal(trialDesignPlan$nFixed2, trialDesignPlanCopy$nFixed2, tolerance = 1e-07) + expect_equal(trialDesignPlanCopy$criticalValuesEffectScale[1, ], trialDesignPlan$criticalValuesEffectScale[1, ], tolerance = 1e-07) +}) + +test_that("Sample size rates recreate function", { + trialDesignPlan <- getSampleSizeRates() + trialDesignPlanCopy <- trialDesignPlan$recreate() + + ## Pairwise comparison of the results of trialDesignPlan with the results of trialDesignPlanCopy + expect_equal(trialDesignPlan$directionUpper, trialDesignPlanCopy$directionUpper) + expect_equal(trialDesignPlan$nFixed, trialDesignPlanCopy$nFixed, tolerance = 1e-07) + expect_equal(trialDesignPlan$nFixed1, trialDesignPlanCopy$nFixed1, tolerance = 1e-07) + expect_equal(trialDesignPlan$nFixed2, trialDesignPlanCopy$nFixed2, tolerance = 1e-07) + expect_equal(trialDesignPlanCopy$criticalValuesEffectScale[1, ], trialDesignPlan$criticalValuesEffectScale[1, ], tolerance = 1e-07) +}) + +test_that("Sample size survival recreate function", { + trialDesignPlan <- getSampleSizeSurvival() + trialDesignPlanCopy <- trialDesignPlan$recreate() + + expect_equal(trialDesignPlan$directionUpper, trialDesignPlanCopy$directionUpper) + expect_equal(trialDesignPlan$median1, trialDesignPlanCopy$median1, tolerance = 1e-07) + expect_equal(trialDesignPlan$median2, trialDesignPlanCopy$median2, tolerance = 1e-07) + expect_equal(trialDesignPlan$lambda1, trialDesignPlanCopy$lambda1, tolerance = 1e-07) + expect_equal(trialDesignPlan$lambda2, trialDesignPlanCopy$lambda2, tolerance = 1e-07) + expect_equal(trialDesignPlan$hazardRatio, trialDesignPlanCopy$hazardRatio, tolerance = 1e-07) + expect_equal(trialDesignPlan$maxNumberOfEvents, trialDesignPlanCopy$maxNumberOfEvents, tolerance = 1e-07) + expect_equal(trialDesignPlan$eventsFixed, trialDesignPlanCopy$eventsFixed, tolerance = 1e-07) + expect_equal(trialDesignPlanCopy$criticalValuesEffectScale[1, ], trialDesignPlan$criticalValuesEffectScale[1, ], tolerance = 1e-07) +}) + +test_that("Count data recreate function", { + trialDesignPlan <- getSampleSizeCounts( + alpha = 0.01, beta = 0.05, lambda = 0.234, theta = 0.7, + overdispersion = 0.71, accrualTime = 7, fixedExposureTime = 1 + ) + trialDesignPlanCopy <- trialDesignPlan$recreate() + + ## Pairwise comparison of the results of trialDesignPlan with the results of trialDesignPlanCopy + expect_equal(trialDesignPlan$directionUpper, trialDesignPlanCopy$directionUpper) + expect_equal(trialDesignPlan$lambda1, trialDesignPlanCopy$lambda1, tolerance = 1e-07) + expect_equal(trialDesignPlan$lambda2, trialDesignPlanCopy$lambda2, tolerance = 1e-07) + expect_equal(trialDesignPlan$nFixed, trialDesignPlanCopy$nFixed) + expect_equal(trialDesignPlan$nFixed1, trialDesignPlanCopy$nFixed1) + expect_equal(trialDesignPlan$nFixed2, trialDesignPlanCopy$nFixed2) + expect_equal(trialDesignPlan$maxNumberOfSubjects, trialDesignPlanCopy$maxNumberOfSubjects) + expect_equal(trialDesignPlanCopy$calendarTime[1, ], trialDesignPlan$calendarTime[1, ]) + expect_equal(trialDesignPlan$expectedStudyDurationH1, trialDesignPlanCopy$expectedStudyDurationH1) + expect_equal(trialDesignPlan$expectedNumberOfSubjectsH1, trialDesignPlanCopy$expectedNumberOfSubjectsH1) + expect_equal(trialDesignPlan$maxInformation, trialDesignPlanCopy$maxInformation, tolerance = 1e-07) +}) diff --git a/tests/testthat/test-class_design_set.R b/tests/testthat/test-class_design_set.R index 8b75a755..9171e948 100644 --- a/tests/testthat/test-class_design_set.R +++ b/tests/testthat/test-class_design_set.R @@ -15,8 +15,8 @@ ## | ## | File name: test-class_design_set.R ## | Creation date: 23 February 2024, 12:33:48 -## | File version: $Revision: 7742 $ -## | Last changed: $Date: 2024-03-22 13:46:29 +0100 (Fr, 22 Mrz 2024) $ +## | File version: $Revision: 7928 $ +## | Last changed: $Date: 2024-05-23 16:35:16 +0200 (Do, 23 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | diff --git a/tests/testthat/test-class_dictionary.R b/tests/testthat/test-class_dictionary.R index 56a15ee1..f4ecd02d 100644 --- a/tests/testthat/test-class_dictionary.R +++ b/tests/testthat/test-class_dictionary.R @@ -15,9 +15,9 @@ ## | ## | File name: test-class_dictionary.R ## | Creation date: 23 February 2024, 07:45:41 -## | File version: $Revision: 7662 $ -## | Last changed: $Date: 2024-02-23 12:42:26 +0100 (Fr, 23 Feb 2024) $ -## | Last changed by: $Author: pahlke $ +## | File version: $Revision$ +## | Last changed: $Date$ +## | Last changed by: $Author$ ## | test_plan_section("Testing Class 'Dictionary'") diff --git a/tests/testthat/test-class_time.R b/tests/testthat/test-class_time.R index 8f2c8810..da10dcce 100644 --- a/tests/testthat/test-class_time.R +++ b/tests/testthat/test-class_time.R @@ -1,2734 +1,2778 @@ -## | -## | *Unit tests* -## | -## | This file is part of the R package rpact: -## | Confirmatory Adaptive Clinical Trial Design and Analysis -## | -## | Author: Gernot Wassmer, PhD, and Friedrich Pahlke, PhD -## | Licensed under "GNU Lesser General Public License" version 3 -## | License text can be found here: https://www.r-project.org/Licenses/LGPL-3 -## | -## | RPACT company website: https://www.rpact.com -## | RPACT package website: https://www.rpact.org -## | -## | Contact us for information about our services: info@rpact.com -## | -## | File name: test-class_time.R -## | Creation date: 08 November 2023, 08:49:49 -## | File version: $Revision: 7665 $ -## | Last changed: $Date: 2024-02-23 17:33:46 +0100 (Fr, 23 Feb 2024) $ -## | Last changed by: $Author: pahlke $ -## | - -test_plan_section("Testing Class 'PiecewiseSurvivalTime'") - - -test_that("Testing 'getPiecewiseSurvivalTime': isPiecewiseSurvivalEnabled()", { - # @refFS[Tab.]{fs:tab:output:getPiecewiseSurvivalTime} - expect_false(getPiecewiseSurvivalTime()$isPiecewiseSurvivalEnabled()) - expect_false(getPiecewiseSurvivalTime(piecewiseSurvivalTime = NA)$isPiecewiseSurvivalEnabled()) - -}) - -test_that("Testing 'getPiecewiseSurvivalTime': simple vector based definition", { - - # @refFS[Tab.]{fs:tab:output:getPiecewiseSurvivalTime} - pwSurvivalTime1 <- getPiecewiseSurvivalTime(lambda2 = 0.5, hazardRatio = 0.8) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime1' with expected results - expect_equal(pwSurvivalTime1$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime1$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$lambda1, 0.4, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime1$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$lambda2, 0.5, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime1$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime1$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime1$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime1$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$median1, 1.732868, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime1$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$median2, 1.3862944, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime1$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime1$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime1$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime1$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime1$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime1$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime1), NA))) - expect_output(print(pwSurvivalTime1)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime1), NA))) - expect_output(summary(pwSurvivalTime1)$show()) - pwSurvivalTime1CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime1, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime1CodeBased$piecewiseSurvivalTime, pwSurvivalTime1$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$lambda1, pwSurvivalTime1$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$lambda2, pwSurvivalTime1$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$hazardRatio, pwSurvivalTime1$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$pi1, pwSurvivalTime1$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$pi2, pwSurvivalTime1$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$median1, pwSurvivalTime1$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$median2, pwSurvivalTime1$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$eventTime, pwSurvivalTime1$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$kappa, pwSurvivalTime1$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime1$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$delayedResponseAllowed, pwSurvivalTime1$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$delayedResponseEnabled, pwSurvivalTime1$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime1), "character") - df <- as.data.frame(pwSurvivalTime1) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime1) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime2 <- getPiecewiseSurvivalTime(lambda2 = 0.5, lambda1 = 0.4) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime2' with expected results - expect_equal(pwSurvivalTime2$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime2$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$lambda1, 0.4, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$lambda2, 0.5, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime2$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime2$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$median1, 1.732868, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$median2, 1.3862944, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime2$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime2$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime2), NA))) - expect_output(print(pwSurvivalTime2)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime2), NA))) - expect_output(summary(pwSurvivalTime2)$show()) - pwSurvivalTime2CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime2, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime2CodeBased$piecewiseSurvivalTime, pwSurvivalTime2$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$lambda1, pwSurvivalTime2$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$lambda2, pwSurvivalTime2$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$hazardRatio, pwSurvivalTime2$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$pi1, pwSurvivalTime2$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$pi2, pwSurvivalTime2$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$median1, pwSurvivalTime2$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$median2, pwSurvivalTime2$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$eventTime, pwSurvivalTime2$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$kappa, pwSurvivalTime2$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime2$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$delayedResponseAllowed, pwSurvivalTime2$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$delayedResponseEnabled, pwSurvivalTime2$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime2), "character") - df <- as.data.frame(pwSurvivalTime2) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime2) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - .skipTestIfDisabled() - - pwSurvivalTime2 <- getPiecewiseSurvivalTime(pi2 = 0.5, hazardRatio = 0.8) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime2' with expected results - expect_equal(pwSurvivalTime2$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime2$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$lambda1, 0.046209812, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$lambda2, 0.057762265, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$pi1, 0.42565082, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$pi2, 0.5, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$median1, 15, label = paste0("c(", paste0(pwSurvivalTime2$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$median2, 12, label = paste0("c(", paste0(pwSurvivalTime2$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$eventTime, 12, label = paste0("c(", paste0(pwSurvivalTime2$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime2$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime2), NA))) - expect_output(print(pwSurvivalTime2)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime2), NA))) - expect_output(summary(pwSurvivalTime2)$show()) - pwSurvivalTime2CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime2, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime2CodeBased$piecewiseSurvivalTime, pwSurvivalTime2$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$lambda1, pwSurvivalTime2$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$lambda2, pwSurvivalTime2$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$hazardRatio, pwSurvivalTime2$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$pi1, pwSurvivalTime2$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$pi2, pwSurvivalTime2$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$median1, pwSurvivalTime2$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$median2, pwSurvivalTime2$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$eventTime, pwSurvivalTime2$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$kappa, pwSurvivalTime2$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime2$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$delayedResponseAllowed, pwSurvivalTime2$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$delayedResponseEnabled, pwSurvivalTime2$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime2), "character") - df <- as.data.frame(pwSurvivalTime2) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime2) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime2 <- getPiecewiseSurvivalTime(pi2 = 0.5, pi1 = 0.4) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime2' with expected results - expect_equal(pwSurvivalTime2$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime2$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$lambda1, 0.042568802, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$lambda2, 0.057762265, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$hazardRatio, 0.73696559, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$pi1, 0.4, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$pi2, 0.5, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$median1, 16.282985, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$median2, 12, label = paste0("c(", paste0(pwSurvivalTime2$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$eventTime, 12, label = paste0("c(", paste0(pwSurvivalTime2$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime2$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime2), NA))) - expect_output(print(pwSurvivalTime2)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime2), NA))) - expect_output(summary(pwSurvivalTime2)$show()) - pwSurvivalTime2CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime2, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime2CodeBased$piecewiseSurvivalTime, pwSurvivalTime2$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$lambda1, pwSurvivalTime2$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$lambda2, pwSurvivalTime2$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$hazardRatio, pwSurvivalTime2$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$pi1, pwSurvivalTime2$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$pi2, pwSurvivalTime2$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$median1, pwSurvivalTime2$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$median2, pwSurvivalTime2$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$eventTime, pwSurvivalTime2$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$kappa, pwSurvivalTime2$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime2$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$delayedResponseAllowed, pwSurvivalTime2$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$delayedResponseEnabled, pwSurvivalTime2$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime2), "character") - df <- as.data.frame(pwSurvivalTime2) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime2) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime3 <- getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), lambda2 = 0.4) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime3' with expected results - expect_equal(pwSurvivalTime3$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime3$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$lambda1, c(0.24, 0.32), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime3$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$lambda2, 0.4, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime3$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$hazardRatio, c(0.6, 0.8), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime3$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime3$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime3$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$median1, c(2.8881133, 2.1660849), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime3$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$median2, 1.732868, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime3$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime3$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime3$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime3$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime3$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime3$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime3), NA))) - expect_output(print(pwSurvivalTime3)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime3), NA))) - expect_output(summary(pwSurvivalTime3)$show()) - pwSurvivalTime3CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime3, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime3CodeBased$piecewiseSurvivalTime, pwSurvivalTime3$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$lambda1, pwSurvivalTime3$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$lambda2, pwSurvivalTime3$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$hazardRatio, pwSurvivalTime3$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$pi1, pwSurvivalTime3$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$pi2, pwSurvivalTime3$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$median1, pwSurvivalTime3$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$median2, pwSurvivalTime3$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$eventTime, pwSurvivalTime3$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$kappa, pwSurvivalTime3$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime3$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$delayedResponseAllowed, pwSurvivalTime3$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$delayedResponseEnabled, pwSurvivalTime3$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime3), "character") - df <- as.data.frame(pwSurvivalTime3) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime3) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime8 <- getPiecewiseSurvivalTime(pi2 = 0.4, pi1 = 0.3) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime8' with expected results - expect_equal(pwSurvivalTime8$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime8$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime8$lambda1, 0.029722912, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime8$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime8$lambda2, 0.042568802, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime8$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime8$hazardRatio, 0.69823229, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime8$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime8$pi1, 0.3, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime8$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime8$pi2, 0.4, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime8$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime8$median1, 23.320299, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime8$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime8$median2, 16.282985, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime8$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime8$eventTime, 12, label = paste0("c(", paste0(pwSurvivalTime8$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime8$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime8$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime8$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime8$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime8$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime8$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime8$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime8$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime8), NA))) - expect_output(print(pwSurvivalTime8)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime8), NA))) - expect_output(summary(pwSurvivalTime8)$show()) - pwSurvivalTime8CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime8, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime8CodeBased$piecewiseSurvivalTime, pwSurvivalTime8$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime8CodeBased$lambda1, pwSurvivalTime8$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime8CodeBased$lambda2, pwSurvivalTime8$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime8CodeBased$hazardRatio, pwSurvivalTime8$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime8CodeBased$pi1, pwSurvivalTime8$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime8CodeBased$pi2, pwSurvivalTime8$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime8CodeBased$median1, pwSurvivalTime8$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime8CodeBased$median2, pwSurvivalTime8$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime8CodeBased$eventTime, pwSurvivalTime8$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime8CodeBased$kappa, pwSurvivalTime8$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime8CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime8$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime8CodeBased$delayedResponseAllowed, pwSurvivalTime8$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime8CodeBased$delayedResponseEnabled, pwSurvivalTime8$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime8), "character") - df <- as.data.frame(pwSurvivalTime8) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime8) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime9 <- getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), pi2 = 0.3) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime9' with expected results - expect_equal(pwSurvivalTime9$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime9$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime9$lambda1, c(0.017833747, 0.02377833), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime9$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime9$lambda2, 0.029722912, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime9$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime9$hazardRatio, c(0.6, 0.8), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime9$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime9$pi1, c(0.19265562, 0.24824135), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime9$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime9$pi2, 0.3, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime9$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime9$median1, c(38.867164, 29.150373), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime9$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime9$median2, 23.320299, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime9$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime9$eventTime, 12, label = paste0("c(", paste0(pwSurvivalTime9$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime9$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime9$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime9$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime9$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime9$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime9$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime9$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime9$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime9), NA))) - expect_output(print(pwSurvivalTime9)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime9), NA))) - expect_output(summary(pwSurvivalTime9)$show()) - pwSurvivalTime9CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime9, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime9CodeBased$piecewiseSurvivalTime, pwSurvivalTime9$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime9CodeBased$lambda1, pwSurvivalTime9$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime9CodeBased$lambda2, pwSurvivalTime9$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime9CodeBased$hazardRatio, pwSurvivalTime9$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime9CodeBased$pi1, pwSurvivalTime9$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime9CodeBased$pi2, pwSurvivalTime9$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime9CodeBased$median1, pwSurvivalTime9$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime9CodeBased$median2, pwSurvivalTime9$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime9CodeBased$eventTime, pwSurvivalTime9$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime9CodeBased$kappa, pwSurvivalTime9$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime9CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime9$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime9CodeBased$delayedResponseAllowed, pwSurvivalTime9$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime9CodeBased$delayedResponseEnabled, pwSurvivalTime9$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime9), "character") - df <- as.data.frame(pwSurvivalTime9) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime9) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime10 <- getPiecewiseSurvivalTime(median2 = 1.386294, hazardRatio = 0.8) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime10' with expected results - expect_equal(pwSurvivalTime10$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime10$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$lambda1, 0.4000001, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime10$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$lambda2, 0.50000013, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime10$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime10$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime10$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime10$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$median1, 1.7328675, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime10$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$median2, 1.386294, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime10$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime10$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime10$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime10$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime10$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime10$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime10), NA))) - expect_output(print(pwSurvivalTime10)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime10), NA))) - expect_output(summary(pwSurvivalTime10)$show()) - pwSurvivalTime10CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime10, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime10CodeBased$piecewiseSurvivalTime, pwSurvivalTime10$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$lambda1, pwSurvivalTime10$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$lambda2, pwSurvivalTime10$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$hazardRatio, pwSurvivalTime10$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$pi1, pwSurvivalTime10$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$pi2, pwSurvivalTime10$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$median1, pwSurvivalTime10$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$median2, pwSurvivalTime10$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$eventTime, pwSurvivalTime10$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$kappa, pwSurvivalTime10$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime10$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$delayedResponseAllowed, pwSurvivalTime10$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$delayedResponseEnabled, pwSurvivalTime10$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime10), "character") - df <- as.data.frame(pwSurvivalTime10) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime10) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime11 <- getPiecewiseSurvivalTime(median2 = 1.386294, lambda1 = 0.4) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime11' with expected results - expect_equal(pwSurvivalTime11$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime11$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$lambda1, 0.4, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime11$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$lambda2, 0.50000013, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime11$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$hazardRatio, 0.79999979, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime11$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime11$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime11$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$median1, 1.732868, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime11$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$median2, 1.386294, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime11$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime11$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime11$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime11$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime11$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime11$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime11), NA))) - expect_output(print(pwSurvivalTime11)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime11), NA))) - expect_output(summary(pwSurvivalTime11)$show()) - pwSurvivalTime11CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime11, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime11CodeBased$piecewiseSurvivalTime, pwSurvivalTime11$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$lambda1, pwSurvivalTime11$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$lambda2, pwSurvivalTime11$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$hazardRatio, pwSurvivalTime11$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$pi1, pwSurvivalTime11$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$pi2, pwSurvivalTime11$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$median1, pwSurvivalTime11$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$median2, pwSurvivalTime11$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$eventTime, pwSurvivalTime11$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$kappa, pwSurvivalTime11$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime11$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$delayedResponseAllowed, pwSurvivalTime11$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$delayedResponseEnabled, pwSurvivalTime11$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime11), "character") - df <- as.data.frame(pwSurvivalTime11) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime11) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime12 <- getPiecewiseSurvivalTime(median2 = 5, median1 = 6) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime12' with expected results - expect_equal(pwSurvivalTime12$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime12$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$lambda1, 0.11552453, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime12$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$lambda2, 0.13862944, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime12$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$hazardRatio, 0.83333333, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime12$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime12$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime12$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$median1, 6, label = paste0("c(", paste0(pwSurvivalTime12$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$median2, 5, label = paste0("c(", paste0(pwSurvivalTime12$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime12$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime12$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime12$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime12$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime12$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime12), NA))) - expect_output(print(pwSurvivalTime12)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime12), NA))) - expect_output(summary(pwSurvivalTime12)$show()) - pwSurvivalTime12CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime12, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime12CodeBased$piecewiseSurvivalTime, pwSurvivalTime12$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$lambda1, pwSurvivalTime12$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$lambda2, pwSurvivalTime12$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$hazardRatio, pwSurvivalTime12$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$pi1, pwSurvivalTime12$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$pi2, pwSurvivalTime12$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$median1, pwSurvivalTime12$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$median2, pwSurvivalTime12$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$eventTime, pwSurvivalTime12$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$kappa, pwSurvivalTime12$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime12$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$delayedResponseAllowed, pwSurvivalTime12$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$delayedResponseEnabled, pwSurvivalTime12$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime12), "character") - df <- as.data.frame(pwSurvivalTime12) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime12) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime13 <- getPiecewiseSurvivalTime(median2 = 1.386294, lambda1 = c(0.3, 0.4)) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime13' with expected results - expect_equal(pwSurvivalTime13$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime13$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$lambda1, c(0.3, 0.4), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime13$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$lambda2, 0.50000013, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime13$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$hazardRatio, c(0.59999984, 0.79999979), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime13$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime13$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime13$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$median1, c(2.3104906, 1.732868), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime13$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$median2, 1.386294, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime13$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime13$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime13$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime13$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime13$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime13$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime13), NA))) - expect_output(print(pwSurvivalTime13)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime13), NA))) - expect_output(summary(pwSurvivalTime13)$show()) - pwSurvivalTime13CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime13, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime13CodeBased$piecewiseSurvivalTime, pwSurvivalTime13$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$lambda1, pwSurvivalTime13$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$lambda2, pwSurvivalTime13$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$hazardRatio, pwSurvivalTime13$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$pi1, pwSurvivalTime13$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$pi2, pwSurvivalTime13$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$median1, pwSurvivalTime13$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$median2, pwSurvivalTime13$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$eventTime, pwSurvivalTime13$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$kappa, pwSurvivalTime13$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime13$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$delayedResponseAllowed, pwSurvivalTime13$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$delayedResponseEnabled, pwSurvivalTime13$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime13), "character") - df <- as.data.frame(pwSurvivalTime13) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime13) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime14 <- getPiecewiseSurvivalTime(median2 = 5, median1 = c(6:8)) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime14' with expected results - expect_equal(pwSurvivalTime14$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime14$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime14$lambda1, c(0.11552453, 0.099021026, 0.086643398), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime14$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime14$lambda2, 0.13862944, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime14$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime14$hazardRatio, c(0.83333333, 0.71428571, 0.625), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime14$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime14$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime14$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime14$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime14$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime14$median1, c(6, 7, 8), label = paste0("c(", paste0(pwSurvivalTime14$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime14$median2, 5, label = paste0("c(", paste0(pwSurvivalTime14$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime14$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime14$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime14$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime14$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime14$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime14$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime14$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime14$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime14$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime14$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime14), NA))) - expect_output(print(pwSurvivalTime14)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime14), NA))) - expect_output(summary(pwSurvivalTime14)$show()) - pwSurvivalTime14CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime14, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime14CodeBased$piecewiseSurvivalTime, pwSurvivalTime14$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime14CodeBased$lambda1, pwSurvivalTime14$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime14CodeBased$lambda2, pwSurvivalTime14$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime14CodeBased$hazardRatio, pwSurvivalTime14$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime14CodeBased$pi1, pwSurvivalTime14$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime14CodeBased$pi2, pwSurvivalTime14$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime14CodeBased$median1, pwSurvivalTime14$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime14CodeBased$median2, pwSurvivalTime14$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime14CodeBased$eventTime, pwSurvivalTime14$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime14CodeBased$kappa, pwSurvivalTime14$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime14CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime14$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime14CodeBased$delayedResponseAllowed, pwSurvivalTime14$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime14CodeBased$delayedResponseEnabled, pwSurvivalTime14$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime14), "character") - df <- as.data.frame(pwSurvivalTime14) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime14) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime15 <- getPiecewiseSurvivalTime(median2 = 2, hazardRatio = 0.8) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime15' with expected results - expect_equal(pwSurvivalTime15$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime15$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime15$lambda1, 0.27725887, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime15$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime15$lambda2, 0.34657359, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime15$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime15$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime15$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime15$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime15$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime15$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime15$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime15$median1, 2.5, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime15$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime15$median2, 2, label = paste0("c(", paste0(pwSurvivalTime15$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime15$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime15$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime15$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime15$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime15$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime15$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime15$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime15$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime15$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime15$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime15), NA))) - expect_output(print(pwSurvivalTime15)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime15), NA))) - expect_output(summary(pwSurvivalTime15)$show()) - pwSurvivalTime15CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime15, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime15CodeBased$piecewiseSurvivalTime, pwSurvivalTime15$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime15CodeBased$lambda1, pwSurvivalTime15$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime15CodeBased$lambda2, pwSurvivalTime15$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime15CodeBased$hazardRatio, pwSurvivalTime15$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime15CodeBased$pi1, pwSurvivalTime15$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime15CodeBased$pi2, pwSurvivalTime15$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime15CodeBased$median1, pwSurvivalTime15$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime15CodeBased$median2, pwSurvivalTime15$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime15CodeBased$eventTime, pwSurvivalTime15$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime15CodeBased$kappa, pwSurvivalTime15$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime15CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime15$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime15CodeBased$delayedResponseAllowed, pwSurvivalTime15$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime15CodeBased$delayedResponseEnabled, pwSurvivalTime15$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime15), "character") - df <- as.data.frame(pwSurvivalTime15) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime15) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime16 <- getPiecewiseSurvivalTime(median1 = c(2, 2), hazardRatio = c(1.4, 1.4)) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime16' with expected results - expect_equal(pwSurvivalTime16$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime16$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime16$lambda1, c(0.34657359, 0.34657359), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime16$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime16$lambda2, c(0.24755256, 0.24755256), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime16$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime16$hazardRatio, c(1.4, 1.4), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime16$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime16$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime16$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime16$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime16$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime16$median1, c(2, 2), label = paste0("c(", paste0(pwSurvivalTime16$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime16$median2, c(2.8, 2.8), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime16$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime16$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime16$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime16$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime16$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime16$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime16$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime16$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime16$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime16$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime16$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime16), NA))) - expect_output(print(pwSurvivalTime16)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime16), NA))) - expect_output(summary(pwSurvivalTime16)$show()) - pwSurvivalTime16CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime16, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime16CodeBased$piecewiseSurvivalTime, pwSurvivalTime16$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime16CodeBased$lambda1, pwSurvivalTime16$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime16CodeBased$lambda2, pwSurvivalTime16$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime16CodeBased$hazardRatio, pwSurvivalTime16$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime16CodeBased$pi1, pwSurvivalTime16$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime16CodeBased$pi2, pwSurvivalTime16$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime16CodeBased$median1, pwSurvivalTime16$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime16CodeBased$median2, pwSurvivalTime16$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime16CodeBased$eventTime, pwSurvivalTime16$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime16CodeBased$kappa, pwSurvivalTime16$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime16CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime16$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime16CodeBased$delayedResponseAllowed, pwSurvivalTime16$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime16CodeBased$delayedResponseEnabled, pwSurvivalTime16$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime16), "character") - df <- as.data.frame(pwSurvivalTime16) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime16) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime17 <- getPiecewiseSurvivalTime(median1 = c(2, 3), median2 = 4) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime17' with expected results - expect_equal(pwSurvivalTime17$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime17$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime17$lambda1, c(0.34657359, 0.23104906), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime17$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime17$lambda2, 0.1732868, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime17$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime17$hazardRatio, c(2, 1.3333333), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime17$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime17$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime17$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime17$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime17$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime17$median1, c(2, 3), label = paste0("c(", paste0(pwSurvivalTime17$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime17$median2, 4, label = paste0("c(", paste0(pwSurvivalTime17$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime17$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime17$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime17$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime17$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime17$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime17$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime17$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime17$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime17$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime17$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime17), NA))) - expect_output(print(pwSurvivalTime17)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime17), NA))) - expect_output(summary(pwSurvivalTime17)$show()) - pwSurvivalTime17CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime17, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime17CodeBased$piecewiseSurvivalTime, pwSurvivalTime17$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime17CodeBased$lambda1, pwSurvivalTime17$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime17CodeBased$lambda2, pwSurvivalTime17$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime17CodeBased$hazardRatio, pwSurvivalTime17$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime17CodeBased$pi1, pwSurvivalTime17$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime17CodeBased$pi2, pwSurvivalTime17$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime17CodeBased$median1, pwSurvivalTime17$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime17CodeBased$median2, pwSurvivalTime17$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime17CodeBased$eventTime, pwSurvivalTime17$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime17CodeBased$kappa, pwSurvivalTime17$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime17CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime17$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime17CodeBased$delayedResponseAllowed, pwSurvivalTime17$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime17CodeBased$delayedResponseEnabled, pwSurvivalTime17$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime17), "character") - df <- as.data.frame(pwSurvivalTime17) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime17) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime18 <- getPiecewiseSurvivalTime(median1 = c(2, 3), lambda2 = 0.4) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime18' with expected results - expect_equal(pwSurvivalTime18$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime18$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime18$lambda1, c(0.34657359, 0.23104906), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime18$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime18$lambda2, 0.4, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime18$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime18$hazardRatio, c(0.86643398, 0.57762265), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime18$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime18$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime18$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime18$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime18$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime18$median1, c(2, 3), label = paste0("c(", paste0(pwSurvivalTime18$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime18$median2, 1.732868, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime18$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime18$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime18$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime18$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime18$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime18$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime18$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime18$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime18$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime18$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime18$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime18), NA))) - expect_output(print(pwSurvivalTime18)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime18), NA))) - expect_output(summary(pwSurvivalTime18)$show()) - pwSurvivalTime18CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime18, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime18CodeBased$piecewiseSurvivalTime, pwSurvivalTime18$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime18CodeBased$lambda1, pwSurvivalTime18$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime18CodeBased$lambda2, pwSurvivalTime18$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime18CodeBased$hazardRatio, pwSurvivalTime18$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime18CodeBased$pi1, pwSurvivalTime18$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime18CodeBased$pi2, pwSurvivalTime18$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime18CodeBased$median1, pwSurvivalTime18$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime18CodeBased$median2, pwSurvivalTime18$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime18CodeBased$eventTime, pwSurvivalTime18$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime18CodeBased$kappa, pwSurvivalTime18$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime18CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime18$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime18CodeBased$delayedResponseAllowed, pwSurvivalTime18$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime18CodeBased$delayedResponseEnabled, pwSurvivalTime18$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime18), "character") - df <- as.data.frame(pwSurvivalTime18) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime18) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime19 <- getPiecewiseSurvivalTime(pi1 = 0.45) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime19' with expected results - expect_equal(pwSurvivalTime19$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime19$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime19$lambda1, 0.04981975, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime19$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime19$lambda2, 0.018595296, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime19$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime19$hazardRatio, 2.6791588, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime19$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime19$pi1, 0.45, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime19$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime19$pi2, 0.2, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime19$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime19$median1, 13.9131, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime19$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime19$median2, 37.275405, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime19$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime19$eventTime, 12, label = paste0("c(", paste0(pwSurvivalTime19$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime19$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime19$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime19$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime19$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime19$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime19$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime19$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime19$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime19), NA))) - expect_output(print(pwSurvivalTime19)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime19), NA))) - expect_output(summary(pwSurvivalTime19)$show()) - pwSurvivalTime19CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime19, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime19CodeBased$piecewiseSurvivalTime, pwSurvivalTime19$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime19CodeBased$lambda1, pwSurvivalTime19$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime19CodeBased$lambda2, pwSurvivalTime19$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime19CodeBased$hazardRatio, pwSurvivalTime19$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime19CodeBased$pi1, pwSurvivalTime19$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime19CodeBased$pi2, pwSurvivalTime19$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime19CodeBased$median1, pwSurvivalTime19$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime19CodeBased$median2, pwSurvivalTime19$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime19CodeBased$eventTime, pwSurvivalTime19$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime19CodeBased$kappa, pwSurvivalTime19$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime19CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime19$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime19CodeBased$delayedResponseAllowed, pwSurvivalTime19$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime19CodeBased$delayedResponseEnabled, pwSurvivalTime19$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime19), "character") - df <- as.data.frame(pwSurvivalTime19) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime19) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime20 <- getPiecewiseSurvivalTime(median1 = c(2, 4), hazardRatio = c(1.4, 0.7)) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime20' with expected results - expect_equal(pwSurvivalTime20$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime20$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime20$lambda1, c(0.34657359, 0.1732868), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime20$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime20$lambda2, c(0.24755256, 0.24755256), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime20$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime20$hazardRatio, c(1.4, 0.7), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime20$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime20$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime20$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime20$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime20$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime20$median1, c(2, 4), label = paste0("c(", paste0(pwSurvivalTime20$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime20$median2, c(2.8, 2.8), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime20$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime20$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime20$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime20$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime20$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime20$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime20$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime20$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime20$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime20$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime20$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime20), NA))) - expect_output(print(pwSurvivalTime20)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime20), NA))) - expect_output(summary(pwSurvivalTime20)$show()) - pwSurvivalTime20CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime20, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime20CodeBased$piecewiseSurvivalTime, pwSurvivalTime20$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime20CodeBased$lambda1, pwSurvivalTime20$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime20CodeBased$lambda2, pwSurvivalTime20$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime20CodeBased$hazardRatio, pwSurvivalTime20$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime20CodeBased$pi1, pwSurvivalTime20$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime20CodeBased$pi2, pwSurvivalTime20$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime20CodeBased$median1, pwSurvivalTime20$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime20CodeBased$median2, pwSurvivalTime20$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime20CodeBased$eventTime, pwSurvivalTime20$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime20CodeBased$kappa, pwSurvivalTime20$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime20CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime20$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime20CodeBased$delayedResponseAllowed, pwSurvivalTime20$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime20CodeBased$delayedResponseEnabled, pwSurvivalTime20$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime20), "character") - df <- as.data.frame(pwSurvivalTime20) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime20) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime21 <- getPiecewiseSurvivalTime(median1 = 3, hazardRatio = 0.8) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime21' with expected results - expect_equal(pwSurvivalTime21$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime21$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime21$lambda1, 0.23104906, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime21$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime21$lambda2, 0.28881133, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime21$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime21$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime21$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime21$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime21$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime21$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime21$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime21$median1, 3, label = paste0("c(", paste0(pwSurvivalTime21$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime21$median2, 2.4, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime21$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime21$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime21$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime21$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime21$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime21$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime21$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime21$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime21$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime21$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime21$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime21), NA))) - expect_output(print(pwSurvivalTime21)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime21), NA))) - expect_output(summary(pwSurvivalTime21)$show()) - pwSurvivalTime21CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime21, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime21CodeBased$piecewiseSurvivalTime, pwSurvivalTime21$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime21CodeBased$lambda1, pwSurvivalTime21$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime21CodeBased$lambda2, pwSurvivalTime21$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime21CodeBased$hazardRatio, pwSurvivalTime21$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime21CodeBased$pi1, pwSurvivalTime21$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime21CodeBased$pi2, pwSurvivalTime21$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime21CodeBased$median1, pwSurvivalTime21$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime21CodeBased$median2, pwSurvivalTime21$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime21CodeBased$eventTime, pwSurvivalTime21$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime21CodeBased$kappa, pwSurvivalTime21$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime21CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime21$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime21CodeBased$delayedResponseAllowed, pwSurvivalTime21$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime21CodeBased$delayedResponseEnabled, pwSurvivalTime21$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime21), "character") - df <- as.data.frame(pwSurvivalTime21) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime21) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - expect_error(getPiecewiseSurvivalTime(median2 = 1.386294, lambda2 = 0.4, hazardRatio = 0.8)) - expect_error(getPiecewiseSurvivalTime(median2 = c(1.5, 1.7), lambda1 = c(0.3, 0.4))) - expect_error(getPiecewiseSurvivalTime(median1 = c(2, 4), hazardRatio = c(1, 0.7))) - expect_error(getPiecewiseSurvivalTime(median1 = c(2, 4), hazardRatio = 0.7)) - -}) - -test_that("Testing 'getPiecewiseSurvivalTime': vector based definition", { - - # @refFS[Tab.]{fs:tab:output:getPiecewiseSurvivalTime} - pwSurvivalTime1 <- getPiecewiseSurvivalTime( - piecewiseSurvivalTime = c(0, 6, 9), - lambda2 = c(0.025, 0.04, 0.015), hazardRatio = 0.8 - ) - expect_equal(pwSurvivalTime1$hazardRatio, 0.8) - expect_equal(pwSurvivalTime1$lambda1, c(0.025, 0.04, 0.015) * 0.8) - expect_false(pwSurvivalTime1$isDelayedResponseEnabled()) - - .skipTestIfDisabled() - - pwSurvivalTime2 <- getPiecewiseSurvivalTime( - piecewiseSurvivalTime = c(0, 5, 10), - lambda2 = c(0.1, 0.2, 0.8), hazardRatio = 0.8 - ) - expect_true(pwSurvivalTime2$isPiecewiseSurvivalEnabled()) - expect_false(pwSurvivalTime2$isDelayedResponseEnabled()) - expect_equal(pwSurvivalTime2$hazardRatio, 0.8) - expect_equal(pwSurvivalTime2$piecewiseSurvivalTime, c(0, 5, 10)) - expect_equal(pwSurvivalTime2$lambda2, c(0.1, 0.2, 0.8)) - - pwSurvivalTime3 <- getPiecewiseSurvivalTime(c(0, 6), lambda2 = c(0.01, 0.03), hazardRatio = 0.8) - expect_true(pwSurvivalTime3$isPiecewiseSurvivalEnabled()) - expect_false(pwSurvivalTime3$isDelayedResponseEnabled()) - expect_equal(pwSurvivalTime3$hazardRatio, 0.8) - expect_equal(pwSurvivalTime3$piecewiseSurvivalTime, c(0, 6)) - expect_equal(pwSurvivalTime3$lambda2, c(0.01, 0.03)) - - pwSurvivalTime4 <- getPiecewiseSurvivalTime(0, lambda2 = 0.01, hazardRatio = 0.8) - expect_true(pwSurvivalTime4$isPiecewiseSurvivalEnabled()) - expect_false(pwSurvivalTime4$isDelayedResponseEnabled()) - expect_equal(pwSurvivalTime4$hazardRatio, 0.8) - expect_equal(pwSurvivalTime4$piecewiseSurvivalTime, 0) - expect_equal(pwSurvivalTime4$lambda2, 0.01) - expect_equal(pwSurvivalTime4$lambda1, 0.01 * 0.8) - - pwSurvivalTime5 <- getPiecewiseSurvivalTime(NA_real_, lambda2 = 0.01, hazardRatio = 0.8) - expect_true(pwSurvivalTime5$isPiecewiseSurvivalEnabled()) - expect_false(pwSurvivalTime5$isDelayedResponseEnabled()) - expect_equal(pwSurvivalTime5$hazardRatio, 0.8) - expect_equal(pwSurvivalTime5$piecewiseSurvivalTime, 0) - expect_equal(pwSurvivalTime5$lambda2, 0.01) - expect_equal(pwSurvivalTime5$lambda1, 0.01 * 0.8) - - pwSurvivalTime6 <- getPiecewiseSurvivalTime(0, lambda2 = 0.01, lambda1 = 0.008) - expect_true(pwSurvivalTime6$isPiecewiseSurvivalEnabled()) - expect_false(pwSurvivalTime6$isDelayedResponseEnabled()) - expect_equal(pwSurvivalTime6$hazardRatio, 0.8) - expect_equal(pwSurvivalTime6$piecewiseSurvivalTime, 0) - expect_equal(pwSurvivalTime6$lambda2, 0.01) - expect_equal(pwSurvivalTime6$lambda1, 0.008) - - pwSurvivalTime7 <- getPiecewiseSurvivalTime(NA_real_, lambda2 = 0.01, lambda1 = 0.008) - expect_true(pwSurvivalTime7$isPiecewiseSurvivalEnabled()) - expect_false(pwSurvivalTime7$isDelayedResponseEnabled()) - expect_equal(pwSurvivalTime7$hazardRatio, 0.8) - expect_equal(pwSurvivalTime7$piecewiseSurvivalTime, 0) - expect_equal(pwSurvivalTime7$lambda2, 0.01) - expect_equal(pwSurvivalTime7$lambda1, 0.008) - - # case 2.2 - pwSurvivalTime9 <- getPiecewiseSurvivalTime( - piecewiseSurvivalTime = c(0, 6, 9), - lambda2 = c(0.025, 0.04, 0.015), - lambda1 = c(0.025, 0.04, 0.015) * 0.8 - ) - expect_true(pwSurvivalTime9$isPiecewiseSurvivalEnabled()) - expect_false(pwSurvivalTime9$isDelayedResponseEnabled()) - expect_equal(pwSurvivalTime9$hazardRatio, 0.8) - - pwSurvivalTime10 <- getPiecewiseSurvivalTime(lambda2 = 0.025, hazardRatio = 0.8) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime10' with expected results - expect_equal(pwSurvivalTime10$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime10$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$lambda1, 0.02, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime10$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$lambda2, 0.025, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime10$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime10$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime10$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime10$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$median1, 34.657359, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime10$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$median2, 27.725887, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime10$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime10$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime10$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime10$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime10$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime10$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime10$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime10), NA))) - expect_output(print(pwSurvivalTime10)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime10), NA))) - expect_output(summary(pwSurvivalTime10)$show()) - pwSurvivalTime10CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime10, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime10CodeBased$piecewiseSurvivalTime, pwSurvivalTime10$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$lambda1, pwSurvivalTime10$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$lambda2, pwSurvivalTime10$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$hazardRatio, pwSurvivalTime10$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$pi1, pwSurvivalTime10$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$pi2, pwSurvivalTime10$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$median1, pwSurvivalTime10$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$median2, pwSurvivalTime10$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$eventTime, pwSurvivalTime10$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$kappa, pwSurvivalTime10$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime10$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$delayedResponseAllowed, pwSurvivalTime10$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime10CodeBased$delayedResponseEnabled, pwSurvivalTime10$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime10), "character") - df <- as.data.frame(pwSurvivalTime10) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime10) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime11 <- getPiecewiseSurvivalTime(piecewiseSurvivalTime = 0, lambda2 = 0.025, hazardRatio = 0.8) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime11' with expected results - expect_equal(pwSurvivalTime11$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime11$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$lambda1, 0.02, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime11$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$lambda2, 0.025, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime11$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime11$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime11$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime11$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$median1, 34.657359, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime11$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$median2, 27.725887, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime11$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime11$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime11$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime11$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime11$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime11$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime11$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime11), NA))) - expect_output(print(pwSurvivalTime11)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime11), NA))) - expect_output(summary(pwSurvivalTime11)$show()) - pwSurvivalTime11CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime11, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime11CodeBased$piecewiseSurvivalTime, pwSurvivalTime11$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$lambda1, pwSurvivalTime11$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$lambda2, pwSurvivalTime11$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$hazardRatio, pwSurvivalTime11$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$pi1, pwSurvivalTime11$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$pi2, pwSurvivalTime11$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$median1, pwSurvivalTime11$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$median2, pwSurvivalTime11$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$eventTime, pwSurvivalTime11$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$kappa, pwSurvivalTime11$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime11$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$delayedResponseAllowed, pwSurvivalTime11$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime11CodeBased$delayedResponseEnabled, pwSurvivalTime11$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime11), "character") - df <- as.data.frame(pwSurvivalTime11) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime11) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime12 <- getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6), lambda2 = c(0.025, 0.01), hazardRatio = c(0.8, 0.9)) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime12' with expected results - expect_equal(pwSurvivalTime12$piecewiseSurvivalTime, c(0, 6), label = paste0("c(", paste0(pwSurvivalTime12$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$lambda1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime12$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$lambda2, c(0.025, 0.01), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime12$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$hazardRatio, c(0.8, 0.9), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime12$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime12$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime12$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$median1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime12$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$median2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime12$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime12$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime12$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$piecewiseSurvivalEnabled, TRUE, label = paste0("c(", paste0(pwSurvivalTime12$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime12$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime12$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime12$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime12), NA))) - expect_output(print(pwSurvivalTime12)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime12), NA))) - expect_output(summary(pwSurvivalTime12)$show()) - pwSurvivalTime12CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime12, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime12CodeBased$piecewiseSurvivalTime, pwSurvivalTime12$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$lambda1, pwSurvivalTime12$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$lambda2, pwSurvivalTime12$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$hazardRatio, pwSurvivalTime12$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$pi1, pwSurvivalTime12$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$pi2, pwSurvivalTime12$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$median1, pwSurvivalTime12$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$median2, pwSurvivalTime12$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$eventTime, pwSurvivalTime12$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$kappa, pwSurvivalTime12$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime12$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$delayedResponseAllowed, pwSurvivalTime12$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime12CodeBased$delayedResponseEnabled, pwSurvivalTime12$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime12), "character") - df <- as.data.frame(pwSurvivalTime12) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime12) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime13 <- getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6), lambda2 = c(0.025, 0.01), hazardRatio = c(0.8, 0.9), delayedResponseAllowed = TRUE) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime13' with expected results - expect_equal(pwSurvivalTime13$piecewiseSurvivalTime, c(0, 6), label = paste0("c(", paste0(pwSurvivalTime13$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$lambda1, c(0.02, 0.009), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime13$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$lambda2, c(0.025, 0.01), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime13$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$hazardRatio, c(0.8, 0.9), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime13$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime13$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime13$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$median1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime13$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$median2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime13$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime13$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime13$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$piecewiseSurvivalEnabled, TRUE, label = paste0("c(", paste0(pwSurvivalTime13$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$delayedResponseAllowed, TRUE, label = paste0("c(", paste0(pwSurvivalTime13$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime13$delayedResponseEnabled, TRUE, label = paste0("c(", paste0(pwSurvivalTime13$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime13), NA))) - expect_output(print(pwSurvivalTime13)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime13), NA))) - expect_output(summary(pwSurvivalTime13)$show()) - pwSurvivalTime13CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime13, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime13CodeBased$piecewiseSurvivalTime, pwSurvivalTime13$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$lambda1, pwSurvivalTime13$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$lambda2, pwSurvivalTime13$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$hazardRatio, pwSurvivalTime13$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$pi1, pwSurvivalTime13$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$pi2, pwSurvivalTime13$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$median1, pwSurvivalTime13$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$median2, pwSurvivalTime13$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$eventTime, pwSurvivalTime13$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$kappa, pwSurvivalTime13$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime13$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$delayedResponseAllowed, pwSurvivalTime13$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime13CodeBased$delayedResponseEnabled, pwSurvivalTime13$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime13), "character") - df <- as.data.frame(pwSurvivalTime13) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime13) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - # case 2.2: error expected - expect_error(getPiecewiseSurvivalTime( - piecewiseSurvivalTime = c(0, 6, 9), - lambda2 = c(0.025, 0.04, 0.015), - lambda1 = c(0.03, 0.04, 0.025) - ), - paste0( - "Illegal argument: 'hazardRatio' can only be calculated if ", - "'unique(lambda1 / lambda2)' result in a single value; ", - "current result = c(1.2, 1, 1.667) (e.g., delayed response is not allowed)" - ), - fixed = TRUE - ) - - # case 3 - expect_false(getPiecewiseSurvivalTime(delayedResponseAllowed = TRUE)$isPiecewiseSurvivalEnabled()) - expect_false(getPiecewiseSurvivalTime( - piecewiseSurvivalTime = NA, - delayedResponseAllowed = TRUE - )$isPiecewiseSurvivalEnabled()) - - # case 3.1 - pwSurvivalTimeSim1 <- getPiecewiseSurvivalTime( - piecewiseSurvivalTime = c(0, 6, 9), - lambda2 = c(0.025, 0.04, 0.015), hazardRatio = 0.8, - delayedResponseAllowed = TRUE - ) - expect_equal(pwSurvivalTimeSim1$hazardRatio, 0.8) - expect_equal(pwSurvivalTimeSim1$lambda1, c(0.025, 0.04, 0.015) * 0.8) - expect_false(pwSurvivalTimeSim1$isDelayedResponseEnabled()) - - # case 3.2 - pwSurvivalTimeSim2 <- getPiecewiseSurvivalTime( - piecewiseSurvivalTime = c(0, 6, 9), - lambda2 = c(0.025, 0.04, 0.015), - lambda1 = c(0.03, 0.04, 0.025), delayedResponseAllowed = TRUE - ) - expect_true(pwSurvivalTimeSim2$isPiecewiseSurvivalEnabled()) - expect_true(pwSurvivalTimeSim2$isDelayedResponseEnabled()) - expect_equal(pwSurvivalTimeSim2$hazardRatio, c(1.2, 1, 5 / 3)) - - pwsTime1 <- getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), lambda2 = 0.4) - expect_equal(pwsTime1$.isLambdaBased(minNumberOfLambdas = 1), TRUE) - -}) - -test_that("Testing 'getPiecewiseSurvivalTime': check error and warnings", { - - # @refFS[Tab.]{fs:tab:output:getPiecewiseSurvivalTime} - expect_error(getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), lambda2 = 0.4, pi2 = 0.4), - "Conflicting arguments: it is not allowed to specify 'pi2' (0.4) and 'lambda2' (0.4) concurrently", - fixed = TRUE - ) - - expect_error(getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), lambda2 = 0.4, pi2 = 0.4, pi1 = 0.3), - "Conflicting arguments: it is not allowed to specify 'pi1' (0.3) and 'lambda2' (0.4) concurrently", - fixed = TRUE - ) - - expect_error(getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), lambda2 = 0.4, pi2 = 0.4, pi1 = 0.3), - "Conflicting arguments: it is not allowed to specify 'pi1' (0.3) and 'lambda2' (0.4) concurrently", - fixed = TRUE - ) - - expect_error(getPiecewiseSurvivalTime(lambda2 = 0.4, lambda1 = 0.3, pi2 = 0.4, pi1 = 0.3), - "Conflicting arguments: it is not allowed to specify 'pi1' (0.3) and 'lambda1' (0.3) concurrently", - fixed = TRUE - ) - - expect_error(getPiecewiseSurvivalTime(lambda2 = 0.4, lambda1 = 0.3, pi2 = 0.4, pi1 = 0.3), - "Conflicting arguments: it is not allowed to specify 'pi1' (0.3) and 'lambda1' (0.3) concurrently", - fixed = TRUE - ) - - expect_equal(getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), pi2 = 0.4)$.isPiBased(), TRUE) - - expect_warning(getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), pi2 = 0.4, pi1 = 0.3), - "'hazardRatio' (0.6, 0.8) will be ignored because it will be calculated", - fixed = TRUE - ) - - expect_warning(getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), pi1 = 0.3), - "'hazardRatio' (0.6, 0.8) will be ignored because it will be calculated", - fixed = TRUE - ) - - expect_error(getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6), lambda2 = 0.025, hazardRatio = 0.8, delayedResponseAllowed = TRUE), - "Illegal argument: length of 'piecewiseSurvivalTime' (2) and length of 'lambda2' (1) must be equal", - fixed = TRUE - ) - - expect_error(getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6, 12), lambda2 = 0.025, hazardRatio = 0.8, delayedResponseAllowed = TRUE), - "Illegal argument: length of 'piecewiseSurvivalTime' (3) and length of 'lambda2' (1) must be equal", - fixed = TRUE - ) - - expect_error(getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6), lambda2 = 0.025, hazardRatio = 0.8), - "Illegal argument: length of 'piecewiseSurvivalTime' (2) and length of 'lambda2' (1) must be equal", - fixed = TRUE - ) - -}) - -test_that("Testing 'getPiecewiseSurvivalTime': list-wise definition", { - - # @refFS[Tab.]{fs:tab:output:getPiecewiseSurvivalTime} - pwSurvivalTime8 <- getPiecewiseSurvivalTime(piecewiseSurvivalTime = list( - "<6" = 0.025, - "6 - <9" = 0.04, - "9 - <15" = 0.015, - "15 - <21" = 0.01, - ">=21" = 0.007 - ), hazardRatio = 0.6) - expect_true(pwSurvivalTime8$isPiecewiseSurvivalEnabled()) - expect_false(pwSurvivalTime8$isDelayedResponseEnabled()) - expect_equal(pwSurvivalTime8$hazardRatio, 0.6) - expect_equal(pwSurvivalTime8$piecewiseSurvivalTime, c(0, 6, 9, 15, 21)) - expect_equal(pwSurvivalTime8$lambda2, c(0.025, 0.040, 0.015, 0.010, 0.007)) - expect_equal(pwSurvivalTime8$lambda1, c(0.0150, 0.0240, 0.0090, 0.0060, 0.0042)) - - .skipTestIfDisabled() - - result1 <- getPiecewiseSurvivalTime(list( - "<5" = 0.1, - "5 - <10" = 0.2, - ">=10" = 0.8 - ), hazardRatio = 0.8) - expect_equal(result1$piecewiseSurvivalTime, c(0, 5, 10)) - expect_equal(result1$lambda2, c(0.1, 0.2, 0.8)) - - result2 <- getPiecewiseSurvivalTime(list( - "0 - <5" = 0.1, - "5 - <10" = 0.2, - "10 - Inf" = 0.8 - ), hazardRatio = 0.8) - expect_equal(result2$piecewiseSurvivalTime, c(0, 5, 10)) - expect_equal(result2$lambda2, c(0.1, 0.2, 0.8)) - - pwSurvivalTime2 <- getPiecewiseSurvivalTime( - piecewiseSurvivalTime = c(0, 5, 10), - lambda2 = c(0.1, 0.2, 0.8), hazardRatio = 0.8 - ) - expect_equal(pwSurvivalTime2$piecewiseSurvivalTime, c(0, 5, 10)) - expect_equal(pwSurvivalTime2$lambda2, c(0.1, 0.2, 0.8)) - - pwSurvivalTime3 <- getPiecewiseSurvivalTime(c(0, 6), lambda2 = c(0.01, 0.03), hazardRatio = 0.8) - expect_equal(pwSurvivalTime3$piecewiseSurvivalTime, c(0, 6)) - expect_equal(pwSurvivalTime3$lambda2, c(0.01, 0.03)) - - pwSurvivalTime4 <- getPiecewiseSurvivalTime(piecewiseSurvivalTime = list("0 - ?" = 0.025), - hazardRatio = 0.8, delayedResponseAllowed = TRUE) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime4' with expected results - expect_equal(pwSurvivalTime4$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime4$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime4$lambda1, 0.02, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime4$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime4$lambda2, 0.025, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime4$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime4$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime4$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime4$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime4$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime4$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime4$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime4$median1, 34.657359, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime4$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime4$median2, 27.725887, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime4$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime4$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime4$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime4$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime4$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime4$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime4$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime4$delayedResponseAllowed, TRUE, label = paste0("c(", paste0(pwSurvivalTime4$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime4$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime4$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime4), NA))) - expect_output(print(pwSurvivalTime4)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime4), NA))) - expect_output(summary(pwSurvivalTime4)$show()) - pwSurvivalTime4CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime4, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime4CodeBased$piecewiseSurvivalTime, pwSurvivalTime4$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime4CodeBased$lambda1, pwSurvivalTime4$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime4CodeBased$lambda2, pwSurvivalTime4$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime4CodeBased$hazardRatio, pwSurvivalTime4$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime4CodeBased$pi1, pwSurvivalTime4$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime4CodeBased$pi2, pwSurvivalTime4$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime4CodeBased$median1, pwSurvivalTime4$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime4CodeBased$median2, pwSurvivalTime4$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime4CodeBased$eventTime, pwSurvivalTime4$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime4CodeBased$kappa, pwSurvivalTime4$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime4CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime4$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime4CodeBased$delayedResponseAllowed, pwSurvivalTime4$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime4CodeBased$delayedResponseEnabled, pwSurvivalTime4$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime4), "character") - df <- as.data.frame(pwSurvivalTime4) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime4) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime5 <- getPiecewiseSurvivalTime(piecewiseSurvivalTime = list("x" = 0.025), - hazardRatio = 0.8, delayedResponseAllowed = TRUE) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime5' with expected results - expect_equal(pwSurvivalTime5$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime5$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime5$lambda1, 0.02, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime5$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime5$lambda2, 0.025, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime5$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime5$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime5$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime5$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime5$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime5$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime5$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime5$median1, 34.657359, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime5$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime5$median2, 27.725887, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime5$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime5$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime5$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime5$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime5$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime5$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime5$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime5$delayedResponseAllowed, TRUE, label = paste0("c(", paste0(pwSurvivalTime5$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime5$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime5$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime5), NA))) - expect_output(print(pwSurvivalTime5)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime5), NA))) - expect_output(summary(pwSurvivalTime5)$show()) - pwSurvivalTime5CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime5, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime5CodeBased$piecewiseSurvivalTime, pwSurvivalTime5$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime5CodeBased$lambda1, pwSurvivalTime5$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime5CodeBased$lambda2, pwSurvivalTime5$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime5CodeBased$hazardRatio, pwSurvivalTime5$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime5CodeBased$pi1, pwSurvivalTime5$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime5CodeBased$pi2, pwSurvivalTime5$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime5CodeBased$median1, pwSurvivalTime5$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime5CodeBased$median2, pwSurvivalTime5$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime5CodeBased$eventTime, pwSurvivalTime5$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime5CodeBased$kappa, pwSurvivalTime5$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime5CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime5$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime5CodeBased$delayedResponseAllowed, pwSurvivalTime5$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime5CodeBased$delayedResponseEnabled, pwSurvivalTime5$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime5), "character") - df <- as.data.frame(pwSurvivalTime5) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime5) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime6 <- getPiecewiseSurvivalTime(piecewiseSurvivalTime = list("0 - 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime6) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime7 <- getPiecewiseSurvivalTime(piecewiseSurvivalTime = list("x" = 0.025), - hazardRatio = 0.8, delayedResponseAllowed = FALSE) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime7' with expected results - expect_equal(pwSurvivalTime7$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime7$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime7$lambda1, 0.02, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime7$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime7$lambda2, 0.025, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime7$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime7$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime7$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime7$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime7$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime7$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime7$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime7$median1, 34.657359, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime7$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime7$median2, 27.725887, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime7$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime7$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime7$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime7$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime7$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime7$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime7$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime7$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime7$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime7$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime7$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime7), NA))) - expect_output(print(pwSurvivalTime7)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime7), NA))) - expect_output(summary(pwSurvivalTime7)$show()) - pwSurvivalTime7CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime7, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime7CodeBased$piecewiseSurvivalTime, pwSurvivalTime7$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime7CodeBased$lambda1, pwSurvivalTime7$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime7CodeBased$lambda2, pwSurvivalTime7$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime7CodeBased$hazardRatio, pwSurvivalTime7$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime7CodeBased$pi1, pwSurvivalTime7$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime7CodeBased$pi2, pwSurvivalTime7$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime7CodeBased$median1, pwSurvivalTime7$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime7CodeBased$median2, pwSurvivalTime7$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime7CodeBased$eventTime, pwSurvivalTime7$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime7CodeBased$kappa, pwSurvivalTime7$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime7CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime7$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime7CodeBased$delayedResponseAllowed, pwSurvivalTime7$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime7CodeBased$delayedResponseEnabled, pwSurvivalTime7$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime7), "character") - df <- as.data.frame(pwSurvivalTime7) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime7) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime8 <- getPiecewiseSurvivalTime(piecewiseSurvivalTime = list("0 - 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime8) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - expect_warning(getPiecewiseSurvivalTime(piecewiseSurvivalTime = list("<6" = 0.025), hazardRatio = 0.8), - "Defined time period \"0 - <6\" will be ignored because 'piecewiseSurvivalTime' list has only 1 entry", - fixed = TRUE - ) - -}) - -test_plan_section("Testing Class 'AccrualTime'") - - -test_that("Testing 'getAccrualTime': isAccrualTimeEnabled()", { - expect_true(getAccrualTime()$isAccrualTimeEnabled()) - expect_true(getAccrualTime(maxNumberOfSubjects = 100)$isAccrualTimeEnabled()) - -}) - -test_that("Testing 'getAccrualTime': vector based definition", { - - accrualTime1 <- getAccrualTime( - accrualTime = c(0, 6, 9, 15), - accrualIntensity = c(15, 21, 27), maxNumberOfSubjects = 315 - ) - expect_equal(accrualTime1$accrualTime, c(0, 6, 9, 15)) - expect_equal(accrualTime1$accrualIntensity, c(15, 21, 27)) - expect_equal(accrualTime1$remainingTime, NA_real_) - - accrualTime2 <- getAccrualTime( - accrualTime = c(0, 6, 9), - accrualIntensity = c(15, 21, 27), maxNumberOfSubjects = 1000 - ) - expect_equal(accrualTime2$accrualTime, c(0, 6, 9, 40.37037)) - expect_equal(accrualTime2$accrualIntensity, c(15, 21, 27)) - expect_equal(accrualTime2$remainingTime, 31.37037) - - .skipTestIfDisabled() - - accrualTime3 <- getAccrualTime( - accrualTime = c(0, 12, 13, 14, 15, 16), - accrualIntensity = c(15, 21, 27, 33, 39, 45), maxNumberOfSubjects = 1405 - ) - expect_equal(accrualTime3$accrualTime, c(0, 12, 13, 14, 15, 16, 40.55555556)) - expect_equal(accrualTime3$accrualIntensity, c(15, 21, 27, 33, 39, 45)) - expect_equal(accrualTime3$remainingTime, 24.55555556) - - accrualTime4 <- getAccrualTime( - accrualTime = c(0, 24), - accrualIntensity = c(30), maxNumberOfSubjects = 720 - ) - - ## Comparison of the results of AccrualTime object 'accrualTime4' with expected results - expect_equal(accrualTime4$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime4$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime4$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime4$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime4$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime4$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime4$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime4$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime4$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime4$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime4$accrualTime, c(0, 24), label = paste0("c(", paste0(accrualTime4$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime4$accrualIntensity, 30, label = paste0("c(", paste0(accrualTime4$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime4$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime4$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime4$maxNumberOfSubjects, 720, label = paste0("c(", paste0(accrualTime4$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime4$remainingTime, NA_real_, label = paste0("c(", paste0(accrualTime4$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime4$piecewiseAccrualEnabled, FALSE, label = paste0("c(", paste0(accrualTime4$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime4), NA))) - expect_output(print(accrualTime4)$show()) - invisible(capture.output(expect_error(summary(accrualTime4), NA))) - expect_output(summary(accrualTime4)$show()) - accrualTime4CodeBased <- eval(parse(text = getObjectRCode(accrualTime4, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime4CodeBased$endOfAccrualIsUserDefined, accrualTime4$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime4CodeBased$followUpTimeMustBeUserDefined, accrualTime4$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime4CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime4$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime4CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime4$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime4CodeBased$absoluteAccrualIntensityEnabled, accrualTime4$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime4CodeBased$accrualTime, accrualTime4$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime4CodeBased$accrualIntensity, accrualTime4$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime4CodeBased$accrualIntensityRelative, accrualTime4$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime4CodeBased$maxNumberOfSubjects, accrualTime4$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime4CodeBased$remainingTime, accrualTime4$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime4CodeBased$piecewiseAccrualEnabled, accrualTime4$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime4), "character") - df <- as.data.frame(accrualTime4) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime4) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - accrualTime5 <- getAccrualTime( - accrualTime = c(0, 24, 30), - accrualIntensity = c(30, 45) - ) - - ## Comparison of the results of AccrualTime object 'accrualTime5' with expected results - expect_equal(accrualTime5$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime5$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime5$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime5$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime5$maxNumberOfSubjectsIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime5$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime5$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime5$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime5$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime5$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime5$accrualTime, c(0, 24, 30), label = paste0("c(", paste0(accrualTime5$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime5$accrualIntensity, c(30, 45), label = paste0("c(", paste0(accrualTime5$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime5$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime5$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime5$maxNumberOfSubjects, 990, label = paste0("c(", paste0(accrualTime5$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime5$remainingTime, 6, label = paste0("c(", paste0(accrualTime5$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime5$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime5$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime5), NA))) - expect_output(print(accrualTime5)$show()) - invisible(capture.output(expect_error(summary(accrualTime5), NA))) - expect_output(summary(accrualTime5)$show()) - accrualTime5CodeBased <- eval(parse(text = getObjectRCode(accrualTime5, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime5CodeBased$endOfAccrualIsUserDefined, accrualTime5$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime5CodeBased$followUpTimeMustBeUserDefined, accrualTime5$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime5CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime5$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime5CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime5$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime5CodeBased$absoluteAccrualIntensityEnabled, accrualTime5$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime5CodeBased$accrualTime, accrualTime5$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime5CodeBased$accrualIntensity, accrualTime5$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime5CodeBased$accrualIntensityRelative, accrualTime5$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime5CodeBased$maxNumberOfSubjects, accrualTime5$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime5CodeBased$remainingTime, accrualTime5$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime5CodeBased$piecewiseAccrualEnabled, accrualTime5$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime5), "character") - df <- as.data.frame(accrualTime5) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime5) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - accrualTime6 <- getAccrualTime( - accrualTime = c(0, 24, 30), - accrualIntensity = c(20, 25, 45), maxNumberOfSubjects = 720 - ) - - ## Comparison of the results of AccrualTime object 'accrualTime6' with expected results - expect_equal(accrualTime6$endOfAccrualIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime6$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime6$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime6$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime6$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime6$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime6$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime6$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime6$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime6$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime6$accrualTime, c(0, 24, 30, 32), label = paste0("c(", paste0(accrualTime6$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime6$accrualIntensity, c(20, 25, 45), label = paste0("c(", paste0(accrualTime6$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime6$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime6$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime6$maxNumberOfSubjects, 720, label = paste0("c(", paste0(accrualTime6$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime6$remainingTime, 2, label = paste0("c(", paste0(accrualTime6$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime6$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime6$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime6), NA))) - expect_output(print(accrualTime6)$show()) - invisible(capture.output(expect_error(summary(accrualTime6), NA))) - expect_output(summary(accrualTime6)$show()) - accrualTime6CodeBased <- eval(parse(text = getObjectRCode(accrualTime6, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime6CodeBased$endOfAccrualIsUserDefined, accrualTime6$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime6CodeBased$followUpTimeMustBeUserDefined, accrualTime6$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime6CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime6$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime6CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime6$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime6CodeBased$absoluteAccrualIntensityEnabled, accrualTime6$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime6CodeBased$accrualTime, accrualTime6$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime6CodeBased$accrualIntensity, accrualTime6$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime6CodeBased$accrualIntensityRelative, accrualTime6$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime6CodeBased$maxNumberOfSubjects, accrualTime6$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime6CodeBased$remainingTime, accrualTime6$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime6CodeBased$piecewiseAccrualEnabled, accrualTime6$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime6), "character") - df <- as.data.frame(accrualTime6) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime6) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - accrualTime8 <- getAccrualTime(accrualTime = 0, accrualIntensity = 15, maxNumberOfSubjects = 1000) - - ## Comparison of the results of AccrualTime object 'accrualTime8' with expected results - expect_equal(accrualTime8$endOfAccrualIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime8$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime8$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime8$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime8$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime8$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime8$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime8$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime8$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime8$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime8$accrualTime, c(0, 66.666667), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime8$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime8$accrualIntensity, 15, label = paste0("c(", paste0(accrualTime8$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime8$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime8$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime8$maxNumberOfSubjects, 1000, label = paste0("c(", paste0(accrualTime8$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime8$remainingTime, 66.666667, tolerance = 1e-07, label = paste0("c(", paste0(accrualTime8$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime8$piecewiseAccrualEnabled, FALSE, label = paste0("c(", paste0(accrualTime8$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime8), NA))) - expect_output(print(accrualTime8)$show()) - invisible(capture.output(expect_error(summary(accrualTime8), NA))) - expect_output(summary(accrualTime8)$show()) - accrualTime8CodeBased <- eval(parse(text = getObjectRCode(accrualTime8, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime8CodeBased$endOfAccrualIsUserDefined, accrualTime8$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime8CodeBased$followUpTimeMustBeUserDefined, accrualTime8$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime8CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime8$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime8CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime8$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime8CodeBased$absoluteAccrualIntensityEnabled, accrualTime8$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime8CodeBased$accrualTime, accrualTime8$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime8CodeBased$accrualIntensity, accrualTime8$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime8CodeBased$accrualIntensityRelative, accrualTime8$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime8CodeBased$maxNumberOfSubjects, accrualTime8$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime8CodeBased$remainingTime, accrualTime8$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime8CodeBased$piecewiseAccrualEnabled, accrualTime8$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime8), "character") - df <- as.data.frame(accrualTime8) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime8) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - accrualTime9 <- getAccrualTime(accrualTime = c(0, 5), accrualIntensity = 15) - - ## Comparison of the results of AccrualTime object 'accrualTime9' with expected results - expect_equal(accrualTime9$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime9$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime9$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime9$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime9$maxNumberOfSubjectsIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime9$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime9$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime9$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime9$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime9$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime9$accrualTime, c(0, 5), label = paste0("c(", paste0(accrualTime9$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime9$accrualIntensity, 15, label = paste0("c(", paste0(accrualTime9$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime9$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime9$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime9$maxNumberOfSubjects, 75, label = paste0("c(", paste0(accrualTime9$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime9$remainingTime, 5, label = paste0("c(", paste0(accrualTime9$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime9$piecewiseAccrualEnabled, FALSE, label = paste0("c(", paste0(accrualTime9$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime9), NA))) - expect_output(print(accrualTime9)$show()) - invisible(capture.output(expect_error(summary(accrualTime9), NA))) - expect_output(summary(accrualTime9)$show()) - accrualTime9CodeBased <- eval(parse(text = getObjectRCode(accrualTime9, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime9CodeBased$endOfAccrualIsUserDefined, accrualTime9$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime9CodeBased$followUpTimeMustBeUserDefined, accrualTime9$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime9CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime9$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime9CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime9$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime9CodeBased$absoluteAccrualIntensityEnabled, accrualTime9$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime9CodeBased$accrualTime, accrualTime9$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime9CodeBased$accrualIntensity, accrualTime9$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime9CodeBased$accrualIntensityRelative, accrualTime9$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime9CodeBased$maxNumberOfSubjects, accrualTime9$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime9CodeBased$remainingTime, accrualTime9$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime9CodeBased$piecewiseAccrualEnabled, accrualTime9$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime9), "character") - df <- as.data.frame(accrualTime9) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime9) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - accrualTime10 <- getAccrualTime(accrualTime = 0, accrualIntensity = 15, maxNumberOfSubjects = 10) - - ## Comparison of the results of AccrualTime object 'accrualTime10' with expected results - expect_equal(accrualTime10$endOfAccrualIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime10$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime10$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime10$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime10$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime10$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime10$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime10$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime10$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime10$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime10$accrualTime, c(0, 0.66666667), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime10$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime10$accrualIntensity, 15, label = paste0("c(", paste0(accrualTime10$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime10$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime10$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime10$maxNumberOfSubjects, 10, label = paste0("c(", paste0(accrualTime10$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime10$remainingTime, 0.66666667, tolerance = 1e-07, label = paste0("c(", paste0(accrualTime10$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime10$piecewiseAccrualEnabled, FALSE, label = paste0("c(", paste0(accrualTime10$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime10), NA))) - expect_output(print(accrualTime10)$show()) - invisible(capture.output(expect_error(summary(accrualTime10), NA))) - expect_output(summary(accrualTime10)$show()) - accrualTime10CodeBased <- eval(parse(text = getObjectRCode(accrualTime10, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime10CodeBased$endOfAccrualIsUserDefined, accrualTime10$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime10CodeBased$followUpTimeMustBeUserDefined, accrualTime10$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime10CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime10$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime10CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime10$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime10CodeBased$absoluteAccrualIntensityEnabled, accrualTime10$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime10CodeBased$accrualTime, accrualTime10$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime10CodeBased$accrualIntensity, accrualTime10$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime10CodeBased$accrualIntensityRelative, accrualTime10$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime10CodeBased$maxNumberOfSubjects, accrualTime10$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime10CodeBased$remainingTime, accrualTime10$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime10CodeBased$piecewiseAccrualEnabled, accrualTime10$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime10), "character") - df <- as.data.frame(accrualTime10) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime10) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - accrualTime11 <- getAccrualTime(accrualTime = c(0, 5), accrualIntensity = 15, maxNumberOfSubjects = 75) - - ## Comparison of the results of AccrualTime object 'accrualTime11' with expected results - expect_equal(accrualTime11$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime11$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime11$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime11$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime11$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime11$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime11$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime11$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime11$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime11$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime11$accrualTime, c(0, 5), label = paste0("c(", paste0(accrualTime11$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime11$accrualIntensity, 15, label = paste0("c(", paste0(accrualTime11$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime11$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime11$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime11$maxNumberOfSubjects, 75, label = paste0("c(", paste0(accrualTime11$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime11$remainingTime, NA_real_, label = paste0("c(", paste0(accrualTime11$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime11$piecewiseAccrualEnabled, FALSE, label = paste0("c(", paste0(accrualTime11$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime11), NA))) - expect_output(print(accrualTime11)$show()) - invisible(capture.output(expect_error(summary(accrualTime11), NA))) - expect_output(summary(accrualTime11)$show()) - accrualTime11CodeBased <- eval(parse(text = getObjectRCode(accrualTime11, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime11CodeBased$endOfAccrualIsUserDefined, accrualTime11$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime11CodeBased$followUpTimeMustBeUserDefined, accrualTime11$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime11CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime11$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime11CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime11$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime11CodeBased$absoluteAccrualIntensityEnabled, accrualTime11$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime11CodeBased$accrualTime, accrualTime11$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime11CodeBased$accrualIntensity, accrualTime11$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime11CodeBased$accrualIntensityRelative, accrualTime11$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime11CodeBased$maxNumberOfSubjects, accrualTime11$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime11CodeBased$remainingTime, accrualTime11$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime11CodeBased$piecewiseAccrualEnabled, accrualTime11$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime11), "character") - df <- as.data.frame(accrualTime11) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime11) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - accrualTime12 <- getAccrualTime(accrualTime = c(0, 6, 15, 25), accrualIntensity = c(22, 0, 33)) - - ## Comparison of the results of AccrualTime object 'accrualTime12' with expected results - expect_equal(accrualTime12$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime12$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime12$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime12$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime12$maxNumberOfSubjectsIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime12$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime12$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime12$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime12$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime12$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime12$accrualTime, c(0, 6, 15, 25), label = paste0("c(", paste0(accrualTime12$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime12$accrualIntensity, c(22, 0, 33), label = paste0("c(", paste0(accrualTime12$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime12$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime12$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime12$maxNumberOfSubjects, 462, label = paste0("c(", paste0(accrualTime12$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime12$remainingTime, 10, label = paste0("c(", paste0(accrualTime12$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime12$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime12$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime12), NA))) - expect_output(print(accrualTime12)$show()) - invisible(capture.output(expect_error(summary(accrualTime12), NA))) - expect_output(summary(accrualTime12)$show()) - accrualTime12CodeBased <- eval(parse(text = getObjectRCode(accrualTime12, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime12CodeBased$endOfAccrualIsUserDefined, accrualTime12$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime12CodeBased$followUpTimeMustBeUserDefined, accrualTime12$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime12CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime12$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime12CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime12$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime12CodeBased$absoluteAccrualIntensityEnabled, accrualTime12$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime12CodeBased$accrualTime, accrualTime12$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime12CodeBased$accrualIntensity, accrualTime12$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime12CodeBased$accrualIntensityRelative, accrualTime12$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime12CodeBased$maxNumberOfSubjects, accrualTime12$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime12CodeBased$remainingTime, accrualTime12$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime12CodeBased$piecewiseAccrualEnabled, accrualTime12$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime12), "character") - df <- as.data.frame(accrualTime12) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime12) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - accrualTime13 <- getAccrualTime(accrualTime = c(0, 6), accrualIntensity = c(22, 33), maxNumberOfSubjects = 1000) - - ## Comparison of the results of AccrualTime object 'accrualTime13' with expected results - expect_equal(accrualTime13$endOfAccrualIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime13$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime13$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime13$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime13$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime13$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime13$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime13$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime13$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime13$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime13$accrualTime, c(0, 6, 32.30303), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime13$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime13$accrualIntensity, c(22, 33), label = paste0("c(", paste0(accrualTime13$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime13$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime13$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime13$maxNumberOfSubjects, 1000, label = paste0("c(", paste0(accrualTime13$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime13$remainingTime, 26.30303, tolerance = 1e-07, label = paste0("c(", paste0(accrualTime13$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime13$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime13$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime13), NA))) - expect_output(print(accrualTime13)$show()) - invisible(capture.output(expect_error(summary(accrualTime13), NA))) - expect_output(summary(accrualTime13)$show()) - accrualTime13CodeBased <- eval(parse(text = getObjectRCode(accrualTime13, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime13CodeBased$endOfAccrualIsUserDefined, accrualTime13$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime13CodeBased$followUpTimeMustBeUserDefined, accrualTime13$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime13CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime13$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime13CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime13$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime13CodeBased$absoluteAccrualIntensityEnabled, accrualTime13$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime13CodeBased$accrualTime, accrualTime13$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime13CodeBased$accrualIntensity, accrualTime13$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime13CodeBased$accrualIntensityRelative, accrualTime13$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime13CodeBased$maxNumberOfSubjects, accrualTime13$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime13CodeBased$remainingTime, accrualTime13$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime13CodeBased$piecewiseAccrualEnabled, accrualTime13$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime13), "character") - df <- as.data.frame(accrualTime13) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime13) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - -}) - -test_that("Testing 'getAccrualTime': test absolute and relative definition", { - - # @refFS[Tab.]{fs:tab:output:getAccrualTime} - accrualTime1 <- getAccrualTime( - accrualTime = c(0, 6, 30), - accrualIntensity = c(22, 33), maxNumberOfSubjects = 924 - ) - - ## Comparison of the results of AccrualTime object 'accrualTime1' with expected results - expect_equal(accrualTime1$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime1$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime1$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime1$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime1$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime1$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime1$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime1$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime1$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime1$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime1$accrualTime, c(0, 6, 30), label = paste0("c(", paste0(accrualTime1$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime1$accrualIntensity, c(22, 33), label = paste0("c(", paste0(accrualTime1$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime1$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime1$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime1$maxNumberOfSubjects, 924, label = paste0("c(", paste0(accrualTime1$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime1$remainingTime, NA_real_, label = paste0("c(", paste0(accrualTime1$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime1$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime1$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime1), NA))) - expect_output(print(accrualTime1)$show()) - invisible(capture.output(expect_error(summary(accrualTime1), NA))) - expect_output(summary(accrualTime1)$show()) - accrualTime1CodeBased <- eval(parse(text = getObjectRCode(accrualTime1, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime1CodeBased$endOfAccrualIsUserDefined, accrualTime1$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime1CodeBased$followUpTimeMustBeUserDefined, accrualTime1$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime1CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime1$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime1CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime1$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime1CodeBased$absoluteAccrualIntensityEnabled, accrualTime1$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime1CodeBased$accrualTime, accrualTime1$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime1CodeBased$accrualIntensity, accrualTime1$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime1CodeBased$accrualIntensityRelative, accrualTime1$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime1CodeBased$maxNumberOfSubjects, accrualTime1$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime1CodeBased$remainingTime, accrualTime1$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime1CodeBased$piecewiseAccrualEnabled, accrualTime1$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime1), "character") - df <- as.data.frame(accrualTime1) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime1) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - accrualTime2 <- getAccrualTime(list( - "0 - <6" = 22, - "6 - <=30" = 33 - ), - maxNumberOfSubjects = 924 - ) - - ## Comparison of the results of AccrualTime object 'accrualTime2' with expected results - expect_equal(accrualTime2$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime2$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime2$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime2$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime2$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime2$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime2$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime2$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime2$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime2$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime2$accrualTime, c(0, 6, 30), label = paste0("c(", paste0(accrualTime2$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime2$accrualIntensity, c(22, 33), label = paste0("c(", paste0(accrualTime2$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime2$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime2$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime2$maxNumberOfSubjects, 924, label = paste0("c(", paste0(accrualTime2$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime2$remainingTime, NA_real_, label = paste0("c(", paste0(accrualTime2$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime2$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime2$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime2), NA))) - expect_output(print(accrualTime2)$show()) - invisible(capture.output(expect_error(summary(accrualTime2), NA))) - expect_output(summary(accrualTime2)$show()) - accrualTime2CodeBased <- eval(parse(text = getObjectRCode(accrualTime2, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime2CodeBased$endOfAccrualIsUserDefined, accrualTime2$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime2CodeBased$followUpTimeMustBeUserDefined, accrualTime2$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime2CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime2$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime2CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime2$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime2CodeBased$absoluteAccrualIntensityEnabled, accrualTime2$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime2CodeBased$accrualTime, accrualTime2$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime2CodeBased$accrualIntensity, accrualTime2$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime2CodeBased$accrualIntensityRelative, accrualTime2$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime2CodeBased$maxNumberOfSubjects, accrualTime2$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime2CodeBased$remainingTime, accrualTime2$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime2CodeBased$piecewiseAccrualEnabled, accrualTime2$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime2), "character") - df <- as.data.frame(accrualTime2) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime2) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - .skipTestIfDisabled() - - accrualTime3 <- getAccrualTime( - accrualTime = c(0, 6, 30), - accrualIntensity = c(0.22, 0.33), maxNumberOfSubjects = 1000 - ) - - ## Comparison of the results of AccrualTime object 'accrualTime3' with expected results - expect_equal(accrualTime3$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime3$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime3$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime3$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime3$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime3$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime3$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime3$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime3$absoluteAccrualIntensityEnabled, FALSE, label = paste0("c(", paste0(accrualTime3$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime3$accrualTime, c(0, 6, 30), label = paste0("c(", paste0(accrualTime3$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime3$accrualIntensity, c(23.809524, 35.714286), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime3$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime3$accrualIntensityRelative, c(0.22, 0.33), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime3$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime3$maxNumberOfSubjects, 1000, label = paste0("c(", paste0(accrualTime3$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime3$remainingTime, 24, label = paste0("c(", paste0(accrualTime3$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime3$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime3$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime3), NA))) - expect_output(print(accrualTime3)$show()) - invisible(capture.output(expect_error(summary(accrualTime3), NA))) - expect_output(summary(accrualTime3)$show()) - accrualTime3CodeBased <- eval(parse(text = getObjectRCode(accrualTime3, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime3CodeBased$endOfAccrualIsUserDefined, accrualTime3$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime3CodeBased$followUpTimeMustBeUserDefined, accrualTime3$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime3CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime3$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime3CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime3$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime3CodeBased$absoluteAccrualIntensityEnabled, accrualTime3$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime3CodeBased$accrualTime, accrualTime3$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime3CodeBased$accrualIntensity, accrualTime3$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime3CodeBased$accrualIntensityRelative, accrualTime3$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime3CodeBased$maxNumberOfSubjects, accrualTime3$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime3CodeBased$remainingTime, accrualTime3$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime3CodeBased$piecewiseAccrualEnabled, accrualTime3$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime3), "character") - df <- as.data.frame(accrualTime3) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime3) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - accrualTime4 <- getAccrualTime(list( - "0 - <6" = 0.22, - "6 - <=30" = 0.33 - ), - maxNumberOfSubjects = 1000 - ) - - ## Comparison of the results of AccrualTime object 'accrualTime4' with expected results - expect_equal(accrualTime4$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime4$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime4$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime4$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime4$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime4$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime4$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime4$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime4$absoluteAccrualIntensityEnabled, FALSE, label = paste0("c(", paste0(accrualTime4$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime4$accrualTime, c(0, 6, 30), label = paste0("c(", paste0(accrualTime4$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime4$accrualIntensity, c(23.809524, 35.714286), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime4$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime4$accrualIntensityRelative, c(0.22, 0.33), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime4$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime4$maxNumberOfSubjects, 1000, label = paste0("c(", paste0(accrualTime4$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime4$remainingTime, 24, label = paste0("c(", paste0(accrualTime4$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime4$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime4$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime4), NA))) - expect_output(print(accrualTime4)$show()) - invisible(capture.output(expect_error(summary(accrualTime4), NA))) - expect_output(summary(accrualTime4)$show()) - accrualTime4CodeBased <- eval(parse(text = getObjectRCode(accrualTime4, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime4CodeBased$endOfAccrualIsUserDefined, accrualTime4$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime4CodeBased$followUpTimeMustBeUserDefined, accrualTime4$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime4CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime4$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime4CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime4$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime4CodeBased$absoluteAccrualIntensityEnabled, accrualTime4$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime4CodeBased$accrualTime, accrualTime4$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime4CodeBased$accrualIntensity, accrualTime4$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime4CodeBased$accrualIntensityRelative, accrualTime4$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime4CodeBased$maxNumberOfSubjects, accrualTime4$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime4CodeBased$remainingTime, accrualTime4$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime4CodeBased$piecewiseAccrualEnabled, accrualTime4$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime4), "character") - df <- as.data.frame(accrualTime4) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime4) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - accrualTime5 <- getAccrualTime(accrualTime = c(0, 6, 30), accrualIntensity = c(22, 33)) - - ## Comparison of the results of AccrualTime object 'accrualTime5' with expected results - expect_equal(accrualTime5$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime5$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime5$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime5$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime5$maxNumberOfSubjectsIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime5$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime5$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime5$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime5$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime5$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime5$accrualTime, c(0, 6, 30), label = paste0("c(", paste0(accrualTime5$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime5$accrualIntensity, c(22, 33), label = paste0("c(", paste0(accrualTime5$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime5$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime5$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime5$maxNumberOfSubjects, 924, label = paste0("c(", paste0(accrualTime5$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime5$remainingTime, 24, label = paste0("c(", paste0(accrualTime5$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime5$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime5$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime5), NA))) - expect_output(print(accrualTime5)$show()) - invisible(capture.output(expect_error(summary(accrualTime5), NA))) - expect_output(summary(accrualTime5)$show()) - accrualTime5CodeBased <- eval(parse(text = getObjectRCode(accrualTime5, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime5CodeBased$endOfAccrualIsUserDefined, accrualTime5$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime5CodeBased$followUpTimeMustBeUserDefined, accrualTime5$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime5CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime5$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime5CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime5$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime5CodeBased$absoluteAccrualIntensityEnabled, accrualTime5$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime5CodeBased$accrualTime, accrualTime5$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime5CodeBased$accrualIntensity, accrualTime5$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime5CodeBased$accrualIntensityRelative, accrualTime5$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime5CodeBased$maxNumberOfSubjects, accrualTime5$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime5CodeBased$remainingTime, accrualTime5$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime5CodeBased$piecewiseAccrualEnabled, accrualTime5$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime5), "character") - df <- as.data.frame(accrualTime5) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime5) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - accrualTime6 <- getAccrualTime(list( - "0 - <6" = 22, - "6 - <=30" = 33 - )) - - ## Comparison of the results of AccrualTime object 'accrualTime6' with expected results - expect_equal(accrualTime6$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime6$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime6$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime6$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime6$maxNumberOfSubjectsIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime6$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime6$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime6$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime6$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime6$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime6$accrualTime, c(0, 6, 30), label = paste0("c(", paste0(accrualTime6$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime6$accrualIntensity, c(22, 33), label = paste0("c(", paste0(accrualTime6$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime6$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime6$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime6$maxNumberOfSubjects, 924, label = paste0("c(", paste0(accrualTime6$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime6$remainingTime, 24, label = paste0("c(", paste0(accrualTime6$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime6$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime6$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime6), NA))) - expect_output(print(accrualTime6)$show()) - invisible(capture.output(expect_error(summary(accrualTime6), NA))) - expect_output(summary(accrualTime6)$show()) - accrualTime6CodeBased <- eval(parse(text = getObjectRCode(accrualTime6, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime6CodeBased$endOfAccrualIsUserDefined, accrualTime6$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime6CodeBased$followUpTimeMustBeUserDefined, accrualTime6$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime6CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime6$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime6CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime6$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime6CodeBased$absoluteAccrualIntensityEnabled, accrualTime6$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime6CodeBased$accrualTime, accrualTime6$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime6CodeBased$accrualIntensity, accrualTime6$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime6CodeBased$accrualIntensityRelative, accrualTime6$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime6CodeBased$maxNumberOfSubjects, accrualTime6$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime6CodeBased$remainingTime, accrualTime6$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime6CodeBased$piecewiseAccrualEnabled, accrualTime6$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime6), "character") - df <- as.data.frame(accrualTime6) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime6) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - accrualTime7 <- getAccrualTime(accrualTime = c(0, 6, 30), accrualIntensity = c(0.22, 0.33)) - - ## Comparison of the results of AccrualTime object 'accrualTime7' with expected results - expect_equal(accrualTime7$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime7$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime7$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime7$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime7$maxNumberOfSubjectsIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime7$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime7$maxNumberOfSubjectsCanBeCalculatedDirectly, FALSE, label = paste0("c(", paste0(accrualTime7$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime7$absoluteAccrualIntensityEnabled, FALSE, label = paste0("c(", paste0(accrualTime7$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime7$accrualTime, c(0, 6, 30), label = paste0("c(", paste0(accrualTime7$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime7$accrualIntensity, c(0.22, 0.33), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime7$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime7$accrualIntensityRelative, c(0.22, 0.33), label = paste0("c(", paste0(accrualTime7$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime7$maxNumberOfSubjects, NA_real_, label = paste0("c(", paste0(accrualTime7$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime7$remainingTime, NA_real_, label = paste0("c(", paste0(accrualTime7$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime7$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime7$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime7), NA))) - expect_output(print(accrualTime7)$show()) - invisible(capture.output(expect_error(summary(accrualTime7), NA))) - expect_output(summary(accrualTime7)$show()) - accrualTime7CodeBased <- eval(parse(text = getObjectRCode(accrualTime7, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime7CodeBased$endOfAccrualIsUserDefined, accrualTime7$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime7CodeBased$followUpTimeMustBeUserDefined, accrualTime7$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime7CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime7$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime7CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime7$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime7CodeBased$absoluteAccrualIntensityEnabled, accrualTime7$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime7CodeBased$accrualTime, accrualTime7$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime7CodeBased$accrualIntensity, accrualTime7$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime7CodeBased$accrualIntensityRelative, accrualTime7$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime7CodeBased$maxNumberOfSubjects, accrualTime7$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime7CodeBased$remainingTime, accrualTime7$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime7CodeBased$piecewiseAccrualEnabled, accrualTime7$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime7), "character") - df <- as.data.frame(accrualTime7) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime7) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - accrualTime8 <- getAccrualTime(list( - "0 - <6" = 0.22, - "6 - <=30" = 0.33 - )) - - ## Comparison of the results of AccrualTime object 'accrualTime8' with expected results - expect_equal(accrualTime8$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime8$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime8$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime8$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime8$maxNumberOfSubjectsIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime8$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime8$maxNumberOfSubjectsCanBeCalculatedDirectly, FALSE, label = paste0("c(", paste0(accrualTime8$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime8$absoluteAccrualIntensityEnabled, FALSE, label = paste0("c(", paste0(accrualTime8$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime8$accrualTime, c(0, 6, 30), label = paste0("c(", paste0(accrualTime8$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime8$accrualIntensity, c(0.22, 0.33), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime8$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime8$accrualIntensityRelative, c(0.22, 0.33), label = paste0("c(", paste0(accrualTime8$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime8$maxNumberOfSubjects, NA_real_, label = paste0("c(", paste0(accrualTime8$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime8$remainingTime, NA_real_, label = paste0("c(", paste0(accrualTime8$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime8$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime8$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime8), NA))) - expect_output(print(accrualTime8)$show()) - invisible(capture.output(expect_error(summary(accrualTime8), NA))) - expect_output(summary(accrualTime8)$show()) - accrualTime8CodeBased <- eval(parse(text = getObjectRCode(accrualTime8, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime8CodeBased$endOfAccrualIsUserDefined, accrualTime8$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime8CodeBased$followUpTimeMustBeUserDefined, accrualTime8$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime8CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime8$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime8CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime8$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime8CodeBased$absoluteAccrualIntensityEnabled, accrualTime8$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime8CodeBased$accrualTime, accrualTime8$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime8CodeBased$accrualIntensity, accrualTime8$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime8CodeBased$accrualIntensityRelative, accrualTime8$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime8CodeBased$maxNumberOfSubjects, accrualTime8$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime8CodeBased$remainingTime, accrualTime8$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime8CodeBased$piecewiseAccrualEnabled, accrualTime8$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime8), "character") - df <- as.data.frame(accrualTime8) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime8) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - accrualTime9 <- getAccrualTime( - accrualTime = c(0, 6), - accrualIntensity = c(22, 33), maxNumberOfSubjects = 1000 - ) - - ## Comparison of the results of AccrualTime object 'accrualTime9' with expected results - expect_equal(accrualTime9$endOfAccrualIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime9$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime9$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime9$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime9$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime9$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime9$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime9$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime9$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime9$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime9$accrualTime, c(0, 6, 32.30303), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime9$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime9$accrualIntensity, c(22, 33), label = paste0("c(", paste0(accrualTime9$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime9$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime9$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime9$maxNumberOfSubjects, 1000, label = paste0("c(", paste0(accrualTime9$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime9$remainingTime, 26.30303, tolerance = 1e-07, label = paste0("c(", paste0(accrualTime9$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime9$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime9$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime9), NA))) - expect_output(print(accrualTime9)$show()) - invisible(capture.output(expect_error(summary(accrualTime9), NA))) - expect_output(summary(accrualTime9)$show()) - accrualTime9CodeBased <- eval(parse(text = getObjectRCode(accrualTime9, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime9CodeBased$endOfAccrualIsUserDefined, accrualTime9$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime9CodeBased$followUpTimeMustBeUserDefined, accrualTime9$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime9CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime9$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime9CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime9$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime9CodeBased$absoluteAccrualIntensityEnabled, accrualTime9$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime9CodeBased$accrualTime, accrualTime9$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime9CodeBased$accrualIntensity, accrualTime9$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime9CodeBased$accrualIntensityRelative, accrualTime9$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime9CodeBased$maxNumberOfSubjects, accrualTime9$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime9CodeBased$remainingTime, accrualTime9$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime9CodeBased$piecewiseAccrualEnabled, accrualTime9$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime9), "character") - df <- as.data.frame(accrualTime9) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime9) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - accrualTime10 <- getAccrualTime(list( - "0 - <6" = 22, - "6" = 33 - ), - maxNumberOfSubjects = 1000 - ) - - ## Comparison of the results of AccrualTime object 'accrualTime10' with expected results - expect_equal(accrualTime10$endOfAccrualIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime10$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime10$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime10$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime10$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime10$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime10$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime10$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime10$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime10$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime10$accrualTime, c(0, 6, 32.30303), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime10$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime10$accrualIntensity, c(22, 33), label = paste0("c(", paste0(accrualTime10$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime10$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime10$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime10$maxNumberOfSubjects, 1000, label = paste0("c(", paste0(accrualTime10$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime10$remainingTime, 26.30303, tolerance = 1e-07, label = paste0("c(", paste0(accrualTime10$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime10$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime10$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime10), NA))) - expect_output(print(accrualTime10)$show()) - invisible(capture.output(expect_error(summary(accrualTime10), NA))) - expect_output(summary(accrualTime10)$show()) - accrualTime10CodeBased <- eval(parse(text = getObjectRCode(accrualTime10, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime10CodeBased$endOfAccrualIsUserDefined, accrualTime10$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime10CodeBased$followUpTimeMustBeUserDefined, accrualTime10$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime10CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime10$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime10CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime10$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime10CodeBased$absoluteAccrualIntensityEnabled, accrualTime10$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime10CodeBased$accrualTime, accrualTime10$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime10CodeBased$accrualIntensity, accrualTime10$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime10CodeBased$accrualIntensityRelative, accrualTime10$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime10CodeBased$maxNumberOfSubjects, accrualTime10$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime10CodeBased$remainingTime, accrualTime10$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime10CodeBased$piecewiseAccrualEnabled, accrualTime10$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime10), "character") - df <- as.data.frame(accrualTime10) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime10) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - accrualTime12 <- getAccrualTime(list( - "0 - <6" = 0.22, - "6 - <=30" = 0.33 - ), - maxNumberOfSubjects = 1000 - ) - - ## Comparison of the results of AccrualTime object 'accrualTime12' with expected results - expect_equal(accrualTime12$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime12$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime12$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime12$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime12$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime12$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime12$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime12$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime12$absoluteAccrualIntensityEnabled, FALSE, label = paste0("c(", paste0(accrualTime12$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime12$accrualTime, c(0, 6, 30), label = paste0("c(", paste0(accrualTime12$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime12$accrualIntensity, c(23.809524, 35.714286), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime12$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime12$accrualIntensityRelative, c(0.22, 0.33), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime12$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime12$maxNumberOfSubjects, 1000, label = paste0("c(", paste0(accrualTime12$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime12$remainingTime, 24, label = paste0("c(", paste0(accrualTime12$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime12$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime12$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime12), NA))) - expect_output(print(accrualTime12)$show()) - invisible(capture.output(expect_error(summary(accrualTime12), NA))) - expect_output(summary(accrualTime12)$show()) - accrualTime12CodeBased <- eval(parse(text = getObjectRCode(accrualTime12, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime12CodeBased$endOfAccrualIsUserDefined, accrualTime12$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime12CodeBased$followUpTimeMustBeUserDefined, accrualTime12$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime12CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime12$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime12CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime12$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime12CodeBased$absoluteAccrualIntensityEnabled, accrualTime12$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime12CodeBased$accrualTime, accrualTime12$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime12CodeBased$accrualIntensity, accrualTime12$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime12CodeBased$accrualIntensityRelative, accrualTime12$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime12CodeBased$maxNumberOfSubjects, accrualTime12$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime12CodeBased$remainingTime, accrualTime12$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime12CodeBased$piecewiseAccrualEnabled, accrualTime12$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime12), "character") - df <- as.data.frame(accrualTime12) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime12) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - accrualTime13 <- getAccrualTime(accrualTime = c(0, 6), accrualIntensity = c(22, 33)) - - ## Comparison of the results of AccrualTime object 'accrualTime13' with expected results - expect_equal(accrualTime13$endOfAccrualIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime13$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime13$followUpTimeMustBeUserDefined, TRUE, label = paste0("c(", paste0(accrualTime13$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime13$maxNumberOfSubjectsIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime13$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime13$maxNumberOfSubjectsCanBeCalculatedDirectly, FALSE, label = paste0("c(", paste0(accrualTime13$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime13$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime13$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime13$accrualTime, c(0, 6), label = paste0("c(", paste0(accrualTime13$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime13$accrualIntensity, c(22, 33), label = paste0("c(", paste0(accrualTime13$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime13$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime13$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime13$maxNumberOfSubjects, NA_real_, label = paste0("c(", paste0(accrualTime13$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime13$remainingTime, NA_real_, label = paste0("c(", paste0(accrualTime13$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime13$piecewiseAccrualEnabled, FALSE, label = paste0("c(", paste0(accrualTime13$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime13), NA))) - expect_output(print(accrualTime13)$show()) - invisible(capture.output(expect_error(summary(accrualTime13), NA))) - expect_output(summary(accrualTime13)$show()) - accrualTime13CodeBased <- eval(parse(text = getObjectRCode(accrualTime13, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime13CodeBased$endOfAccrualIsUserDefined, accrualTime13$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime13CodeBased$followUpTimeMustBeUserDefined, accrualTime13$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime13CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime13$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime13CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime13$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime13CodeBased$absoluteAccrualIntensityEnabled, accrualTime13$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime13CodeBased$accrualTime, accrualTime13$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime13CodeBased$accrualIntensity, accrualTime13$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime13CodeBased$accrualIntensityRelative, accrualTime13$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime13CodeBased$maxNumberOfSubjects, accrualTime13$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime13CodeBased$remainingTime, accrualTime13$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime13CodeBased$piecewiseAccrualEnabled, accrualTime13$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime13), "character") - df <- as.data.frame(accrualTime13) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime13) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - accrualTime14 <- getAccrualTime(list( - "0 - <6" = 22, - "6 - <=30" = 33 - )) - - ## Comparison of the results of AccrualTime object 'accrualTime14' with expected results - expect_equal(accrualTime14$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime14$endOfAccrualIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime14$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime14$followUpTimeMustBeUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime14$maxNumberOfSubjectsIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime14$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) - expect_equal(accrualTime14$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime14$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) - expect_equal(accrualTime14$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime14$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) - expect_equal(accrualTime14$accrualTime, c(0, 6, 30), label = paste0("c(", paste0(accrualTime14$accrualTime, collapse = ", "), ")")) - expect_equal(accrualTime14$accrualIntensity, c(22, 33), label = paste0("c(", paste0(accrualTime14$accrualIntensity, collapse = ", "), ")")) - expect_equal(accrualTime14$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime14$accrualIntensityRelative, collapse = ", "), ")")) - expect_equal(accrualTime14$maxNumberOfSubjects, 924, label = paste0("c(", paste0(accrualTime14$maxNumberOfSubjects, collapse = ", "), ")")) - expect_equal(accrualTime14$remainingTime, 24, label = paste0("c(", paste0(accrualTime14$remainingTime, collapse = ", "), ")")) - expect_equal(accrualTime14$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime14$piecewiseAccrualEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(accrualTime14), NA))) - expect_output(print(accrualTime14)$show()) - invisible(capture.output(expect_error(summary(accrualTime14), NA))) - expect_output(summary(accrualTime14)$show()) - accrualTime14CodeBased <- eval(parse(text = getObjectRCode(accrualTime14, stringWrapParagraphWidth = NULL))) - expect_equal(accrualTime14CodeBased$endOfAccrualIsUserDefined, accrualTime14$endOfAccrualIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime14CodeBased$followUpTimeMustBeUserDefined, accrualTime14$followUpTimeMustBeUserDefined, tolerance = 1e-07) - expect_equal(accrualTime14CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime14$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) - expect_equal(accrualTime14CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime14$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) - expect_equal(accrualTime14CodeBased$absoluteAccrualIntensityEnabled, accrualTime14$absoluteAccrualIntensityEnabled, tolerance = 1e-07) - expect_equal(accrualTime14CodeBased$accrualTime, accrualTime14$accrualTime, tolerance = 1e-07) - expect_equal(accrualTime14CodeBased$accrualIntensity, accrualTime14$accrualIntensity, tolerance = 1e-07) - expect_equal(accrualTime14CodeBased$accrualIntensityRelative, accrualTime14$accrualIntensityRelative, tolerance = 1e-07) - expect_equal(accrualTime14CodeBased$maxNumberOfSubjects, accrualTime14$maxNumberOfSubjects, tolerance = 1e-07) - expect_equal(accrualTime14CodeBased$remainingTime, accrualTime14$remainingTime, tolerance = 1e-07) - expect_equal(accrualTime14CodeBased$piecewiseAccrualEnabled, accrualTime14$piecewiseAccrualEnabled, tolerance = 1e-07) - expect_type(names(accrualTime14), "character") - df <- as.data.frame(accrualTime14) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(accrualTime14) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - -}) - -test_that("Testing 'getAccrualTime': check expected warnings and errors", { - - # @refFS[Tab.]{fs:tab:output:getAccrualTime} - expect_warning(getAccrualTime(accrualTime = c(0, 6), accrualIntensity = c(0.22, 0.33)), - paste0("The specified accrual time and intensity cannot be supplemented ", - "automatically with the missing information; therefore further calculations are not possible"), - fixed = TRUE - ) - - expect_warning(getAccrualTime(accrualTime = c(0, 24), accrualIntensity = c(30, 45), maxNumberOfSubjects = 720), - "Last accrual intensity value (45) ignored", - fixed = TRUE - ) - - .skipTestIfDisabled() - - suppressWarnings(expect_warning(getAccrualTime(accrualTime = c(0, 24, 30), - accrualIntensity = c(30, 45, 55), maxNumberOfSubjects = 720), - "Last 2 accrual intensity values (45, 55) ignored", - fixed = TRUE - )) - - suppressWarnings(expect_warning(getAccrualTime(accrualTime = c(0, 24, 30, 40), - accrualIntensity = c(30, 45, 55, 66), maxNumberOfSubjects = 720), - "Last 2 accrual time values (30, 40) ignored", - fixed = TRUE - )) - - suppressWarnings(expect_warning(getAccrualTime(accrualTime = c(0, 24, 30, 40), - accrualIntensity = c(30, 45, 55, 66), maxNumberOfSubjects = 720), - "Last 3 accrual intensity values (45, 55, 66) ignored", - fixed = TRUE - )) - - expect_warning(getAccrualTime(accrualTime = c(0, 6, 15, 25), accrualIntensity = c(0, 22, 33)), - "It makes no sense to start 'accrualIntensity' (0, 22, 33) with 0", - fixed = TRUE - ) - - expect_error(getAccrualTime(accrualTime = c(0, 6), accrualIntensity = c(0)), - "Illegal argument: at least one 'accrualIntensity' value must be > 0", - fixed = TRUE - ) - - expect_error(getAccrualTime( - accrualTime = c(0, 6, 30), accrualIntensity = c(22, 33), - maxNumberOfSubjects = 1000 - ), - paste0( - "Conflicting arguments: 'maxNumberOfSubjects' (1000) disagrees with the defined ", - "accrual time (0, 6, 30) and intensity: 6 * 22 + 24 * 33 = 924" - ), - fixed = TRUE - ) - -}) - -test_that("Testing 'getAccrualTime': list-wise definition", { - - accrualTime1 <- list( - "0 - <12" = 15, - "12 - <13" = 21, - "13 - <14" = 27, - "14 - <15" = 33, - "15 - <16" = 39, - ">=16" = 45 - ) - - # @refFS[Tab.]{fs:tab:output:getAccrualTime} - accrualTime4 <- getAccrualTime(accrualTime = accrualTime1, maxNumberOfSubjects = 1405) - expect_equal(accrualTime4$accrualTime, c(0, 12, 13, 14, 15, 16, 40.55555556)) - expect_equal(accrualTime4$accrualIntensity, c(15, 21, 27, 33, 39, 45)) - expect_equal(accrualTime4$remainingTime, 24.55555556) - - .skipTestIfDisabled() - - accrualTime2 <- list( - "0 - <12" = 15, - "12 - <13" = 21, - "13 - <14" = 27, - "14 - <15" = 33, - "15 - <16" = 39, - "16 - ?" = 45 - ) - accrualTime5 <- getAccrualTime(accrualTime = accrualTime2, maxNumberOfSubjects = 1405) - expect_equal(accrualTime5$accrualTime, c(0, 12, 13, 14, 15, 16, 40.55555556)) - expect_equal(accrualTime5$accrualIntensity, c(15, 21, 27, 33, 39, 45)) - expect_equal(accrualTime5$remainingTime, 24.55555556) - - accrualTime3 <- list( - "0 - <11" = 20, - "11 - <16" = 40, - ">=16" = 60 - ) - accrualTime6 <- getAccrualTime(accrualTime = accrualTime3, maxNumberOfSubjects = 800) - expect_equal(accrualTime6$accrualTime, c(0, 11, 16, 22.3333333)) - expect_equal(accrualTime6$accrualIntensity, c(20, 40, 60)) - expect_equal(accrualTime6$remainingTime, 6.33333333) - - accrualTime7 <- list( - "0 - <11" = 20, - "11 - <16" = 40, - "16 - ?" = 60 - ) - accrualTime8 <- getAccrualTime(accrualTime = accrualTime7, maxNumberOfSubjects = 800) - expect_equal(accrualTime8$accrualTime, c(0, 11, 16, 22.3333333)) - expect_equal(accrualTime8$accrualIntensity, c(20, 40, 60)) - expect_equal(accrualTime8$remainingTime, 6.33333333) - -}) - -test_that("Testing 'getPiecewiseSurvivalTime': mixed arguments", { - - # @refFS[Tab.]{fs:tab:output:getPiecewiseSurvivalTime} - pwSurvivalTime1 <- getPiecewiseSurvivalTime(median1 = 37, hazardRatio = 0.8) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime1' with expected results - expect_equal(pwSurvivalTime1$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime1$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$lambda1, 0.018733708, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime1$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$lambda2, 0.023417134, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime1$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime1$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime1$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime1$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$median1, 37, label = paste0("c(", paste0(pwSurvivalTime1$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$median2, 29.6, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime1$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime1$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime1$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime1$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime1$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime1$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime1$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime1), NA))) - expect_output(print(pwSurvivalTime1)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime1), NA))) - expect_output(summary(pwSurvivalTime1)$show()) - pwSurvivalTime1CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime1, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime1CodeBased$piecewiseSurvivalTime, pwSurvivalTime1$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$lambda1, pwSurvivalTime1$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$lambda2, pwSurvivalTime1$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$hazardRatio, pwSurvivalTime1$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$pi1, pwSurvivalTime1$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$pi2, pwSurvivalTime1$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$median1, pwSurvivalTime1$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$median2, pwSurvivalTime1$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$eventTime, pwSurvivalTime1$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$kappa, pwSurvivalTime1$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime1$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$delayedResponseAllowed, pwSurvivalTime1$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime1CodeBased$delayedResponseEnabled, pwSurvivalTime1$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime1), "character") - df <- as.data.frame(pwSurvivalTime1) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime1) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime2 <- getPiecewiseSurvivalTime(lambda1 = 0.01873371, median2 = 29.6) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime2' with expected results - expect_equal(pwSurvivalTime2$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime2$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$lambda1, 0.01873371, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$lambda2, 0.023417134, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$hazardRatio, 0.8000001, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime2$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime2$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$median1, 36.999995, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$median2, 29.6, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime2$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime2$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime2$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime2), NA))) - expect_output(print(pwSurvivalTime2)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime2), NA))) - expect_output(summary(pwSurvivalTime2)$show()) - pwSurvivalTime2CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime2, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime2CodeBased$piecewiseSurvivalTime, pwSurvivalTime2$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$lambda1, pwSurvivalTime2$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$lambda2, pwSurvivalTime2$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$hazardRatio, pwSurvivalTime2$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$pi1, pwSurvivalTime2$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$pi2, pwSurvivalTime2$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$median1, pwSurvivalTime2$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$median2, pwSurvivalTime2$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$eventTime, pwSurvivalTime2$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$kappa, pwSurvivalTime2$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime2$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$delayedResponseAllowed, pwSurvivalTime2$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime2CodeBased$delayedResponseEnabled, pwSurvivalTime2$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime2), "character") - df <- as.data.frame(pwSurvivalTime2) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime2) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - pwSurvivalTime3 <- getPiecewiseSurvivalTime(median1 = 37, lambda2 = 0.02341713) - - ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime3' with expected results - expect_equal(pwSurvivalTime3$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime3$piecewiseSurvivalTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$lambda1, 0.018733708, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime3$lambda1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$lambda2, 0.02341713, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime3$lambda2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$hazardRatio, 0.80000015, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime3$hazardRatio, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime3$pi1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime3$pi2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$median1, 37, label = paste0("c(", paste0(pwSurvivalTime3$median1, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$median2, 29.600006, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime3$median2, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime3$eventTime, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime3$kappa, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime3$piecewiseSurvivalEnabled, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime3$delayedResponseAllowed, collapse = ", "), ")")) - expect_equal(pwSurvivalTime3$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime3$delayedResponseEnabled, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(pwSurvivalTime3), NA))) - expect_output(print(pwSurvivalTime3)$show()) - invisible(capture.output(expect_error(summary(pwSurvivalTime3), NA))) - expect_output(summary(pwSurvivalTime3)$show()) - pwSurvivalTime3CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime3, stringWrapParagraphWidth = NULL))) - expect_equal(pwSurvivalTime3CodeBased$piecewiseSurvivalTime, pwSurvivalTime3$piecewiseSurvivalTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$lambda1, pwSurvivalTime3$lambda1, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$lambda2, pwSurvivalTime3$lambda2, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$hazardRatio, pwSurvivalTime3$hazardRatio, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$pi1, pwSurvivalTime3$pi1, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$pi2, pwSurvivalTime3$pi2, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$median1, pwSurvivalTime3$median1, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$median2, pwSurvivalTime3$median2, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$eventTime, pwSurvivalTime3$eventTime, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$kappa, pwSurvivalTime3$kappa, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime3$piecewiseSurvivalEnabled, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$delayedResponseAllowed, pwSurvivalTime3$delayedResponseAllowed, tolerance = 1e-07) - expect_equal(pwSurvivalTime3CodeBased$delayedResponseEnabled, pwSurvivalTime3$delayedResponseEnabled, tolerance = 1e-07) - expect_type(names(pwSurvivalTime3), "character") - df <- as.data.frame(pwSurvivalTime3) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(pwSurvivalTime3) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - expect_warning(getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), pi1 = 0.3), - "'hazardRatio' (0.6, 0.8) will be ignored because it will be calculated", - fixed = TRUE - ) -}) - +## | +## | *Unit tests* +## | +## | This file is part of the R package rpact: +## | Confirmatory Adaptive Clinical Trial Design and Analysis +## | +## | Author: Gernot Wassmer, PhD, and Friedrich Pahlke, PhD +## | Licensed under "GNU Lesser General Public License" version 3 +## | License text can be found here: https://www.r-project.org/Licenses/LGPL-3 +## | +## | RPACT company website: https://www.rpact.com +## | RPACT package website: https://www.rpact.org +## | +## | Contact us for information about our services: info@rpact.com +## | +## | File name: test-class_time.R +## | Creation date: 08 November 2023, 08:49:49 +## | File version: $Revision: 7940 $ +## | Last changed: $Date: 2024-05-27 15:47:41 +0200 (Mo, 27 Mai 2024) $ +## | Last changed by: $Author: pahlke $ +## | + +test_plan_section("Testing Class 'PiecewiseSurvivalTime'") + + +test_that("Testing 'getPiecewiseSurvivalTime': isPiecewiseSurvivalEnabled()", { + # @refFS[Tab.]{fs:tab:output:getPiecewiseSurvivalTime} + expect_false(getPiecewiseSurvivalTime()$isPiecewiseSurvivalEnabled()) + expect_false(getPiecewiseSurvivalTime(piecewiseSurvivalTime = NA)$isPiecewiseSurvivalEnabled()) +}) + +test_that("Testing 'getPiecewiseSurvivalTime': simple vector based definition", { + # @refFS[Tab.]{fs:tab:output:getPiecewiseSurvivalTime} + pwSurvivalTime1 <- getPiecewiseSurvivalTime(lambda2 = 0.5, hazardRatio = 0.8) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime1' with expected results + expect_equal(pwSurvivalTime1$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime1$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$lambda1, 0.4, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime1$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$lambda2, 0.5, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime1$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime1$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime1$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime1$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$median1, 1.732868, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime1$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$median2, 1.3862944, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime1$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime1$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime1$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime1$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime1$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime1$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime1), NA))) + expect_output(print(pwSurvivalTime1)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime1), NA))) + expect_output(summary(pwSurvivalTime1)$show()) + pwSurvivalTime1CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime1, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime1CodeBased$piecewiseSurvivalTime, pwSurvivalTime1$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$lambda1, pwSurvivalTime1$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$lambda2, pwSurvivalTime1$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$hazardRatio, pwSurvivalTime1$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$pi1, pwSurvivalTime1$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$pi2, pwSurvivalTime1$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$median1, pwSurvivalTime1$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$median2, pwSurvivalTime1$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$eventTime, pwSurvivalTime1$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$kappa, pwSurvivalTime1$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime1$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$delayedResponseAllowed, pwSurvivalTime1$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$delayedResponseEnabled, pwSurvivalTime1$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime1), "character") + df <- as.data.frame(pwSurvivalTime1) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime1) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime2 <- getPiecewiseSurvivalTime(lambda2 = 0.5, lambda1 = 0.4) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime2' with expected results + expect_equal(pwSurvivalTime2$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime2$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$lambda1, 0.4, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$lambda2, 0.5, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime2$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime2$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$median1, 1.732868, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$median2, 1.3862944, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime2$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime2$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime2), NA))) + expect_output(print(pwSurvivalTime2)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime2), NA))) + expect_output(summary(pwSurvivalTime2)$show()) + pwSurvivalTime2CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime2, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime2CodeBased$piecewiseSurvivalTime, pwSurvivalTime2$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$lambda1, pwSurvivalTime2$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$lambda2, pwSurvivalTime2$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$hazardRatio, pwSurvivalTime2$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$pi1, pwSurvivalTime2$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$pi2, pwSurvivalTime2$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$median1, pwSurvivalTime2$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$median2, pwSurvivalTime2$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$eventTime, pwSurvivalTime2$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$kappa, pwSurvivalTime2$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime2$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$delayedResponseAllowed, pwSurvivalTime2$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$delayedResponseEnabled, pwSurvivalTime2$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime2), "character") + df <- as.data.frame(pwSurvivalTime2) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime2) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + .skipTestIfDisabled() + + pwSurvivalTime2 <- getPiecewiseSurvivalTime(pi2 = 0.5, hazardRatio = 0.8) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime2' with expected results + expect_equal(pwSurvivalTime2$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime2$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$lambda1, 0.046209812, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$lambda2, 0.057762265, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$pi1, 0.42565082, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$pi2, 0.5, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$median1, 15, label = paste0("c(", paste0(pwSurvivalTime2$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$median2, 12, label = paste0("c(", paste0(pwSurvivalTime2$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$eventTime, 12, label = paste0("c(", paste0(pwSurvivalTime2$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime2$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime2), NA))) + expect_output(print(pwSurvivalTime2)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime2), NA))) + expect_output(summary(pwSurvivalTime2)$show()) + pwSurvivalTime2CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime2, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime2CodeBased$piecewiseSurvivalTime, pwSurvivalTime2$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$lambda1, pwSurvivalTime2$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$lambda2, pwSurvivalTime2$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$hazardRatio, pwSurvivalTime2$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$pi1, pwSurvivalTime2$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$pi2, pwSurvivalTime2$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$median1, pwSurvivalTime2$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$median2, pwSurvivalTime2$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$eventTime, pwSurvivalTime2$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$kappa, pwSurvivalTime2$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime2$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$delayedResponseAllowed, pwSurvivalTime2$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$delayedResponseEnabled, pwSurvivalTime2$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime2), "character") + df <- as.data.frame(pwSurvivalTime2) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime2) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime2 <- getPiecewiseSurvivalTime(pi2 = 0.5, pi1 = 0.4) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime2' with expected results + expect_equal(pwSurvivalTime2$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime2$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$lambda1, 0.042568802, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$lambda2, 0.057762265, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$hazardRatio, 0.73696559, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$pi1, 0.4, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$pi2, 0.5, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$median1, 16.282985, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$median2, 12, label = paste0("c(", paste0(pwSurvivalTime2$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$eventTime, 12, label = paste0("c(", paste0(pwSurvivalTime2$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime2$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime2), NA))) + expect_output(print(pwSurvivalTime2)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime2), NA))) + expect_output(summary(pwSurvivalTime2)$show()) + pwSurvivalTime2CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime2, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime2CodeBased$piecewiseSurvivalTime, pwSurvivalTime2$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$lambda1, pwSurvivalTime2$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$lambda2, pwSurvivalTime2$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$hazardRatio, pwSurvivalTime2$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$pi1, pwSurvivalTime2$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$pi2, pwSurvivalTime2$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$median1, pwSurvivalTime2$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$median2, pwSurvivalTime2$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$eventTime, pwSurvivalTime2$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$kappa, pwSurvivalTime2$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime2$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$delayedResponseAllowed, pwSurvivalTime2$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$delayedResponseEnabled, pwSurvivalTime2$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime2), "character") + df <- as.data.frame(pwSurvivalTime2) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime2) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime3 <- getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), lambda2 = 0.4) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime3' with expected results + expect_equal(pwSurvivalTime3$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime3$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$lambda1, c(0.24, 0.32), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime3$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$lambda2, 0.4, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime3$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$hazardRatio, c(0.6, 0.8), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime3$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime3$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime3$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$median1, c(2.8881133, 2.1660849), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime3$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$median2, 1.732868, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime3$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime3$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime3$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime3$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime3$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime3$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime3), NA))) + expect_output(print(pwSurvivalTime3)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime3), NA))) + expect_output(summary(pwSurvivalTime3)$show()) + pwSurvivalTime3CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime3, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime3CodeBased$piecewiseSurvivalTime, pwSurvivalTime3$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$lambda1, pwSurvivalTime3$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$lambda2, pwSurvivalTime3$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$hazardRatio, pwSurvivalTime3$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$pi1, pwSurvivalTime3$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$pi2, pwSurvivalTime3$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$median1, pwSurvivalTime3$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$median2, pwSurvivalTime3$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$eventTime, pwSurvivalTime3$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$kappa, pwSurvivalTime3$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime3$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$delayedResponseAllowed, pwSurvivalTime3$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$delayedResponseEnabled, pwSurvivalTime3$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime3), "character") + df <- as.data.frame(pwSurvivalTime3) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime3) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime8 <- getPiecewiseSurvivalTime(pi2 = 0.4, pi1 = 0.3) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime8' with expected results + expect_equal(pwSurvivalTime8$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime8$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime8$lambda1, 0.029722912, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime8$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime8$lambda2, 0.042568802, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime8$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime8$hazardRatio, 0.69823229, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime8$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime8$pi1, 0.3, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime8$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime8$pi2, 0.4, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime8$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime8$median1, 23.320299, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime8$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime8$median2, 16.282985, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime8$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime8$eventTime, 12, label = paste0("c(", paste0(pwSurvivalTime8$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime8$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime8$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime8$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime8$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime8$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime8$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime8$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime8$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime8), NA))) + expect_output(print(pwSurvivalTime8)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime8), NA))) + expect_output(summary(pwSurvivalTime8)$show()) + pwSurvivalTime8CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime8, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime8CodeBased$piecewiseSurvivalTime, pwSurvivalTime8$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime8CodeBased$lambda1, pwSurvivalTime8$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime8CodeBased$lambda2, pwSurvivalTime8$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime8CodeBased$hazardRatio, pwSurvivalTime8$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime8CodeBased$pi1, pwSurvivalTime8$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime8CodeBased$pi2, pwSurvivalTime8$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime8CodeBased$median1, pwSurvivalTime8$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime8CodeBased$median2, pwSurvivalTime8$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime8CodeBased$eventTime, pwSurvivalTime8$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime8CodeBased$kappa, pwSurvivalTime8$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime8CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime8$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime8CodeBased$delayedResponseAllowed, pwSurvivalTime8$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime8CodeBased$delayedResponseEnabled, pwSurvivalTime8$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime8), "character") + df <- as.data.frame(pwSurvivalTime8) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime8) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime9 <- getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), pi2 = 0.3) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime9' with expected results + expect_equal(pwSurvivalTime9$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime9$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime9$lambda1, c(0.017833747, 0.02377833), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime9$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime9$lambda2, 0.029722912, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime9$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime9$hazardRatio, c(0.6, 0.8), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime9$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime9$pi1, c(0.19265562, 0.24824135), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime9$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime9$pi2, 0.3, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime9$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime9$median1, c(38.867164, 29.150373), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime9$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime9$median2, 23.320299, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime9$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime9$eventTime, 12, label = paste0("c(", paste0(pwSurvivalTime9$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime9$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime9$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime9$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime9$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime9$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime9$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime9$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime9$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime9), NA))) + expect_output(print(pwSurvivalTime9)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime9), NA))) + expect_output(summary(pwSurvivalTime9)$show()) + pwSurvivalTime9CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime9, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime9CodeBased$piecewiseSurvivalTime, pwSurvivalTime9$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime9CodeBased$lambda1, pwSurvivalTime9$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime9CodeBased$lambda2, pwSurvivalTime9$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime9CodeBased$hazardRatio, pwSurvivalTime9$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime9CodeBased$pi1, pwSurvivalTime9$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime9CodeBased$pi2, pwSurvivalTime9$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime9CodeBased$median1, pwSurvivalTime9$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime9CodeBased$median2, pwSurvivalTime9$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime9CodeBased$eventTime, pwSurvivalTime9$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime9CodeBased$kappa, pwSurvivalTime9$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime9CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime9$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime9CodeBased$delayedResponseAllowed, pwSurvivalTime9$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime9CodeBased$delayedResponseEnabled, pwSurvivalTime9$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime9), "character") + df <- as.data.frame(pwSurvivalTime9) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime9) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime10 <- getPiecewiseSurvivalTime(median2 = 1.386294, hazardRatio = 0.8) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime10' with expected results + expect_equal(pwSurvivalTime10$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime10$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$lambda1, 0.4000001, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime10$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$lambda2, 0.50000013, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime10$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime10$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime10$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime10$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$median1, 1.7328675, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime10$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$median2, 1.386294, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime10$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime10$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime10$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime10$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime10$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime10$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime10), NA))) + expect_output(print(pwSurvivalTime10)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime10), NA))) + expect_output(summary(pwSurvivalTime10)$show()) + pwSurvivalTime10CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime10, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime10CodeBased$piecewiseSurvivalTime, pwSurvivalTime10$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$lambda1, pwSurvivalTime10$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$lambda2, pwSurvivalTime10$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$hazardRatio, pwSurvivalTime10$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$pi1, pwSurvivalTime10$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$pi2, pwSurvivalTime10$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$median1, pwSurvivalTime10$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$median2, pwSurvivalTime10$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$eventTime, pwSurvivalTime10$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$kappa, pwSurvivalTime10$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime10$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$delayedResponseAllowed, pwSurvivalTime10$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$delayedResponseEnabled, pwSurvivalTime10$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime10), "character") + df <- as.data.frame(pwSurvivalTime10) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime10) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime11 <- getPiecewiseSurvivalTime(median2 = 1.386294, lambda1 = 0.4) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime11' with expected results + expect_equal(pwSurvivalTime11$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime11$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$lambda1, 0.4, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime11$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$lambda2, 0.50000013, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime11$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$hazardRatio, 0.79999979, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime11$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime11$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime11$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$median1, 1.732868, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime11$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$median2, 1.386294, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime11$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime11$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime11$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime11$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime11$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime11$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime11), NA))) + expect_output(print(pwSurvivalTime11)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime11), NA))) + expect_output(summary(pwSurvivalTime11)$show()) + pwSurvivalTime11CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime11, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime11CodeBased$piecewiseSurvivalTime, pwSurvivalTime11$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$lambda1, pwSurvivalTime11$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$lambda2, pwSurvivalTime11$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$hazardRatio, pwSurvivalTime11$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$pi1, pwSurvivalTime11$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$pi2, pwSurvivalTime11$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$median1, pwSurvivalTime11$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$median2, pwSurvivalTime11$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$eventTime, pwSurvivalTime11$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$kappa, pwSurvivalTime11$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime11$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$delayedResponseAllowed, pwSurvivalTime11$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$delayedResponseEnabled, pwSurvivalTime11$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime11), "character") + df <- as.data.frame(pwSurvivalTime11) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime11) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime12 <- getPiecewiseSurvivalTime(median2 = 5, median1 = 6) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime12' with expected results + expect_equal(pwSurvivalTime12$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime12$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$lambda1, 0.11552453, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime12$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$lambda2, 0.13862944, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime12$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$hazardRatio, 0.83333333, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime12$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime12$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime12$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$median1, 6, label = paste0("c(", paste0(pwSurvivalTime12$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$median2, 5, label = paste0("c(", paste0(pwSurvivalTime12$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime12$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime12$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime12$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime12$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime12$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime12), NA))) + expect_output(print(pwSurvivalTime12)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime12), NA))) + expect_output(summary(pwSurvivalTime12)$show()) + pwSurvivalTime12CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime12, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime12CodeBased$piecewiseSurvivalTime, pwSurvivalTime12$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$lambda1, pwSurvivalTime12$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$lambda2, pwSurvivalTime12$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$hazardRatio, pwSurvivalTime12$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$pi1, pwSurvivalTime12$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$pi2, pwSurvivalTime12$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$median1, pwSurvivalTime12$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$median2, pwSurvivalTime12$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$eventTime, pwSurvivalTime12$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$kappa, pwSurvivalTime12$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime12$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$delayedResponseAllowed, pwSurvivalTime12$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$delayedResponseEnabled, pwSurvivalTime12$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime12), "character") + df <- as.data.frame(pwSurvivalTime12) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime12) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime13 <- getPiecewiseSurvivalTime(median2 = 1.386294, lambda1 = c(0.3, 0.4)) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime13' with expected results + expect_equal(pwSurvivalTime13$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime13$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$lambda1, c(0.3, 0.4), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime13$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$lambda2, 0.50000013, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime13$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$hazardRatio, c(0.59999984, 0.79999979), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime13$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime13$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime13$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$median1, c(2.3104906, 1.732868), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime13$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$median2, 1.386294, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime13$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime13$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime13$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime13$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime13$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime13$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime13), NA))) + expect_output(print(pwSurvivalTime13)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime13), NA))) + expect_output(summary(pwSurvivalTime13)$show()) + pwSurvivalTime13CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime13, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime13CodeBased$piecewiseSurvivalTime, pwSurvivalTime13$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$lambda1, pwSurvivalTime13$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$lambda2, pwSurvivalTime13$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$hazardRatio, pwSurvivalTime13$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$pi1, pwSurvivalTime13$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$pi2, pwSurvivalTime13$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$median1, pwSurvivalTime13$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$median2, pwSurvivalTime13$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$eventTime, pwSurvivalTime13$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$kappa, pwSurvivalTime13$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime13$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$delayedResponseAllowed, pwSurvivalTime13$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$delayedResponseEnabled, pwSurvivalTime13$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime13), "character") + df <- as.data.frame(pwSurvivalTime13) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime13) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime14 <- getPiecewiseSurvivalTime(median2 = 5, median1 = c(6:8)) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime14' with expected results + expect_equal(pwSurvivalTime14$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime14$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime14$lambda1, c(0.11552453, 0.099021026, 0.086643398), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime14$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime14$lambda2, 0.13862944, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime14$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime14$hazardRatio, c(0.83333333, 0.71428571, 0.625), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime14$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime14$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime14$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime14$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime14$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime14$median1, c(6, 7, 8), label = paste0("c(", paste0(pwSurvivalTime14$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime14$median2, 5, label = paste0("c(", paste0(pwSurvivalTime14$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime14$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime14$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime14$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime14$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime14$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime14$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime14$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime14$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime14$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime14$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime14), NA))) + expect_output(print(pwSurvivalTime14)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime14), NA))) + expect_output(summary(pwSurvivalTime14)$show()) + pwSurvivalTime14CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime14, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime14CodeBased$piecewiseSurvivalTime, pwSurvivalTime14$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime14CodeBased$lambda1, pwSurvivalTime14$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime14CodeBased$lambda2, pwSurvivalTime14$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime14CodeBased$hazardRatio, pwSurvivalTime14$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime14CodeBased$pi1, pwSurvivalTime14$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime14CodeBased$pi2, pwSurvivalTime14$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime14CodeBased$median1, pwSurvivalTime14$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime14CodeBased$median2, pwSurvivalTime14$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime14CodeBased$eventTime, pwSurvivalTime14$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime14CodeBased$kappa, pwSurvivalTime14$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime14CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime14$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime14CodeBased$delayedResponseAllowed, pwSurvivalTime14$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime14CodeBased$delayedResponseEnabled, pwSurvivalTime14$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime14), "character") + df <- as.data.frame(pwSurvivalTime14) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime14) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime15 <- getPiecewiseSurvivalTime(median2 = 2, hazardRatio = 0.8) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime15' with expected results + expect_equal(pwSurvivalTime15$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime15$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime15$lambda1, 0.27725887, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime15$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime15$lambda2, 0.34657359, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime15$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime15$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime15$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime15$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime15$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime15$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime15$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime15$median1, 2.5, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime15$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime15$median2, 2, label = paste0("c(", paste0(pwSurvivalTime15$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime15$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime15$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime15$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime15$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime15$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime15$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime15$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime15$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime15$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime15$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime15), NA))) + expect_output(print(pwSurvivalTime15)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime15), NA))) + expect_output(summary(pwSurvivalTime15)$show()) + pwSurvivalTime15CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime15, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime15CodeBased$piecewiseSurvivalTime, pwSurvivalTime15$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime15CodeBased$lambda1, pwSurvivalTime15$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime15CodeBased$lambda2, pwSurvivalTime15$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime15CodeBased$hazardRatio, pwSurvivalTime15$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime15CodeBased$pi1, pwSurvivalTime15$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime15CodeBased$pi2, pwSurvivalTime15$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime15CodeBased$median1, pwSurvivalTime15$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime15CodeBased$median2, pwSurvivalTime15$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime15CodeBased$eventTime, pwSurvivalTime15$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime15CodeBased$kappa, pwSurvivalTime15$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime15CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime15$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime15CodeBased$delayedResponseAllowed, pwSurvivalTime15$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime15CodeBased$delayedResponseEnabled, pwSurvivalTime15$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime15), "character") + df <- as.data.frame(pwSurvivalTime15) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime15) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime16 <- getPiecewiseSurvivalTime(median1 = c(2, 2), hazardRatio = c(1.4, 1.4)) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime16' with expected results + expect_equal(pwSurvivalTime16$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime16$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime16$lambda1, c(0.34657359, 0.34657359), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime16$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime16$lambda2, c(0.24755256, 0.24755256), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime16$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime16$hazardRatio, c(1.4, 1.4), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime16$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime16$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime16$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime16$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime16$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime16$median1, c(2, 2), label = paste0("c(", paste0(pwSurvivalTime16$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime16$median2, c(2.8, 2.8), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime16$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime16$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime16$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime16$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime16$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime16$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime16$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime16$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime16$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime16$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime16$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime16), NA))) + expect_output(print(pwSurvivalTime16)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime16), NA))) + expect_output(summary(pwSurvivalTime16)$show()) + pwSurvivalTime16CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime16, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime16CodeBased$piecewiseSurvivalTime, pwSurvivalTime16$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime16CodeBased$lambda1, pwSurvivalTime16$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime16CodeBased$lambda2, pwSurvivalTime16$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime16CodeBased$hazardRatio, pwSurvivalTime16$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime16CodeBased$pi1, pwSurvivalTime16$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime16CodeBased$pi2, pwSurvivalTime16$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime16CodeBased$median1, pwSurvivalTime16$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime16CodeBased$median2, pwSurvivalTime16$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime16CodeBased$eventTime, pwSurvivalTime16$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime16CodeBased$kappa, pwSurvivalTime16$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime16CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime16$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime16CodeBased$delayedResponseAllowed, pwSurvivalTime16$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime16CodeBased$delayedResponseEnabled, pwSurvivalTime16$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime16), "character") + df <- as.data.frame(pwSurvivalTime16) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime16) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime17 <- getPiecewiseSurvivalTime(median1 = c(2, 3), median2 = 4) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime17' with expected results + expect_equal(pwSurvivalTime17$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime17$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime17$lambda1, c(0.34657359, 0.23104906), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime17$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime17$lambda2, 0.1732868, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime17$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime17$hazardRatio, c(2, 1.3333333), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime17$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime17$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime17$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime17$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime17$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime17$median1, c(2, 3), label = paste0("c(", paste0(pwSurvivalTime17$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime17$median2, 4, label = paste0("c(", paste0(pwSurvivalTime17$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime17$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime17$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime17$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime17$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime17$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime17$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime17$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime17$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime17$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime17$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime17), NA))) + expect_output(print(pwSurvivalTime17)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime17), NA))) + expect_output(summary(pwSurvivalTime17)$show()) + pwSurvivalTime17CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime17, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime17CodeBased$piecewiseSurvivalTime, pwSurvivalTime17$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime17CodeBased$lambda1, pwSurvivalTime17$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime17CodeBased$lambda2, pwSurvivalTime17$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime17CodeBased$hazardRatio, pwSurvivalTime17$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime17CodeBased$pi1, pwSurvivalTime17$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime17CodeBased$pi2, pwSurvivalTime17$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime17CodeBased$median1, pwSurvivalTime17$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime17CodeBased$median2, pwSurvivalTime17$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime17CodeBased$eventTime, pwSurvivalTime17$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime17CodeBased$kappa, pwSurvivalTime17$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime17CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime17$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime17CodeBased$delayedResponseAllowed, pwSurvivalTime17$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime17CodeBased$delayedResponseEnabled, pwSurvivalTime17$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime17), "character") + df <- as.data.frame(pwSurvivalTime17) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime17) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime18 <- getPiecewiseSurvivalTime(median1 = c(2, 3), lambda2 = 0.4) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime18' with expected results + expect_equal(pwSurvivalTime18$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime18$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime18$lambda1, c(0.34657359, 0.23104906), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime18$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime18$lambda2, 0.4, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime18$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime18$hazardRatio, c(0.86643398, 0.57762265), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime18$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime18$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime18$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime18$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime18$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime18$median1, c(2, 3), label = paste0("c(", paste0(pwSurvivalTime18$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime18$median2, 1.732868, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime18$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime18$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime18$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime18$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime18$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime18$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime18$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime18$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime18$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime18$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime18$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime18), NA))) + expect_output(print(pwSurvivalTime18)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime18), NA))) + expect_output(summary(pwSurvivalTime18)$show()) + pwSurvivalTime18CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime18, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime18CodeBased$piecewiseSurvivalTime, pwSurvivalTime18$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime18CodeBased$lambda1, pwSurvivalTime18$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime18CodeBased$lambda2, pwSurvivalTime18$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime18CodeBased$hazardRatio, pwSurvivalTime18$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime18CodeBased$pi1, pwSurvivalTime18$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime18CodeBased$pi2, pwSurvivalTime18$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime18CodeBased$median1, pwSurvivalTime18$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime18CodeBased$median2, pwSurvivalTime18$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime18CodeBased$eventTime, pwSurvivalTime18$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime18CodeBased$kappa, pwSurvivalTime18$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime18CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime18$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime18CodeBased$delayedResponseAllowed, pwSurvivalTime18$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime18CodeBased$delayedResponseEnabled, pwSurvivalTime18$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime18), "character") + df <- as.data.frame(pwSurvivalTime18) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime18) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime19 <- getPiecewiseSurvivalTime(pi1 = 0.45) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime19' with expected results + expect_equal(pwSurvivalTime19$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime19$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime19$lambda1, 0.04981975, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime19$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime19$lambda2, 0.018595296, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime19$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime19$hazardRatio, 2.6791588, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime19$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime19$pi1, 0.45, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime19$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime19$pi2, 0.2, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime19$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime19$median1, 13.9131, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime19$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime19$median2, 37.275405, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime19$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime19$eventTime, 12, label = paste0("c(", paste0(pwSurvivalTime19$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime19$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime19$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime19$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime19$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime19$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime19$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime19$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime19$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime19), NA))) + expect_output(print(pwSurvivalTime19)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime19), NA))) + expect_output(summary(pwSurvivalTime19)$show()) + pwSurvivalTime19CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime19, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime19CodeBased$piecewiseSurvivalTime, pwSurvivalTime19$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime19CodeBased$lambda1, pwSurvivalTime19$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime19CodeBased$lambda2, pwSurvivalTime19$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime19CodeBased$hazardRatio, pwSurvivalTime19$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime19CodeBased$pi1, pwSurvivalTime19$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime19CodeBased$pi2, pwSurvivalTime19$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime19CodeBased$median1, pwSurvivalTime19$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime19CodeBased$median2, pwSurvivalTime19$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime19CodeBased$eventTime, pwSurvivalTime19$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime19CodeBased$kappa, pwSurvivalTime19$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime19CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime19$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime19CodeBased$delayedResponseAllowed, pwSurvivalTime19$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime19CodeBased$delayedResponseEnabled, pwSurvivalTime19$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime19), "character") + df <- as.data.frame(pwSurvivalTime19) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime19) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime20 <- getPiecewiseSurvivalTime(median1 = c(2, 4), hazardRatio = c(1.4, 0.7)) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime20' with expected results + expect_equal(pwSurvivalTime20$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime20$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime20$lambda1, c(0.34657359, 0.1732868), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime20$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime20$lambda2, c(0.24755256, 0.24755256), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime20$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime20$hazardRatio, c(1.4, 0.7), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime20$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime20$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime20$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime20$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime20$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime20$median1, c(2, 4), label = paste0("c(", paste0(pwSurvivalTime20$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime20$median2, c(2.8, 2.8), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime20$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime20$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime20$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime20$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime20$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime20$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime20$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime20$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime20$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime20$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime20$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime20), NA))) + expect_output(print(pwSurvivalTime20)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime20), NA))) + expect_output(summary(pwSurvivalTime20)$show()) + pwSurvivalTime20CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime20, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime20CodeBased$piecewiseSurvivalTime, pwSurvivalTime20$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime20CodeBased$lambda1, pwSurvivalTime20$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime20CodeBased$lambda2, pwSurvivalTime20$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime20CodeBased$hazardRatio, pwSurvivalTime20$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime20CodeBased$pi1, pwSurvivalTime20$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime20CodeBased$pi2, pwSurvivalTime20$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime20CodeBased$median1, pwSurvivalTime20$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime20CodeBased$median2, pwSurvivalTime20$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime20CodeBased$eventTime, pwSurvivalTime20$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime20CodeBased$kappa, pwSurvivalTime20$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime20CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime20$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime20CodeBased$delayedResponseAllowed, pwSurvivalTime20$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime20CodeBased$delayedResponseEnabled, pwSurvivalTime20$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime20), "character") + df <- as.data.frame(pwSurvivalTime20) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime20) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime21 <- getPiecewiseSurvivalTime(median1 = 3, hazardRatio = 0.8) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime21' with expected results + expect_equal(pwSurvivalTime21$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime21$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime21$lambda1, 0.23104906, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime21$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime21$lambda2, 0.28881133, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime21$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime21$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime21$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime21$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime21$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime21$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime21$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime21$median1, 3, label = paste0("c(", paste0(pwSurvivalTime21$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime21$median2, 2.4, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime21$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime21$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime21$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime21$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime21$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime21$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime21$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime21$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime21$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime21$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime21$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime21), NA))) + expect_output(print(pwSurvivalTime21)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime21), NA))) + expect_output(summary(pwSurvivalTime21)$show()) + pwSurvivalTime21CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime21, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime21CodeBased$piecewiseSurvivalTime, pwSurvivalTime21$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime21CodeBased$lambda1, pwSurvivalTime21$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime21CodeBased$lambda2, pwSurvivalTime21$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime21CodeBased$hazardRatio, pwSurvivalTime21$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime21CodeBased$pi1, pwSurvivalTime21$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime21CodeBased$pi2, pwSurvivalTime21$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime21CodeBased$median1, pwSurvivalTime21$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime21CodeBased$median2, pwSurvivalTime21$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime21CodeBased$eventTime, pwSurvivalTime21$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime21CodeBased$kappa, pwSurvivalTime21$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime21CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime21$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime21CodeBased$delayedResponseAllowed, pwSurvivalTime21$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime21CodeBased$delayedResponseEnabled, pwSurvivalTime21$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime21), "character") + df <- as.data.frame(pwSurvivalTime21) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime21) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + expect_error(getPiecewiseSurvivalTime(median2 = 1.386294, lambda2 = 0.4, hazardRatio = 0.8)) + expect_error(getPiecewiseSurvivalTime(median2 = c(1.5, 1.7), lambda1 = c(0.3, 0.4))) + expect_error(getPiecewiseSurvivalTime(median1 = c(2, 4), hazardRatio = c(1, 0.7))) + expect_error(getPiecewiseSurvivalTime(median1 = c(2, 4), hazardRatio = 0.7)) +}) + +test_that("Testing 'getPiecewiseSurvivalTime': vector based definition", { + # @refFS[Tab.]{fs:tab:output:getPiecewiseSurvivalTime} + pwSurvivalTime1 <- getPiecewiseSurvivalTime( + piecewiseSurvivalTime = c(0, 6, 9), + lambda2 = c(0.025, 0.04, 0.015), hazardRatio = 0.8 + ) + expect_equal(pwSurvivalTime1$hazardRatio, 0.8) + expect_equal(pwSurvivalTime1$lambda1, c(0.025, 0.04, 0.015) * 0.8) + expect_false(pwSurvivalTime1$isDelayedResponseEnabled()) + + .skipTestIfDisabled() + + pwSurvivalTime2 <- getPiecewiseSurvivalTime( + piecewiseSurvivalTime = c(0, 5, 10), + lambda2 = c(0.1, 0.2, 0.8), hazardRatio = 0.8 + ) + expect_true(pwSurvivalTime2$isPiecewiseSurvivalEnabled()) + expect_false(pwSurvivalTime2$isDelayedResponseEnabled()) + expect_equal(pwSurvivalTime2$hazardRatio, 0.8) + expect_equal(pwSurvivalTime2$piecewiseSurvivalTime, c(0, 5, 10)) + expect_equal(pwSurvivalTime2$lambda2, c(0.1, 0.2, 0.8)) + + pwSurvivalTime3 <- getPiecewiseSurvivalTime(c(0, 6), lambda2 = c(0.01, 0.03), hazardRatio = 0.8) + expect_true(pwSurvivalTime3$isPiecewiseSurvivalEnabled()) + expect_false(pwSurvivalTime3$isDelayedResponseEnabled()) + expect_equal(pwSurvivalTime3$hazardRatio, 0.8) + expect_equal(pwSurvivalTime3$piecewiseSurvivalTime, c(0, 6)) + expect_equal(pwSurvivalTime3$lambda2, c(0.01, 0.03)) + + pwSurvivalTime4 <- getPiecewiseSurvivalTime(0, lambda2 = 0.01, hazardRatio = 0.8) + expect_true(pwSurvivalTime4$isPiecewiseSurvivalEnabled()) + expect_false(pwSurvivalTime4$isDelayedResponseEnabled()) + expect_equal(pwSurvivalTime4$hazardRatio, 0.8) + expect_equal(pwSurvivalTime4$piecewiseSurvivalTime, 0) + expect_equal(pwSurvivalTime4$lambda2, 0.01) + expect_equal(pwSurvivalTime4$lambda1, 0.01 * 0.8) + + pwSurvivalTime5 <- getPiecewiseSurvivalTime(NA_real_, lambda2 = 0.01, hazardRatio = 0.8) + expect_true(pwSurvivalTime5$isPiecewiseSurvivalEnabled()) + expect_false(pwSurvivalTime5$isDelayedResponseEnabled()) + expect_equal(pwSurvivalTime5$hazardRatio, 0.8) + expect_equal(pwSurvivalTime5$piecewiseSurvivalTime, 0) + expect_equal(pwSurvivalTime5$lambda2, 0.01) + expect_equal(pwSurvivalTime5$lambda1, 0.01 * 0.8) + + pwSurvivalTime6 <- getPiecewiseSurvivalTime(0, lambda2 = 0.01, lambda1 = 0.008) + expect_true(pwSurvivalTime6$isPiecewiseSurvivalEnabled()) + expect_false(pwSurvivalTime6$isDelayedResponseEnabled()) + expect_equal(pwSurvivalTime6$hazardRatio, 0.8) + expect_equal(pwSurvivalTime6$piecewiseSurvivalTime, 0) + expect_equal(pwSurvivalTime6$lambda2, 0.01) + expect_equal(pwSurvivalTime6$lambda1, 0.008) + + pwSurvivalTime7 <- getPiecewiseSurvivalTime(NA_real_, lambda2 = 0.01, lambda1 = 0.008) + expect_true(pwSurvivalTime7$isPiecewiseSurvivalEnabled()) + expect_false(pwSurvivalTime7$isDelayedResponseEnabled()) + expect_equal(pwSurvivalTime7$hazardRatio, 0.8) + expect_equal(pwSurvivalTime7$piecewiseSurvivalTime, 0) + expect_equal(pwSurvivalTime7$lambda2, 0.01) + expect_equal(pwSurvivalTime7$lambda1, 0.008) + + # case 2.2 + pwSurvivalTime9 <- getPiecewiseSurvivalTime( + piecewiseSurvivalTime = c(0, 6, 9), + lambda2 = c(0.025, 0.04, 0.015), + lambda1 = c(0.025, 0.04, 0.015) * 0.8 + ) + expect_true(pwSurvivalTime9$isPiecewiseSurvivalEnabled()) + expect_false(pwSurvivalTime9$isDelayedResponseEnabled()) + expect_equal(pwSurvivalTime9$hazardRatio, 0.8) + + pwSurvivalTime10 <- getPiecewiseSurvivalTime(lambda2 = 0.025, hazardRatio = 0.8) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime10' with expected results + expect_equal(pwSurvivalTime10$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime10$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$lambda1, 0.02, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime10$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$lambda2, 0.025, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime10$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime10$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime10$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime10$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$median1, 34.657359, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime10$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$median2, 27.725887, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime10$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime10$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime10$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime10$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime10$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime10$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime10$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime10), NA))) + expect_output(print(pwSurvivalTime10)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime10), NA))) + expect_output(summary(pwSurvivalTime10)$show()) + pwSurvivalTime10CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime10, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime10CodeBased$piecewiseSurvivalTime, pwSurvivalTime10$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$lambda1, pwSurvivalTime10$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$lambda2, pwSurvivalTime10$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$hazardRatio, pwSurvivalTime10$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$pi1, pwSurvivalTime10$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$pi2, pwSurvivalTime10$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$median1, pwSurvivalTime10$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$median2, pwSurvivalTime10$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$eventTime, pwSurvivalTime10$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$kappa, pwSurvivalTime10$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime10$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$delayedResponseAllowed, pwSurvivalTime10$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime10CodeBased$delayedResponseEnabled, pwSurvivalTime10$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime10), "character") + df <- as.data.frame(pwSurvivalTime10) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime10) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime11 <- getPiecewiseSurvivalTime(piecewiseSurvivalTime = 0, lambda2 = 0.025, hazardRatio = 0.8) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime11' with expected results + expect_equal(pwSurvivalTime11$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime11$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$lambda1, 0.02, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime11$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$lambda2, 0.025, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime11$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime11$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime11$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime11$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$median1, 34.657359, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime11$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$median2, 27.725887, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime11$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime11$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime11$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime11$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime11$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime11$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime11$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime11), NA))) + expect_output(print(pwSurvivalTime11)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime11), NA))) + expect_output(summary(pwSurvivalTime11)$show()) + pwSurvivalTime11CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime11, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime11CodeBased$piecewiseSurvivalTime, pwSurvivalTime11$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$lambda1, pwSurvivalTime11$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$lambda2, pwSurvivalTime11$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$hazardRatio, pwSurvivalTime11$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$pi1, pwSurvivalTime11$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$pi2, pwSurvivalTime11$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$median1, pwSurvivalTime11$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$median2, pwSurvivalTime11$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$eventTime, pwSurvivalTime11$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$kappa, pwSurvivalTime11$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime11$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$delayedResponseAllowed, pwSurvivalTime11$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime11CodeBased$delayedResponseEnabled, pwSurvivalTime11$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime11), "character") + df <- as.data.frame(pwSurvivalTime11) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime11) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime12 <- getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6), lambda2 = c(0.025, 0.01), hazardRatio = c(0.8, 0.9)) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime12' with expected results + expect_equal(pwSurvivalTime12$piecewiseSurvivalTime, c(0, 6), label = paste0("c(", paste0(pwSurvivalTime12$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$lambda1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime12$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$lambda2, c(0.025, 0.01), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime12$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$hazardRatio, c(0.8, 0.9), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime12$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime12$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime12$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$median1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime12$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$median2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime12$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime12$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime12$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$piecewiseSurvivalEnabled, TRUE, label = paste0("c(", paste0(pwSurvivalTime12$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime12$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime12$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime12$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime12), NA))) + expect_output(print(pwSurvivalTime12)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime12), NA))) + expect_output(summary(pwSurvivalTime12)$show()) + pwSurvivalTime12CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime12, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime12CodeBased$piecewiseSurvivalTime, pwSurvivalTime12$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$lambda1, pwSurvivalTime12$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$lambda2, pwSurvivalTime12$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$hazardRatio, pwSurvivalTime12$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$pi1, pwSurvivalTime12$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$pi2, pwSurvivalTime12$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$median1, pwSurvivalTime12$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$median2, pwSurvivalTime12$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$eventTime, pwSurvivalTime12$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$kappa, pwSurvivalTime12$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime12$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$delayedResponseAllowed, pwSurvivalTime12$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime12CodeBased$delayedResponseEnabled, pwSurvivalTime12$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime12), "character") + df <- as.data.frame(pwSurvivalTime12) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime12) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime13 <- getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6), lambda2 = c(0.025, 0.01), hazardRatio = c(0.8, 0.9), delayedResponseAllowed = TRUE) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime13' with expected results + expect_equal(pwSurvivalTime13$piecewiseSurvivalTime, c(0, 6), label = paste0("c(", paste0(pwSurvivalTime13$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$lambda1, c(0.02, 0.009), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime13$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$lambda2, c(0.025, 0.01), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime13$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$hazardRatio, c(0.8, 0.9), tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime13$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime13$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime13$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$median1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime13$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$median2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime13$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime13$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime13$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$piecewiseSurvivalEnabled, TRUE, label = paste0("c(", paste0(pwSurvivalTime13$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$delayedResponseAllowed, TRUE, label = paste0("c(", paste0(pwSurvivalTime13$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime13$delayedResponseEnabled, TRUE, label = paste0("c(", paste0(pwSurvivalTime13$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime13), NA))) + expect_output(print(pwSurvivalTime13)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime13), NA))) + expect_output(summary(pwSurvivalTime13)$show()) + pwSurvivalTime13CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime13, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime13CodeBased$piecewiseSurvivalTime, pwSurvivalTime13$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$lambda1, pwSurvivalTime13$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$lambda2, pwSurvivalTime13$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$hazardRatio, pwSurvivalTime13$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$pi1, pwSurvivalTime13$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$pi2, pwSurvivalTime13$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$median1, pwSurvivalTime13$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$median2, pwSurvivalTime13$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$eventTime, pwSurvivalTime13$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$kappa, pwSurvivalTime13$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime13$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$delayedResponseAllowed, pwSurvivalTime13$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime13CodeBased$delayedResponseEnabled, pwSurvivalTime13$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime13), "character") + df <- as.data.frame(pwSurvivalTime13) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime13) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + # case 2.2: error expected + expect_error( + getPiecewiseSurvivalTime( + piecewiseSurvivalTime = c(0, 6, 9), + lambda2 = c(0.025, 0.04, 0.015), + lambda1 = c(0.03, 0.04, 0.025) + ), + paste0( + "Illegal argument: 'hazardRatio' can only be calculated if ", + "'unique(lambda1 / lambda2)' result in a single value; ", + "current result = c(1.2, 1, 1.667) (e.g., delayed response is not allowed)" + ), + fixed = TRUE + ) + + # case 3 + expect_false(getPiecewiseSurvivalTime(delayedResponseAllowed = TRUE)$isPiecewiseSurvivalEnabled()) + expect_false(getPiecewiseSurvivalTime( + piecewiseSurvivalTime = NA, + delayedResponseAllowed = TRUE + )$isPiecewiseSurvivalEnabled()) + + # case 3.1 + pwSurvivalTimeSim1 <- getPiecewiseSurvivalTime( + piecewiseSurvivalTime = c(0, 6, 9), + lambda2 = c(0.025, 0.04, 0.015), hazardRatio = 0.8, + delayedResponseAllowed = TRUE + ) + expect_equal(pwSurvivalTimeSim1$hazardRatio, 0.8) + expect_equal(pwSurvivalTimeSim1$lambda1, c(0.025, 0.04, 0.015) * 0.8) + expect_false(pwSurvivalTimeSim1$isDelayedResponseEnabled()) + + # case 3.2 + pwSurvivalTimeSim2 <- getPiecewiseSurvivalTime( + piecewiseSurvivalTime = c(0, 6, 9), + lambda2 = c(0.025, 0.04, 0.015), + lambda1 = c(0.03, 0.04, 0.025), delayedResponseAllowed = TRUE + ) + expect_true(pwSurvivalTimeSim2$isPiecewiseSurvivalEnabled()) + expect_true(pwSurvivalTimeSim2$isDelayedResponseEnabled()) + expect_equal(pwSurvivalTimeSim2$hazardRatio, c(1.2, 1, 5 / 3)) + + pwsTime1 <- getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), lambda2 = 0.4) + expect_equal(pwsTime1$.isLambdaBased(minNumberOfLambdas = 1), TRUE) +}) + +test_that("Testing 'getPiecewiseSurvivalTime': check error and warnings", { + # @refFS[Tab.]{fs:tab:output:getPiecewiseSurvivalTime} + expect_error(getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), lambda2 = 0.4, pi2 = 0.4), + "Conflicting arguments: it is not allowed to specify 'pi2' (0.4) and 'lambda2' (0.4) concurrently", + fixed = TRUE + ) + + expect_error(getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), lambda2 = 0.4, pi2 = 0.4, pi1 = 0.3), + "Conflicting arguments: it is not allowed to specify 'pi1' (0.3) and 'lambda2' (0.4) concurrently", + fixed = TRUE + ) + + expect_error(getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), lambda2 = 0.4, pi2 = 0.4, pi1 = 0.3), + "Conflicting arguments: it is not allowed to specify 'pi1' (0.3) and 'lambda2' (0.4) concurrently", + fixed = TRUE + ) + + expect_error(getPiecewiseSurvivalTime(lambda2 = 0.4, lambda1 = 0.3, pi2 = 0.4, pi1 = 0.3), + "Conflicting arguments: it is not allowed to specify 'pi1' (0.3) and 'lambda1' (0.3) concurrently", + fixed = TRUE + ) + + expect_error(getPiecewiseSurvivalTime(lambda2 = 0.4, lambda1 = 0.3, pi2 = 0.4, pi1 = 0.3), + "Conflicting arguments: it is not allowed to specify 'pi1' (0.3) and 'lambda1' (0.3) concurrently", + fixed = TRUE + ) + + expect_equal(getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), pi2 = 0.4)$.isPiBased(), TRUE) + + expect_warning(getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), pi2 = 0.4, pi1 = 0.3), + "'hazardRatio' (0.6, 0.8) will be ignored because it will be calculated", + fixed = TRUE + ) + + expect_warning(getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), pi1 = 0.3), + "'hazardRatio' (0.6, 0.8) will be ignored because it will be calculated", + fixed = TRUE + ) + + expect_error(getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6), lambda2 = 0.025, hazardRatio = 0.8, delayedResponseAllowed = TRUE), + "Illegal argument: length of 'piecewiseSurvivalTime' (2) and length of 'lambda2' (1) must be equal", + fixed = TRUE + ) + + expect_error(getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6, 12), lambda2 = 0.025, hazardRatio = 0.8, delayedResponseAllowed = TRUE), + "Illegal argument: length of 'piecewiseSurvivalTime' (3) and length of 'lambda2' (1) must be equal", + fixed = TRUE + ) + + expect_error(getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6), lambda2 = 0.025, hazardRatio = 0.8), + "Illegal argument: length of 'piecewiseSurvivalTime' (2) and length of 'lambda2' (1) must be equal", + fixed = TRUE + ) +}) + +test_that("Testing 'getPiecewiseSurvivalTime': list-wise definition", { + # @refFS[Tab.]{fs:tab:output:getPiecewiseSurvivalTime} + pwSurvivalTime8 <- getPiecewiseSurvivalTime(piecewiseSurvivalTime = list( + "<6" = 0.025, + "6 - <9" = 0.04, + "9 - <15" = 0.015, + "15 - <21" = 0.01, + ">=21" = 0.007 + ), hazardRatio = 0.6) + expect_true(pwSurvivalTime8$isPiecewiseSurvivalEnabled()) + expect_false(pwSurvivalTime8$isDelayedResponseEnabled()) + expect_equal(pwSurvivalTime8$hazardRatio, 0.6) + expect_equal(pwSurvivalTime8$piecewiseSurvivalTime, c(0, 6, 9, 15, 21)) + expect_equal(pwSurvivalTime8$lambda2, c(0.025, 0.040, 0.015, 0.010, 0.007)) + expect_equal(pwSurvivalTime8$lambda1, c(0.0150, 0.0240, 0.0090, 0.0060, 0.0042)) + + .skipTestIfDisabled() + + result1 <- getPiecewiseSurvivalTime(list( + "<5" = 0.1, + "5 - <10" = 0.2, + ">=10" = 0.8 + ), hazardRatio = 0.8) + expect_equal(result1$piecewiseSurvivalTime, c(0, 5, 10)) + expect_equal(result1$lambda2, c(0.1, 0.2, 0.8)) + + result2 <- getPiecewiseSurvivalTime(list( + "0 - <5" = 0.1, + "5 - <10" = 0.2, + "10 - Inf" = 0.8 + ), hazardRatio = 0.8) + expect_equal(result2$piecewiseSurvivalTime, c(0, 5, 10)) + expect_equal(result2$lambda2, c(0.1, 0.2, 0.8)) + + pwSurvivalTime2 <- getPiecewiseSurvivalTime( + piecewiseSurvivalTime = c(0, 5, 10), + lambda2 = c(0.1, 0.2, 0.8), hazardRatio = 0.8 + ) + expect_equal(pwSurvivalTime2$piecewiseSurvivalTime, c(0, 5, 10)) + expect_equal(pwSurvivalTime2$lambda2, c(0.1, 0.2, 0.8)) + + pwSurvivalTime3 <- getPiecewiseSurvivalTime(c(0, 6), lambda2 = c(0.01, 0.03), hazardRatio = 0.8) + expect_equal(pwSurvivalTime3$piecewiseSurvivalTime, c(0, 6)) + expect_equal(pwSurvivalTime3$lambda2, c(0.01, 0.03)) + + pwSurvivalTime4 <- getPiecewiseSurvivalTime( + piecewiseSurvivalTime = list("0 - ?" = 0.025), + hazardRatio = 0.8, delayedResponseAllowed = TRUE + ) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime4' with expected results + expect_equal(pwSurvivalTime4$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime4$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime4$lambda1, 0.02, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime4$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime4$lambda2, 0.025, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime4$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime4$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime4$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime4$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime4$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime4$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime4$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime4$median1, 34.657359, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime4$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime4$median2, 27.725887, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime4$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime4$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime4$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime4$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime4$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime4$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime4$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime4$delayedResponseAllowed, TRUE, label = paste0("c(", paste0(pwSurvivalTime4$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime4$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime4$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime4), NA))) + expect_output(print(pwSurvivalTime4)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime4), NA))) + expect_output(summary(pwSurvivalTime4)$show()) + pwSurvivalTime4CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime4, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime4CodeBased$piecewiseSurvivalTime, pwSurvivalTime4$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime4CodeBased$lambda1, pwSurvivalTime4$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime4CodeBased$lambda2, pwSurvivalTime4$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime4CodeBased$hazardRatio, pwSurvivalTime4$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime4CodeBased$pi1, pwSurvivalTime4$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime4CodeBased$pi2, pwSurvivalTime4$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime4CodeBased$median1, pwSurvivalTime4$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime4CodeBased$median2, pwSurvivalTime4$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime4CodeBased$eventTime, pwSurvivalTime4$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime4CodeBased$kappa, pwSurvivalTime4$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime4CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime4$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime4CodeBased$delayedResponseAllowed, pwSurvivalTime4$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime4CodeBased$delayedResponseEnabled, pwSurvivalTime4$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime4), "character") + df <- as.data.frame(pwSurvivalTime4) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime4) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime5 <- getPiecewiseSurvivalTime( + piecewiseSurvivalTime = list("x" = 0.025), + hazardRatio = 0.8, delayedResponseAllowed = TRUE + ) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime5' with expected results + expect_equal(pwSurvivalTime5$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime5$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime5$lambda1, 0.02, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime5$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime5$lambda2, 0.025, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime5$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime5$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime5$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime5$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime5$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime5$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime5$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime5$median1, 34.657359, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime5$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime5$median2, 27.725887, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime5$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime5$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime5$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime5$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime5$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime5$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime5$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime5$delayedResponseAllowed, TRUE, label = paste0("c(", paste0(pwSurvivalTime5$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime5$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime5$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime5), NA))) + expect_output(print(pwSurvivalTime5)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime5), NA))) + expect_output(summary(pwSurvivalTime5)$show()) + pwSurvivalTime5CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime5, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime5CodeBased$piecewiseSurvivalTime, pwSurvivalTime5$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime5CodeBased$lambda1, pwSurvivalTime5$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime5CodeBased$lambda2, pwSurvivalTime5$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime5CodeBased$hazardRatio, pwSurvivalTime5$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime5CodeBased$pi1, pwSurvivalTime5$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime5CodeBased$pi2, pwSurvivalTime5$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime5CodeBased$median1, pwSurvivalTime5$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime5CodeBased$median2, pwSurvivalTime5$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime5CodeBased$eventTime, pwSurvivalTime5$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime5CodeBased$kappa, pwSurvivalTime5$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime5CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime5$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime5CodeBased$delayedResponseAllowed, pwSurvivalTime5$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime5CodeBased$delayedResponseEnabled, pwSurvivalTime5$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime5), "character") + df <- as.data.frame(pwSurvivalTime5) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime5) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime6 <- getPiecewiseSurvivalTime( + piecewiseSurvivalTime = list("0 - 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime6) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime7 <- getPiecewiseSurvivalTime( + piecewiseSurvivalTime = list("x" = 0.025), + hazardRatio = 0.8, delayedResponseAllowed = FALSE + ) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime7' with expected results + expect_equal(pwSurvivalTime7$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime7$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime7$lambda1, 0.02, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime7$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime7$lambda2, 0.025, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime7$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime7$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime7$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime7$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime7$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime7$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime7$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime7$median1, 34.657359, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime7$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime7$median2, 27.725887, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime7$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime7$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime7$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime7$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime7$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime7$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime7$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime7$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime7$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime7$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime7$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime7), NA))) + expect_output(print(pwSurvivalTime7)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime7), NA))) + expect_output(summary(pwSurvivalTime7)$show()) + pwSurvivalTime7CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime7, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime7CodeBased$piecewiseSurvivalTime, pwSurvivalTime7$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime7CodeBased$lambda1, pwSurvivalTime7$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime7CodeBased$lambda2, pwSurvivalTime7$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime7CodeBased$hazardRatio, pwSurvivalTime7$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime7CodeBased$pi1, pwSurvivalTime7$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime7CodeBased$pi2, pwSurvivalTime7$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime7CodeBased$median1, pwSurvivalTime7$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime7CodeBased$median2, pwSurvivalTime7$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime7CodeBased$eventTime, pwSurvivalTime7$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime7CodeBased$kappa, pwSurvivalTime7$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime7CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime7$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime7CodeBased$delayedResponseAllowed, pwSurvivalTime7$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime7CodeBased$delayedResponseEnabled, pwSurvivalTime7$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime7), "character") + df <- as.data.frame(pwSurvivalTime7) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime7) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime8 <- getPiecewiseSurvivalTime( + piecewiseSurvivalTime = list("0 - 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime8) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + expect_warning(getPiecewiseSurvivalTime(piecewiseSurvivalTime = list("<6" = 0.025), hazardRatio = 0.8), + "Defined time period \"0 - <6\" will be ignored because 'piecewiseSurvivalTime' list has only 1 entry", + fixed = TRUE + ) +}) + +test_plan_section("Testing Class 'AccrualTime'") + + +test_that("Testing 'getAccrualTime': isAccrualTimeEnabled()", { + expect_true(getAccrualTime()$isAccrualTimeEnabled()) + expect_true(getAccrualTime(maxNumberOfSubjects = 100)$isAccrualTimeEnabled()) +}) + +test_that("Testing 'getAccrualTime': vector based definition", { + accrualTime1 <- getAccrualTime( + accrualTime = c(0, 6, 9, 15), + accrualIntensity = c(15, 21, 27), maxNumberOfSubjects = 315 + ) + expect_equal(accrualTime1$accrualTime, c(0, 6, 9, 15)) + expect_equal(accrualTime1$accrualIntensity, c(15, 21, 27)) + expect_equal(accrualTime1$remainingTime, NA_real_) + + accrualTime2 <- getAccrualTime( + accrualTime = c(0, 6, 9), + accrualIntensity = c(15, 21, 27), maxNumberOfSubjects = 1000 + ) + expect_equal(accrualTime2$accrualTime, c(0, 6, 9, 40.37037)) + expect_equal(accrualTime2$accrualIntensity, c(15, 21, 27)) + expect_equal(accrualTime2$remainingTime, 31.37037) + + .skipTestIfDisabled() + + accrualTime3 <- getAccrualTime( + accrualTime = c(0, 12, 13, 14, 15, 16), + accrualIntensity = c(15, 21, 27, 33, 39, 45), maxNumberOfSubjects = 1405 + ) + expect_equal(accrualTime3$accrualTime, c(0, 12, 13, 14, 15, 16, 40.55555556)) + expect_equal(accrualTime3$accrualIntensity, c(15, 21, 27, 33, 39, 45)) + expect_equal(accrualTime3$remainingTime, 24.55555556) + + accrualTime4 <- getAccrualTime( + accrualTime = c(0, 24), + accrualIntensity = c(30), maxNumberOfSubjects = 720 + ) + + ## Comparison of the results of AccrualTime object 'accrualTime4' with expected results + expect_equal(accrualTime4$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime4$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime4$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime4$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime4$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime4$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime4$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime4$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime4$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime4$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime4$accrualTime, c(0, 24), label = paste0("c(", paste0(accrualTime4$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime4$accrualIntensity, 30, label = paste0("c(", paste0(accrualTime4$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime4$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime4$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime4$maxNumberOfSubjects, 720, label = paste0("c(", paste0(accrualTime4$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime4$remainingTime, NA_real_, label = paste0("c(", paste0(accrualTime4$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime4$piecewiseAccrualEnabled, FALSE, label = paste0("c(", paste0(accrualTime4$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime4), NA))) + expect_output(print(accrualTime4)$show()) + invisible(capture.output(expect_error(summary(accrualTime4), NA))) + expect_output(summary(accrualTime4)$show()) + accrualTime4CodeBased <- eval(parse(text = getObjectRCode(accrualTime4, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime4CodeBased$endOfAccrualIsUserDefined, accrualTime4$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime4CodeBased$followUpTimeMustBeUserDefined, accrualTime4$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime4CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime4$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime4CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime4$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime4CodeBased$absoluteAccrualIntensityEnabled, accrualTime4$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime4CodeBased$accrualTime, accrualTime4$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime4CodeBased$accrualIntensity, accrualTime4$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime4CodeBased$accrualIntensityRelative, accrualTime4$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime4CodeBased$maxNumberOfSubjects, accrualTime4$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime4CodeBased$remainingTime, accrualTime4$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime4CodeBased$piecewiseAccrualEnabled, accrualTime4$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime4), "character") + df <- as.data.frame(accrualTime4) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime4) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + accrualTime5 <- getAccrualTime( + accrualTime = c(0, 24, 30), + accrualIntensity = c(30, 45) + ) + + ## Comparison of the results of AccrualTime object 'accrualTime5' with expected results + expect_equal(accrualTime5$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime5$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime5$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime5$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime5$maxNumberOfSubjectsIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime5$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime5$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime5$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime5$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime5$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime5$accrualTime, c(0, 24, 30), label = paste0("c(", paste0(accrualTime5$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime5$accrualIntensity, c(30, 45), label = paste0("c(", paste0(accrualTime5$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime5$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime5$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime5$maxNumberOfSubjects, 990, label = paste0("c(", paste0(accrualTime5$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime5$remainingTime, 6, label = paste0("c(", paste0(accrualTime5$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime5$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime5$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime5), NA))) + expect_output(print(accrualTime5)$show()) + invisible(capture.output(expect_error(summary(accrualTime5), NA))) + expect_output(summary(accrualTime5)$show()) + accrualTime5CodeBased <- eval(parse(text = getObjectRCode(accrualTime5, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime5CodeBased$endOfAccrualIsUserDefined, accrualTime5$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime5CodeBased$followUpTimeMustBeUserDefined, accrualTime5$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime5CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime5$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime5CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime5$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime5CodeBased$absoluteAccrualIntensityEnabled, accrualTime5$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime5CodeBased$accrualTime, accrualTime5$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime5CodeBased$accrualIntensity, accrualTime5$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime5CodeBased$accrualIntensityRelative, accrualTime5$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime5CodeBased$maxNumberOfSubjects, accrualTime5$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime5CodeBased$remainingTime, accrualTime5$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime5CodeBased$piecewiseAccrualEnabled, accrualTime5$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime5), "character") + df <- as.data.frame(accrualTime5) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime5) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + accrualTime6 <- getAccrualTime( + accrualTime = c(0, 24, 30), + accrualIntensity = c(20, 25, 45), maxNumberOfSubjects = 720 + ) + + ## Comparison of the results of AccrualTime object 'accrualTime6' with expected results + expect_equal(accrualTime6$endOfAccrualIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime6$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime6$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime6$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime6$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime6$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime6$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime6$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime6$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime6$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime6$accrualTime, c(0, 24, 30, 32), label = paste0("c(", paste0(accrualTime6$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime6$accrualIntensity, c(20, 25, 45), label = paste0("c(", paste0(accrualTime6$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime6$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime6$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime6$maxNumberOfSubjects, 720, label = paste0("c(", paste0(accrualTime6$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime6$remainingTime, 2, label = paste0("c(", paste0(accrualTime6$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime6$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime6$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime6), NA))) + expect_output(print(accrualTime6)$show()) + invisible(capture.output(expect_error(summary(accrualTime6), NA))) + expect_output(summary(accrualTime6)$show()) + accrualTime6CodeBased <- eval(parse(text = getObjectRCode(accrualTime6, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime6CodeBased$endOfAccrualIsUserDefined, accrualTime6$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime6CodeBased$followUpTimeMustBeUserDefined, accrualTime6$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime6CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime6$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime6CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime6$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime6CodeBased$absoluteAccrualIntensityEnabled, accrualTime6$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime6CodeBased$accrualTime, accrualTime6$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime6CodeBased$accrualIntensity, accrualTime6$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime6CodeBased$accrualIntensityRelative, accrualTime6$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime6CodeBased$maxNumberOfSubjects, accrualTime6$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime6CodeBased$remainingTime, accrualTime6$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime6CodeBased$piecewiseAccrualEnabled, accrualTime6$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime6), "character") + df <- as.data.frame(accrualTime6) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime6) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + accrualTime8 <- getAccrualTime(accrualTime = 0, accrualIntensity = 15, maxNumberOfSubjects = 1000) + + ## Comparison of the results of AccrualTime object 'accrualTime8' with expected results + expect_equal(accrualTime8$endOfAccrualIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime8$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime8$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime8$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime8$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime8$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime8$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime8$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime8$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime8$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime8$accrualTime, c(0, 66.666667), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime8$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime8$accrualIntensity, 15, label = paste0("c(", paste0(accrualTime8$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime8$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime8$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime8$maxNumberOfSubjects, 1000, label = paste0("c(", paste0(accrualTime8$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime8$remainingTime, 66.666667, tolerance = 1e-07, label = paste0("c(", paste0(accrualTime8$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime8$piecewiseAccrualEnabled, FALSE, label = paste0("c(", paste0(accrualTime8$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime8), NA))) + expect_output(print(accrualTime8)$show()) + invisible(capture.output(expect_error(summary(accrualTime8), NA))) + expect_output(summary(accrualTime8)$show()) + accrualTime8CodeBased <- eval(parse(text = getObjectRCode(accrualTime8, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime8CodeBased$endOfAccrualIsUserDefined, accrualTime8$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime8CodeBased$followUpTimeMustBeUserDefined, accrualTime8$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime8CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime8$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime8CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime8$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime8CodeBased$absoluteAccrualIntensityEnabled, accrualTime8$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime8CodeBased$accrualTime, accrualTime8$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime8CodeBased$accrualIntensity, accrualTime8$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime8CodeBased$accrualIntensityRelative, accrualTime8$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime8CodeBased$maxNumberOfSubjects, accrualTime8$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime8CodeBased$remainingTime, accrualTime8$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime8CodeBased$piecewiseAccrualEnabled, accrualTime8$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime8), "character") + df <- as.data.frame(accrualTime8) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime8) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + accrualTime9 <- getAccrualTime(accrualTime = c(0, 5), accrualIntensity = 15) + + ## Comparison of the results of AccrualTime object 'accrualTime9' with expected results + expect_equal(accrualTime9$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime9$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime9$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime9$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime9$maxNumberOfSubjectsIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime9$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime9$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime9$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime9$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime9$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime9$accrualTime, c(0, 5), label = paste0("c(", paste0(accrualTime9$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime9$accrualIntensity, 15, label = paste0("c(", paste0(accrualTime9$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime9$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime9$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime9$maxNumberOfSubjects, 75, label = paste0("c(", paste0(accrualTime9$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime9$remainingTime, 5, label = paste0("c(", paste0(accrualTime9$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime9$piecewiseAccrualEnabled, FALSE, label = paste0("c(", paste0(accrualTime9$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime9), NA))) + expect_output(print(accrualTime9)$show()) + invisible(capture.output(expect_error(summary(accrualTime9), NA))) + expect_output(summary(accrualTime9)$show()) + accrualTime9CodeBased <- eval(parse(text = getObjectRCode(accrualTime9, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime9CodeBased$endOfAccrualIsUserDefined, accrualTime9$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime9CodeBased$followUpTimeMustBeUserDefined, accrualTime9$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime9CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime9$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime9CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime9$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime9CodeBased$absoluteAccrualIntensityEnabled, accrualTime9$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime9CodeBased$accrualTime, accrualTime9$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime9CodeBased$accrualIntensity, accrualTime9$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime9CodeBased$accrualIntensityRelative, accrualTime9$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime9CodeBased$maxNumberOfSubjects, accrualTime9$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime9CodeBased$remainingTime, accrualTime9$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime9CodeBased$piecewiseAccrualEnabled, accrualTime9$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime9), "character") + df <- as.data.frame(accrualTime9) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime9) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + accrualTime10 <- getAccrualTime(accrualTime = 0, accrualIntensity = 15, maxNumberOfSubjects = 10) + + ## Comparison of the results of AccrualTime object 'accrualTime10' with expected results + expect_equal(accrualTime10$endOfAccrualIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime10$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime10$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime10$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime10$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime10$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime10$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime10$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime10$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime10$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime10$accrualTime, c(0, 0.66666667), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime10$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime10$accrualIntensity, 15, label = paste0("c(", paste0(accrualTime10$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime10$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime10$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime10$maxNumberOfSubjects, 10, label = paste0("c(", paste0(accrualTime10$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime10$remainingTime, 0.66666667, tolerance = 1e-07, label = paste0("c(", paste0(accrualTime10$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime10$piecewiseAccrualEnabled, FALSE, label = paste0("c(", paste0(accrualTime10$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime10), NA))) + expect_output(print(accrualTime10)$show()) + invisible(capture.output(expect_error(summary(accrualTime10), NA))) + expect_output(summary(accrualTime10)$show()) + accrualTime10CodeBased <- eval(parse(text = getObjectRCode(accrualTime10, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime10CodeBased$endOfAccrualIsUserDefined, accrualTime10$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime10CodeBased$followUpTimeMustBeUserDefined, accrualTime10$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime10CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime10$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime10CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime10$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime10CodeBased$absoluteAccrualIntensityEnabled, accrualTime10$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime10CodeBased$accrualTime, accrualTime10$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime10CodeBased$accrualIntensity, accrualTime10$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime10CodeBased$accrualIntensityRelative, accrualTime10$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime10CodeBased$maxNumberOfSubjects, accrualTime10$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime10CodeBased$remainingTime, accrualTime10$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime10CodeBased$piecewiseAccrualEnabled, accrualTime10$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime10), "character") + df <- as.data.frame(accrualTime10) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime10) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + accrualTime11 <- getAccrualTime(accrualTime = c(0, 5), accrualIntensity = 15, maxNumberOfSubjects = 75) + + ## Comparison of the results of AccrualTime object 'accrualTime11' with expected results + expect_equal(accrualTime11$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime11$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime11$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime11$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime11$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime11$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime11$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime11$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime11$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime11$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime11$accrualTime, c(0, 5), label = paste0("c(", paste0(accrualTime11$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime11$accrualIntensity, 15, label = paste0("c(", paste0(accrualTime11$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime11$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime11$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime11$maxNumberOfSubjects, 75, label = paste0("c(", paste0(accrualTime11$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime11$remainingTime, NA_real_, label = paste0("c(", paste0(accrualTime11$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime11$piecewiseAccrualEnabled, FALSE, label = paste0("c(", paste0(accrualTime11$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime11), NA))) + expect_output(print(accrualTime11)$show()) + invisible(capture.output(expect_error(summary(accrualTime11), NA))) + expect_output(summary(accrualTime11)$show()) + accrualTime11CodeBased <- eval(parse(text = getObjectRCode(accrualTime11, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime11CodeBased$endOfAccrualIsUserDefined, accrualTime11$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime11CodeBased$followUpTimeMustBeUserDefined, accrualTime11$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime11CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime11$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime11CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime11$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime11CodeBased$absoluteAccrualIntensityEnabled, accrualTime11$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime11CodeBased$accrualTime, accrualTime11$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime11CodeBased$accrualIntensity, accrualTime11$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime11CodeBased$accrualIntensityRelative, accrualTime11$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime11CodeBased$maxNumberOfSubjects, accrualTime11$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime11CodeBased$remainingTime, accrualTime11$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime11CodeBased$piecewiseAccrualEnabled, accrualTime11$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime11), "character") + df <- as.data.frame(accrualTime11) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime11) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + accrualTime12 <- getAccrualTime(accrualTime = c(0, 6, 15, 25), accrualIntensity = c(22, 0, 33)) + + ## Comparison of the results of AccrualTime object 'accrualTime12' with expected results + expect_equal(accrualTime12$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime12$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime12$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime12$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime12$maxNumberOfSubjectsIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime12$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime12$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime12$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime12$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime12$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime12$accrualTime, c(0, 6, 15, 25), label = paste0("c(", paste0(accrualTime12$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime12$accrualIntensity, c(22, 0, 33), label = paste0("c(", paste0(accrualTime12$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime12$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime12$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime12$maxNumberOfSubjects, 462, label = paste0("c(", paste0(accrualTime12$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime12$remainingTime, 10, label = paste0("c(", paste0(accrualTime12$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime12$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime12$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime12), NA))) + expect_output(print(accrualTime12)$show()) + invisible(capture.output(expect_error(summary(accrualTime12), NA))) + expect_output(summary(accrualTime12)$show()) + accrualTime12CodeBased <- eval(parse(text = getObjectRCode(accrualTime12, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime12CodeBased$endOfAccrualIsUserDefined, accrualTime12$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime12CodeBased$followUpTimeMustBeUserDefined, accrualTime12$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime12CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime12$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime12CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime12$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime12CodeBased$absoluteAccrualIntensityEnabled, accrualTime12$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime12CodeBased$accrualTime, accrualTime12$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime12CodeBased$accrualIntensity, accrualTime12$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime12CodeBased$accrualIntensityRelative, accrualTime12$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime12CodeBased$maxNumberOfSubjects, accrualTime12$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime12CodeBased$remainingTime, accrualTime12$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime12CodeBased$piecewiseAccrualEnabled, accrualTime12$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime12), "character") + df <- as.data.frame(accrualTime12) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime12) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + accrualTime13 <- getAccrualTime(accrualTime = c(0, 6), accrualIntensity = c(22, 33), maxNumberOfSubjects = 1000) + + ## Comparison of the results of AccrualTime object 'accrualTime13' with expected results + expect_equal(accrualTime13$endOfAccrualIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime13$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime13$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime13$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime13$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime13$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime13$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime13$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime13$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime13$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime13$accrualTime, c(0, 6, 32.30303), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime13$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime13$accrualIntensity, c(22, 33), label = paste0("c(", paste0(accrualTime13$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime13$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime13$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime13$maxNumberOfSubjects, 1000, label = paste0("c(", paste0(accrualTime13$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime13$remainingTime, 26.30303, tolerance = 1e-07, label = paste0("c(", paste0(accrualTime13$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime13$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime13$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime13), NA))) + expect_output(print(accrualTime13)$show()) + invisible(capture.output(expect_error(summary(accrualTime13), NA))) + expect_output(summary(accrualTime13)$show()) + accrualTime13CodeBased <- eval(parse(text = getObjectRCode(accrualTime13, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime13CodeBased$endOfAccrualIsUserDefined, accrualTime13$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime13CodeBased$followUpTimeMustBeUserDefined, accrualTime13$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime13CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime13$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime13CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime13$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime13CodeBased$absoluteAccrualIntensityEnabled, accrualTime13$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime13CodeBased$accrualTime, accrualTime13$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime13CodeBased$accrualIntensity, accrualTime13$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime13CodeBased$accrualIntensityRelative, accrualTime13$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime13CodeBased$maxNumberOfSubjects, accrualTime13$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime13CodeBased$remainingTime, accrualTime13$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime13CodeBased$piecewiseAccrualEnabled, accrualTime13$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime13), "character") + df <- as.data.frame(accrualTime13) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime13) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } +}) + +test_that("Testing 'getAccrualTime': test absolute and relative definition", { + # @refFS[Tab.]{fs:tab:output:getAccrualTime} + accrualTime1 <- getAccrualTime( + accrualTime = c(0, 6, 30), + accrualIntensity = c(22, 33), maxNumberOfSubjects = 924 + ) + + ## Comparison of the results of AccrualTime object 'accrualTime1' with expected results + expect_equal(accrualTime1$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime1$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime1$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime1$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime1$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime1$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime1$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime1$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime1$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime1$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime1$accrualTime, c(0, 6, 30), label = paste0("c(", paste0(accrualTime1$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime1$accrualIntensity, c(22, 33), label = paste0("c(", paste0(accrualTime1$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime1$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime1$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime1$maxNumberOfSubjects, 924, label = paste0("c(", paste0(accrualTime1$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime1$remainingTime, NA_real_, label = paste0("c(", paste0(accrualTime1$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime1$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime1$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime1), NA))) + expect_output(print(accrualTime1)$show()) + invisible(capture.output(expect_error(summary(accrualTime1), NA))) + expect_output(summary(accrualTime1)$show()) + accrualTime1CodeBased <- eval(parse(text = getObjectRCode(accrualTime1, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime1CodeBased$endOfAccrualIsUserDefined, accrualTime1$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime1CodeBased$followUpTimeMustBeUserDefined, accrualTime1$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime1CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime1$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime1CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime1$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime1CodeBased$absoluteAccrualIntensityEnabled, accrualTime1$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime1CodeBased$accrualTime, accrualTime1$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime1CodeBased$accrualIntensity, accrualTime1$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime1CodeBased$accrualIntensityRelative, accrualTime1$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime1CodeBased$maxNumberOfSubjects, accrualTime1$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime1CodeBased$remainingTime, accrualTime1$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime1CodeBased$piecewiseAccrualEnabled, accrualTime1$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime1), "character") + df <- as.data.frame(accrualTime1) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime1) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + accrualTime2 <- getAccrualTime( + list( + "0 - <6" = 22, + "6 - <=30" = 33 + ), + maxNumberOfSubjects = 924 + ) + + ## Comparison of the results of AccrualTime object 'accrualTime2' with expected results + expect_equal(accrualTime2$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime2$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime2$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime2$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime2$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime2$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime2$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime2$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime2$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime2$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime2$accrualTime, c(0, 6, 30), label = paste0("c(", paste0(accrualTime2$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime2$accrualIntensity, c(22, 33), label = paste0("c(", paste0(accrualTime2$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime2$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime2$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime2$maxNumberOfSubjects, 924, label = paste0("c(", paste0(accrualTime2$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime2$remainingTime, NA_real_, label = paste0("c(", paste0(accrualTime2$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime2$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime2$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime2), NA))) + expect_output(print(accrualTime2)$show()) + invisible(capture.output(expect_error(summary(accrualTime2), NA))) + expect_output(summary(accrualTime2)$show()) + accrualTime2CodeBased <- eval(parse(text = getObjectRCode(accrualTime2, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime2CodeBased$endOfAccrualIsUserDefined, accrualTime2$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime2CodeBased$followUpTimeMustBeUserDefined, accrualTime2$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime2CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime2$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime2CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime2$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime2CodeBased$absoluteAccrualIntensityEnabled, accrualTime2$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime2CodeBased$accrualTime, accrualTime2$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime2CodeBased$accrualIntensity, accrualTime2$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime2CodeBased$accrualIntensityRelative, accrualTime2$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime2CodeBased$maxNumberOfSubjects, accrualTime2$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime2CodeBased$remainingTime, accrualTime2$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime2CodeBased$piecewiseAccrualEnabled, accrualTime2$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime2), "character") + df <- as.data.frame(accrualTime2) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime2) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + .skipTestIfDisabled() + + accrualTime3 <- getAccrualTime( + accrualTime = c(0, 6, 30), + accrualIntensity = c(0.22, 0.33), maxNumberOfSubjects = 1000 + ) + + ## Comparison of the results of AccrualTime object 'accrualTime3' with expected results + expect_equal(accrualTime3$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime3$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime3$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime3$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime3$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime3$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime3$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime3$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime3$absoluteAccrualIntensityEnabled, FALSE, label = paste0("c(", paste0(accrualTime3$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime3$accrualTime, c(0, 6, 30), label = paste0("c(", paste0(accrualTime3$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime3$accrualIntensity, c(23.809524, 35.714286), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime3$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime3$accrualIntensityRelative, c(0.22, 0.33), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime3$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime3$maxNumberOfSubjects, 1000, label = paste0("c(", paste0(accrualTime3$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime3$remainingTime, 24, label = paste0("c(", paste0(accrualTime3$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime3$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime3$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime3), NA))) + expect_output(print(accrualTime3)$show()) + invisible(capture.output(expect_error(summary(accrualTime3), NA))) + expect_output(summary(accrualTime3)$show()) + accrualTime3CodeBased <- eval(parse(text = getObjectRCode(accrualTime3, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime3CodeBased$endOfAccrualIsUserDefined, accrualTime3$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime3CodeBased$followUpTimeMustBeUserDefined, accrualTime3$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime3CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime3$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime3CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime3$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime3CodeBased$absoluteAccrualIntensityEnabled, accrualTime3$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime3CodeBased$accrualTime, accrualTime3$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime3CodeBased$accrualIntensity, accrualTime3$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime3CodeBased$accrualIntensityRelative, accrualTime3$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime3CodeBased$maxNumberOfSubjects, accrualTime3$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime3CodeBased$remainingTime, accrualTime3$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime3CodeBased$piecewiseAccrualEnabled, accrualTime3$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime3), "character") + df <- as.data.frame(accrualTime3) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime3) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + accrualTime4 <- getAccrualTime( + list( + "0 - <6" = 0.22, + "6 - <=30" = 0.33 + ), + maxNumberOfSubjects = 1000 + ) + + ## Comparison of the results of AccrualTime object 'accrualTime4' with expected results + expect_equal(accrualTime4$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime4$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime4$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime4$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime4$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime4$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime4$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime4$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime4$absoluteAccrualIntensityEnabled, FALSE, label = paste0("c(", paste0(accrualTime4$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime4$accrualTime, c(0, 6, 30), label = paste0("c(", paste0(accrualTime4$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime4$accrualIntensity, c(23.809524, 35.714286), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime4$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime4$accrualIntensityRelative, c(0.22, 0.33), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime4$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime4$maxNumberOfSubjects, 1000, label = paste0("c(", paste0(accrualTime4$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime4$remainingTime, 24, label = paste0("c(", paste0(accrualTime4$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime4$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime4$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime4), NA))) + expect_output(print(accrualTime4)$show()) + invisible(capture.output(expect_error(summary(accrualTime4), NA))) + expect_output(summary(accrualTime4)$show()) + accrualTime4CodeBased <- eval(parse(text = getObjectRCode(accrualTime4, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime4CodeBased$endOfAccrualIsUserDefined, accrualTime4$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime4CodeBased$followUpTimeMustBeUserDefined, accrualTime4$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime4CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime4$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime4CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime4$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime4CodeBased$absoluteAccrualIntensityEnabled, accrualTime4$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime4CodeBased$accrualTime, accrualTime4$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime4CodeBased$accrualIntensity, accrualTime4$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime4CodeBased$accrualIntensityRelative, accrualTime4$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime4CodeBased$maxNumberOfSubjects, accrualTime4$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime4CodeBased$remainingTime, accrualTime4$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime4CodeBased$piecewiseAccrualEnabled, accrualTime4$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime4), "character") + df <- as.data.frame(accrualTime4) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime4) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + accrualTime5 <- getAccrualTime(accrualTime = c(0, 6, 30), accrualIntensity = c(22, 33)) + + ## Comparison of the results of AccrualTime object 'accrualTime5' with expected results + expect_equal(accrualTime5$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime5$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime5$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime5$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime5$maxNumberOfSubjectsIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime5$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime5$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime5$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime5$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime5$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime5$accrualTime, c(0, 6, 30), label = paste0("c(", paste0(accrualTime5$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime5$accrualIntensity, c(22, 33), label = paste0("c(", paste0(accrualTime5$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime5$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime5$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime5$maxNumberOfSubjects, 924, label = paste0("c(", paste0(accrualTime5$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime5$remainingTime, 24, label = paste0("c(", paste0(accrualTime5$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime5$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime5$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime5), NA))) + expect_output(print(accrualTime5)$show()) + invisible(capture.output(expect_error(summary(accrualTime5), NA))) + expect_output(summary(accrualTime5)$show()) + accrualTime5CodeBased <- eval(parse(text = getObjectRCode(accrualTime5, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime5CodeBased$endOfAccrualIsUserDefined, accrualTime5$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime5CodeBased$followUpTimeMustBeUserDefined, accrualTime5$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime5CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime5$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime5CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime5$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime5CodeBased$absoluteAccrualIntensityEnabled, accrualTime5$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime5CodeBased$accrualTime, accrualTime5$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime5CodeBased$accrualIntensity, accrualTime5$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime5CodeBased$accrualIntensityRelative, accrualTime5$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime5CodeBased$maxNumberOfSubjects, accrualTime5$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime5CodeBased$remainingTime, accrualTime5$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime5CodeBased$piecewiseAccrualEnabled, accrualTime5$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime5), "character") + df <- as.data.frame(accrualTime5) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime5) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + accrualTime6 <- getAccrualTime(list( + "0 - <6" = 22, + "6 - <=30" = 33 + )) + + ## Comparison of the results of AccrualTime object 'accrualTime6' with expected results + expect_equal(accrualTime6$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime6$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime6$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime6$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime6$maxNumberOfSubjectsIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime6$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime6$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime6$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime6$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime6$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime6$accrualTime, c(0, 6, 30), label = paste0("c(", paste0(accrualTime6$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime6$accrualIntensity, c(22, 33), label = paste0("c(", paste0(accrualTime6$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime6$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime6$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime6$maxNumberOfSubjects, 924, label = paste0("c(", paste0(accrualTime6$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime6$remainingTime, 24, label = paste0("c(", paste0(accrualTime6$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime6$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime6$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime6), NA))) + expect_output(print(accrualTime6)$show()) + invisible(capture.output(expect_error(summary(accrualTime6), NA))) + expect_output(summary(accrualTime6)$show()) + accrualTime6CodeBased <- eval(parse(text = getObjectRCode(accrualTime6, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime6CodeBased$endOfAccrualIsUserDefined, accrualTime6$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime6CodeBased$followUpTimeMustBeUserDefined, accrualTime6$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime6CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime6$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime6CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime6$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime6CodeBased$absoluteAccrualIntensityEnabled, accrualTime6$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime6CodeBased$accrualTime, accrualTime6$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime6CodeBased$accrualIntensity, accrualTime6$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime6CodeBased$accrualIntensityRelative, accrualTime6$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime6CodeBased$maxNumberOfSubjects, accrualTime6$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime6CodeBased$remainingTime, accrualTime6$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime6CodeBased$piecewiseAccrualEnabled, accrualTime6$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime6), "character") + df <- as.data.frame(accrualTime6) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime6) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + accrualTime7 <- getAccrualTime(accrualTime = c(0, 6, 30), accrualIntensity = c(0.22, 0.33)) + + ## Comparison of the results of AccrualTime object 'accrualTime7' with expected results + expect_equal(accrualTime7$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime7$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime7$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime7$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime7$maxNumberOfSubjectsIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime7$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime7$maxNumberOfSubjectsCanBeCalculatedDirectly, FALSE, label = paste0("c(", paste0(accrualTime7$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime7$absoluteAccrualIntensityEnabled, FALSE, label = paste0("c(", paste0(accrualTime7$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime7$accrualTime, c(0, 6, 30), label = paste0("c(", paste0(accrualTime7$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime7$accrualIntensity, c(0.22, 0.33), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime7$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime7$accrualIntensityRelative, c(0.22, 0.33), label = paste0("c(", paste0(accrualTime7$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime7$maxNumberOfSubjects, NA_real_, label = paste0("c(", paste0(accrualTime7$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime7$remainingTime, NA_real_, label = paste0("c(", paste0(accrualTime7$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime7$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime7$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime7), NA))) + expect_output(print(accrualTime7)$show()) + invisible(capture.output(expect_error(summary(accrualTime7), NA))) + expect_output(summary(accrualTime7)$show()) + accrualTime7CodeBased <- eval(parse(text = getObjectRCode(accrualTime7, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime7CodeBased$endOfAccrualIsUserDefined, accrualTime7$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime7CodeBased$followUpTimeMustBeUserDefined, accrualTime7$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime7CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime7$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime7CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime7$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime7CodeBased$absoluteAccrualIntensityEnabled, accrualTime7$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime7CodeBased$accrualTime, accrualTime7$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime7CodeBased$accrualIntensity, accrualTime7$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime7CodeBased$accrualIntensityRelative, accrualTime7$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime7CodeBased$maxNumberOfSubjects, accrualTime7$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime7CodeBased$remainingTime, accrualTime7$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime7CodeBased$piecewiseAccrualEnabled, accrualTime7$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime7), "character") + df <- as.data.frame(accrualTime7) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime7) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + accrualTime8 <- getAccrualTime(list( + "0 - <6" = 0.22, + "6 - <=30" = 0.33 + )) + + ## Comparison of the results of AccrualTime object 'accrualTime8' with expected results + expect_equal(accrualTime8$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime8$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime8$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime8$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime8$maxNumberOfSubjectsIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime8$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime8$maxNumberOfSubjectsCanBeCalculatedDirectly, FALSE, label = paste0("c(", paste0(accrualTime8$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime8$absoluteAccrualIntensityEnabled, FALSE, label = paste0("c(", paste0(accrualTime8$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime8$accrualTime, c(0, 6, 30), label = paste0("c(", paste0(accrualTime8$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime8$accrualIntensity, c(0.22, 0.33), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime8$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime8$accrualIntensityRelative, c(0.22, 0.33), label = paste0("c(", paste0(accrualTime8$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime8$maxNumberOfSubjects, NA_real_, label = paste0("c(", paste0(accrualTime8$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime8$remainingTime, NA_real_, label = paste0("c(", paste0(accrualTime8$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime8$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime8$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime8), NA))) + expect_output(print(accrualTime8)$show()) + invisible(capture.output(expect_error(summary(accrualTime8), NA))) + expect_output(summary(accrualTime8)$show()) + accrualTime8CodeBased <- eval(parse(text = getObjectRCode(accrualTime8, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime8CodeBased$endOfAccrualIsUserDefined, accrualTime8$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime8CodeBased$followUpTimeMustBeUserDefined, accrualTime8$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime8CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime8$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime8CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime8$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime8CodeBased$absoluteAccrualIntensityEnabled, accrualTime8$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime8CodeBased$accrualTime, accrualTime8$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime8CodeBased$accrualIntensity, accrualTime8$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime8CodeBased$accrualIntensityRelative, accrualTime8$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime8CodeBased$maxNumberOfSubjects, accrualTime8$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime8CodeBased$remainingTime, accrualTime8$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime8CodeBased$piecewiseAccrualEnabled, accrualTime8$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime8), "character") + df <- as.data.frame(accrualTime8) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime8) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + accrualTime9 <- getAccrualTime( + accrualTime = c(0, 6), + accrualIntensity = c(22, 33), maxNumberOfSubjects = 1000 + ) + + ## Comparison of the results of AccrualTime object 'accrualTime9' with expected results + expect_equal(accrualTime9$endOfAccrualIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime9$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime9$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime9$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime9$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime9$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime9$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime9$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime9$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime9$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime9$accrualTime, c(0, 6, 32.30303), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime9$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime9$accrualIntensity, c(22, 33), label = paste0("c(", paste0(accrualTime9$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime9$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime9$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime9$maxNumberOfSubjects, 1000, label = paste0("c(", paste0(accrualTime9$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime9$remainingTime, 26.30303, tolerance = 1e-07, label = paste0("c(", paste0(accrualTime9$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime9$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime9$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime9), NA))) + expect_output(print(accrualTime9)$show()) + invisible(capture.output(expect_error(summary(accrualTime9), NA))) + expect_output(summary(accrualTime9)$show()) + accrualTime9CodeBased <- eval(parse(text = getObjectRCode(accrualTime9, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime9CodeBased$endOfAccrualIsUserDefined, accrualTime9$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime9CodeBased$followUpTimeMustBeUserDefined, accrualTime9$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime9CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime9$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime9CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime9$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime9CodeBased$absoluteAccrualIntensityEnabled, accrualTime9$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime9CodeBased$accrualTime, accrualTime9$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime9CodeBased$accrualIntensity, accrualTime9$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime9CodeBased$accrualIntensityRelative, accrualTime9$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime9CodeBased$maxNumberOfSubjects, accrualTime9$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime9CodeBased$remainingTime, accrualTime9$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime9CodeBased$piecewiseAccrualEnabled, accrualTime9$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime9), "character") + df <- as.data.frame(accrualTime9) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime9) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + accrualTime10 <- getAccrualTime( + list( + "0 - <6" = 22, + "6" = 33 + ), + maxNumberOfSubjects = 1000 + ) + + ## Comparison of the results of AccrualTime object 'accrualTime10' with expected results + expect_equal(accrualTime10$endOfAccrualIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime10$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime10$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime10$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime10$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime10$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime10$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime10$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime10$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime10$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime10$accrualTime, c(0, 6, 32.30303), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime10$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime10$accrualIntensity, c(22, 33), label = paste0("c(", paste0(accrualTime10$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime10$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime10$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime10$maxNumberOfSubjects, 1000, label = paste0("c(", paste0(accrualTime10$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime10$remainingTime, 26.30303, tolerance = 1e-07, label = paste0("c(", paste0(accrualTime10$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime10$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime10$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime10), NA))) + expect_output(print(accrualTime10)$show()) + invisible(capture.output(expect_error(summary(accrualTime10), NA))) + expect_output(summary(accrualTime10)$show()) + accrualTime10CodeBased <- eval(parse(text = getObjectRCode(accrualTime10, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime10CodeBased$endOfAccrualIsUserDefined, accrualTime10$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime10CodeBased$followUpTimeMustBeUserDefined, accrualTime10$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime10CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime10$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime10CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime10$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime10CodeBased$absoluteAccrualIntensityEnabled, accrualTime10$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime10CodeBased$accrualTime, accrualTime10$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime10CodeBased$accrualIntensity, accrualTime10$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime10CodeBased$accrualIntensityRelative, accrualTime10$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime10CodeBased$maxNumberOfSubjects, accrualTime10$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime10CodeBased$remainingTime, accrualTime10$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime10CodeBased$piecewiseAccrualEnabled, accrualTime10$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime10), "character") + df <- as.data.frame(accrualTime10) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime10) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + accrualTime12 <- getAccrualTime( + list( + "0 - <6" = 0.22, + "6 - <=30" = 0.33 + ), + maxNumberOfSubjects = 1000 + ) + + ## Comparison of the results of AccrualTime object 'accrualTime12' with expected results + expect_equal(accrualTime12$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime12$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime12$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime12$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime12$maxNumberOfSubjectsIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime12$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime12$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime12$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime12$absoluteAccrualIntensityEnabled, FALSE, label = paste0("c(", paste0(accrualTime12$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime12$accrualTime, c(0, 6, 30), label = paste0("c(", paste0(accrualTime12$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime12$accrualIntensity, c(23.809524, 35.714286), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime12$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime12$accrualIntensityRelative, c(0.22, 0.33), tolerance = 1e-07, label = paste0("c(", paste0(accrualTime12$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime12$maxNumberOfSubjects, 1000, label = paste0("c(", paste0(accrualTime12$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime12$remainingTime, 24, label = paste0("c(", paste0(accrualTime12$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime12$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime12$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime12), NA))) + expect_output(print(accrualTime12)$show()) + invisible(capture.output(expect_error(summary(accrualTime12), NA))) + expect_output(summary(accrualTime12)$show()) + accrualTime12CodeBased <- eval(parse(text = getObjectRCode(accrualTime12, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime12CodeBased$endOfAccrualIsUserDefined, accrualTime12$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime12CodeBased$followUpTimeMustBeUserDefined, accrualTime12$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime12CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime12$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime12CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime12$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime12CodeBased$absoluteAccrualIntensityEnabled, accrualTime12$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime12CodeBased$accrualTime, accrualTime12$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime12CodeBased$accrualIntensity, accrualTime12$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime12CodeBased$accrualIntensityRelative, accrualTime12$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime12CodeBased$maxNumberOfSubjects, accrualTime12$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime12CodeBased$remainingTime, accrualTime12$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime12CodeBased$piecewiseAccrualEnabled, accrualTime12$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime12), "character") + df <- as.data.frame(accrualTime12) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime12) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + accrualTime13 <- getAccrualTime(accrualTime = c(0, 6), accrualIntensity = c(22, 33)) + + ## Comparison of the results of AccrualTime object 'accrualTime13' with expected results + expect_equal(accrualTime13$endOfAccrualIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime13$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime13$followUpTimeMustBeUserDefined, TRUE, label = paste0("c(", paste0(accrualTime13$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime13$maxNumberOfSubjectsIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime13$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime13$maxNumberOfSubjectsCanBeCalculatedDirectly, FALSE, label = paste0("c(", paste0(accrualTime13$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime13$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime13$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime13$accrualTime, c(0, 6), label = paste0("c(", paste0(accrualTime13$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime13$accrualIntensity, c(22, 33), label = paste0("c(", paste0(accrualTime13$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime13$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime13$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime13$maxNumberOfSubjects, NA_real_, label = paste0("c(", paste0(accrualTime13$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime13$remainingTime, NA_real_, label = paste0("c(", paste0(accrualTime13$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime13$piecewiseAccrualEnabled, FALSE, label = paste0("c(", paste0(accrualTime13$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime13), NA))) + expect_output(print(accrualTime13)$show()) + invisible(capture.output(expect_error(summary(accrualTime13), NA))) + expect_output(summary(accrualTime13)$show()) + accrualTime13CodeBased <- eval(parse(text = getObjectRCode(accrualTime13, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime13CodeBased$endOfAccrualIsUserDefined, accrualTime13$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime13CodeBased$followUpTimeMustBeUserDefined, accrualTime13$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime13CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime13$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime13CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime13$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime13CodeBased$absoluteAccrualIntensityEnabled, accrualTime13$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime13CodeBased$accrualTime, accrualTime13$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime13CodeBased$accrualIntensity, accrualTime13$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime13CodeBased$accrualIntensityRelative, accrualTime13$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime13CodeBased$maxNumberOfSubjects, accrualTime13$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime13CodeBased$remainingTime, accrualTime13$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime13CodeBased$piecewiseAccrualEnabled, accrualTime13$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime13), "character") + df <- as.data.frame(accrualTime13) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime13) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + accrualTime14 <- getAccrualTime(list( + "0 - <6" = 22, + "6 - <=30" = 33 + )) + + ## Comparison of the results of AccrualTime object 'accrualTime14' with expected results + expect_equal(accrualTime14$endOfAccrualIsUserDefined, TRUE, label = paste0("c(", paste0(accrualTime14$endOfAccrualIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime14$followUpTimeMustBeUserDefined, FALSE, label = paste0("c(", paste0(accrualTime14$followUpTimeMustBeUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime14$maxNumberOfSubjectsIsUserDefined, FALSE, label = paste0("c(", paste0(accrualTime14$maxNumberOfSubjectsIsUserDefined, collapse = ", "), ")")) + expect_equal(accrualTime14$maxNumberOfSubjectsCanBeCalculatedDirectly, TRUE, label = paste0("c(", paste0(accrualTime14$maxNumberOfSubjectsCanBeCalculatedDirectly, collapse = ", "), ")")) + expect_equal(accrualTime14$absoluteAccrualIntensityEnabled, TRUE, label = paste0("c(", paste0(accrualTime14$absoluteAccrualIntensityEnabled, collapse = ", "), ")")) + expect_equal(accrualTime14$accrualTime, c(0, 6, 30), label = paste0("c(", paste0(accrualTime14$accrualTime, collapse = ", "), ")")) + expect_equal(accrualTime14$accrualIntensity, c(22, 33), label = paste0("c(", paste0(accrualTime14$accrualIntensity, collapse = ", "), ")")) + expect_equal(accrualTime14$accrualIntensityRelative, NA_real_, label = paste0("c(", paste0(accrualTime14$accrualIntensityRelative, collapse = ", "), ")")) + expect_equal(accrualTime14$maxNumberOfSubjects, 924, label = paste0("c(", paste0(accrualTime14$maxNumberOfSubjects, collapse = ", "), ")")) + expect_equal(accrualTime14$remainingTime, 24, label = paste0("c(", paste0(accrualTime14$remainingTime, collapse = ", "), ")")) + expect_equal(accrualTime14$piecewiseAccrualEnabled, TRUE, label = paste0("c(", paste0(accrualTime14$piecewiseAccrualEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(accrualTime14), NA))) + expect_output(print(accrualTime14)$show()) + invisible(capture.output(expect_error(summary(accrualTime14), NA))) + expect_output(summary(accrualTime14)$show()) + accrualTime14CodeBased <- eval(parse(text = getObjectRCode(accrualTime14, stringWrapParagraphWidth = NULL))) + expect_equal(accrualTime14CodeBased$endOfAccrualIsUserDefined, accrualTime14$endOfAccrualIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime14CodeBased$followUpTimeMustBeUserDefined, accrualTime14$followUpTimeMustBeUserDefined, tolerance = 1e-07) + expect_equal(accrualTime14CodeBased$maxNumberOfSubjectsIsUserDefined, accrualTime14$maxNumberOfSubjectsIsUserDefined, tolerance = 1e-07) + expect_equal(accrualTime14CodeBased$maxNumberOfSubjectsCanBeCalculatedDirectly, accrualTime14$maxNumberOfSubjectsCanBeCalculatedDirectly, tolerance = 1e-07) + expect_equal(accrualTime14CodeBased$absoluteAccrualIntensityEnabled, accrualTime14$absoluteAccrualIntensityEnabled, tolerance = 1e-07) + expect_equal(accrualTime14CodeBased$accrualTime, accrualTime14$accrualTime, tolerance = 1e-07) + expect_equal(accrualTime14CodeBased$accrualIntensity, accrualTime14$accrualIntensity, tolerance = 1e-07) + expect_equal(accrualTime14CodeBased$accrualIntensityRelative, accrualTime14$accrualIntensityRelative, tolerance = 1e-07) + expect_equal(accrualTime14CodeBased$maxNumberOfSubjects, accrualTime14$maxNumberOfSubjects, tolerance = 1e-07) + expect_equal(accrualTime14CodeBased$remainingTime, accrualTime14$remainingTime, tolerance = 1e-07) + expect_equal(accrualTime14CodeBased$piecewiseAccrualEnabled, accrualTime14$piecewiseAccrualEnabled, tolerance = 1e-07) + expect_type(names(accrualTime14), "character") + df <- as.data.frame(accrualTime14) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(accrualTime14) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } +}) + +test_that("Testing 'getAccrualTime': check expected warnings and errors", { + # @refFS[Tab.]{fs:tab:output:getAccrualTime} + expect_warning(getAccrualTime(accrualTime = c(0, 6), accrualIntensity = c(0.22, 0.33)), + paste0( + "The specified accrual time and intensity cannot be supplemented ", + "automatically with the missing information; therefore further calculations are not possible" + ), + fixed = TRUE + ) + + expect_warning(getAccrualTime(accrualTime = c(0, 24), accrualIntensity = c(30, 45), maxNumberOfSubjects = 720), + "Last accrual intensity value (45) ignored", + fixed = TRUE + ) + + .skipTestIfDisabled() + + suppressWarnings(expect_warning( + getAccrualTime( + accrualTime = c(0, 24, 30), + accrualIntensity = c(30, 45, 55), maxNumberOfSubjects = 720 + ), + "Last 2 accrual intensity values (45, 55) ignored", + fixed = TRUE + )) + + suppressWarnings(expect_warning( + getAccrualTime( + accrualTime = c(0, 24, 30, 40), + accrualIntensity = c(30, 45, 55, 66), maxNumberOfSubjects = 720 + ), + "Last 2 accrual time values (30, 40) ignored", + fixed = TRUE + )) + + suppressWarnings(expect_warning( + getAccrualTime( + accrualTime = c(0, 24, 30, 40), + accrualIntensity = c(30, 45, 55, 66), maxNumberOfSubjects = 720 + ), + "Last 3 accrual intensity values (45, 55, 66) ignored", + fixed = TRUE + )) + + expect_warning(getAccrualTime(accrualTime = c(0, 6, 15, 25), accrualIntensity = c(0, 22, 33)), + "It makes no sense to start 'accrualIntensity' (0, 22, 33) with 0", + fixed = TRUE + ) + + expect_error(getAccrualTime(accrualTime = c(0, 6), accrualIntensity = c(0)), + "Illegal argument: at least one 'accrualIntensity' value must be > 0", + fixed = TRUE + ) + + expect_error( + getAccrualTime( + accrualTime = c(0, 6, 30), accrualIntensity = c(22, 33), + maxNumberOfSubjects = 1000 + ), + paste0( + "Conflicting arguments: 'maxNumberOfSubjects' (1000) disagrees with the defined ", + "accrual time (0, 6, 30) and intensity: 6 * 22 + 24 * 33 = 924" + ), + fixed = TRUE + ) +}) + +test_that("Testing 'getAccrualTime': list-wise definition", { + accrualTime1 <- list( + "0 - <12" = 15, + "12 - <13" = 21, + "13 - <14" = 27, + "14 - <15" = 33, + "15 - <16" = 39, + ">=16" = 45 + ) + + # @refFS[Tab.]{fs:tab:output:getAccrualTime} + accrualTime4 <- getAccrualTime(accrualTime = accrualTime1, maxNumberOfSubjects = 1405) + expect_equal(accrualTime4$accrualTime, c(0, 12, 13, 14, 15, 16, 40.55555556)) + expect_equal(accrualTime4$accrualIntensity, c(15, 21, 27, 33, 39, 45)) + expect_equal(accrualTime4$remainingTime, 24.55555556) + + .skipTestIfDisabled() + + accrualTime2 <- list( + "0 - <12" = 15, + "12 - <13" = 21, + "13 - <14" = 27, + "14 - <15" = 33, + "15 - <16" = 39, + "16 - ?" = 45 + ) + accrualTime5 <- getAccrualTime(accrualTime = accrualTime2, maxNumberOfSubjects = 1405) + expect_equal(accrualTime5$accrualTime, c(0, 12, 13, 14, 15, 16, 40.55555556)) + expect_equal(accrualTime5$accrualIntensity, c(15, 21, 27, 33, 39, 45)) + expect_equal(accrualTime5$remainingTime, 24.55555556) + + accrualTime3 <- list( + "0 - <11" = 20, + "11 - <16" = 40, + ">=16" = 60 + ) + accrualTime6 <- getAccrualTime(accrualTime = accrualTime3, maxNumberOfSubjects = 800) + expect_equal(accrualTime6$accrualTime, c(0, 11, 16, 22.3333333)) + expect_equal(accrualTime6$accrualIntensity, c(20, 40, 60)) + expect_equal(accrualTime6$remainingTime, 6.33333333) + + accrualTime7 <- list( + "0 - <11" = 20, + "11 - <16" = 40, + "16 - ?" = 60 + ) + accrualTime8 <- getAccrualTime(accrualTime = accrualTime7, maxNumberOfSubjects = 800) + expect_equal(accrualTime8$accrualTime, c(0, 11, 16, 22.3333333)) + expect_equal(accrualTime8$accrualIntensity, c(20, 40, 60)) + expect_equal(accrualTime8$remainingTime, 6.33333333) +}) + +test_that("Testing 'getPiecewiseSurvivalTime': mixed arguments", { + # @refFS[Tab.]{fs:tab:output:getPiecewiseSurvivalTime} + pwSurvivalTime1 <- getPiecewiseSurvivalTime(median1 = 37, hazardRatio = 0.8) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime1' with expected results + expect_equal(pwSurvivalTime1$piecewiseSurvivalTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime1$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$lambda1, 0.018733708, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime1$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$lambda2, 0.023417134, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime1$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$hazardRatio, 0.8, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime1$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime1$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime1$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$median1, 37, label = paste0("c(", paste0(pwSurvivalTime1$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$median2, 29.6, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime1$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime1$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime1$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime1$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime1$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime1$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime1$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime1), NA))) + expect_output(print(pwSurvivalTime1)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime1), NA))) + expect_output(summary(pwSurvivalTime1)$show()) + pwSurvivalTime1CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime1, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime1CodeBased$piecewiseSurvivalTime, pwSurvivalTime1$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$lambda1, pwSurvivalTime1$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$lambda2, pwSurvivalTime1$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$hazardRatio, pwSurvivalTime1$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$pi1, pwSurvivalTime1$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$pi2, pwSurvivalTime1$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$median1, pwSurvivalTime1$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$median2, pwSurvivalTime1$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$eventTime, pwSurvivalTime1$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$kappa, pwSurvivalTime1$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime1$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$delayedResponseAllowed, pwSurvivalTime1$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime1CodeBased$delayedResponseEnabled, pwSurvivalTime1$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime1), "character") + df <- as.data.frame(pwSurvivalTime1) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime1) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime2 <- getPiecewiseSurvivalTime(lambda1 = 0.01873371, median2 = 29.6) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime2' with expected results + expect_equal(pwSurvivalTime2$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime2$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$lambda1, 0.01873371, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$lambda2, 0.023417134, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$hazardRatio, 0.8000001, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime2$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime2$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$median1, 36.999995, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$median2, 29.6, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime2$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime2$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime2$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime2$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime2$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime2), NA))) + expect_output(print(pwSurvivalTime2)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime2), NA))) + expect_output(summary(pwSurvivalTime2)$show()) + pwSurvivalTime2CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime2, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime2CodeBased$piecewiseSurvivalTime, pwSurvivalTime2$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$lambda1, pwSurvivalTime2$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$lambda2, pwSurvivalTime2$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$hazardRatio, pwSurvivalTime2$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$pi1, pwSurvivalTime2$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$pi2, pwSurvivalTime2$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$median1, pwSurvivalTime2$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$median2, pwSurvivalTime2$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$eventTime, pwSurvivalTime2$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$kappa, pwSurvivalTime2$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime2$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$delayedResponseAllowed, pwSurvivalTime2$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime2CodeBased$delayedResponseEnabled, pwSurvivalTime2$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime2), "character") + df <- as.data.frame(pwSurvivalTime2) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime2) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + pwSurvivalTime3 <- getPiecewiseSurvivalTime(median1 = 37, lambda2 = 0.02341713) + + ## Comparison of the results of PiecewiseSurvivalTime object 'pwSurvivalTime3' with expected results + expect_equal(pwSurvivalTime3$piecewiseSurvivalTime, 0, label = paste0("c(", paste0(pwSurvivalTime3$piecewiseSurvivalTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$lambda1, 0.018733708, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime3$lambda1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$lambda2, 0.02341713, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime3$lambda2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$hazardRatio, 0.80000015, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime3$hazardRatio, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$pi1, NA_real_, label = paste0("c(", paste0(pwSurvivalTime3$pi1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$pi2, NA_real_, label = paste0("c(", paste0(pwSurvivalTime3$pi2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$median1, 37, label = paste0("c(", paste0(pwSurvivalTime3$median1, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$median2, 29.600006, tolerance = 1e-07, label = paste0("c(", paste0(pwSurvivalTime3$median2, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$eventTime, NA_real_, label = paste0("c(", paste0(pwSurvivalTime3$eventTime, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$kappa, 1, label = paste0("c(", paste0(pwSurvivalTime3$kappa, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$piecewiseSurvivalEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime3$piecewiseSurvivalEnabled, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$delayedResponseAllowed, FALSE, label = paste0("c(", paste0(pwSurvivalTime3$delayedResponseAllowed, collapse = ", "), ")")) + expect_equal(pwSurvivalTime3$delayedResponseEnabled, FALSE, label = paste0("c(", paste0(pwSurvivalTime3$delayedResponseEnabled, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(pwSurvivalTime3), NA))) + expect_output(print(pwSurvivalTime3)$show()) + invisible(capture.output(expect_error(summary(pwSurvivalTime3), NA))) + expect_output(summary(pwSurvivalTime3)$show()) + pwSurvivalTime3CodeBased <- eval(parse(text = getObjectRCode(pwSurvivalTime3, stringWrapParagraphWidth = NULL))) + expect_equal(pwSurvivalTime3CodeBased$piecewiseSurvivalTime, pwSurvivalTime3$piecewiseSurvivalTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$lambda1, pwSurvivalTime3$lambda1, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$lambda2, pwSurvivalTime3$lambda2, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$hazardRatio, pwSurvivalTime3$hazardRatio, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$pi1, pwSurvivalTime3$pi1, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$pi2, pwSurvivalTime3$pi2, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$median1, pwSurvivalTime3$median1, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$median2, pwSurvivalTime3$median2, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$eventTime, pwSurvivalTime3$eventTime, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$kappa, pwSurvivalTime3$kappa, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$piecewiseSurvivalEnabled, pwSurvivalTime3$piecewiseSurvivalEnabled, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$delayedResponseAllowed, pwSurvivalTime3$delayedResponseAllowed, tolerance = 1e-07) + expect_equal(pwSurvivalTime3CodeBased$delayedResponseEnabled, pwSurvivalTime3$delayedResponseEnabled, tolerance = 1e-07) + expect_type(names(pwSurvivalTime3), "character") + df <- as.data.frame(pwSurvivalTime3) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(pwSurvivalTime3) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + expect_warning(getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), pi1 = 0.3), + "'hazardRatio' (0.6, 0.8) will be ignored because it will be calculated", + fixed = TRUE + ) +}) + +test_that("Testing 'getAccrualTime' and 'getPiecewiseSurvivalTime': illegal user arguments", { + expect_error(getAccrualTime(accrualTime = c(0, 12), accrualIntensity = 0.1, accrualIntensityType = "absolute")) + + expect_error(getAccrualTime( + list( + "0 - <6" = 22, + "6 - 30" = 33 + ), + maxNumberOfSubjects = 924 + )) + + expect_error(getAccrualTime( + list( + "0 < 6" = 22, + "6 - 30" = 33 + ), + maxNumberOfSubjects = 924 + )) + + expect_error(getAccrualTime( + list( + "0 - <6" = 22, + "0 < 12" = 22, + "12 - 30" = 33 + ), + maxNumberOfSubjects = 924 + )) + + expect_error(getPiecewiseSurvivalTime( + piecewiseSurvivalTime = list( + "0 - 6" = 0.025, + "7 - 12" = 0.035 + ), + hazardRatio = 0.8, delayedResponseAllowed = FALSE + )) +}) diff --git a/tests/testthat/test-f_analysis_enrichment_means.R b/tests/testthat/test-f_analysis_enrichment_means.R index 709af679..9bced585 100644 --- a/tests/testthat/test-f_analysis_enrichment_means.R +++ b/tests/testthat/test-f_analysis_enrichment_means.R @@ -1,1441 +1,1490 @@ -## | +## | ## | *Unit tests* -## | +## | ## | This file is part of the R package rpact: ## | Confirmatory Adaptive Clinical Trial Design and Analysis -## | +## | ## | Author: Gernot Wassmer, PhD, and Friedrich Pahlke, PhD ## | Licensed under "GNU Lesser General Public License" version 3 ## | License text can be found here: https://www.r-project.org/Licenses/LGPL-3 -## | +## | ## | RPACT company website: https://www.rpact.com ## | RPACT package website: https://www.rpact.org -## | +## | ## | Contact us for information about our services: info@rpact.com -## | +## | ## | File name: test-f_analysis_enrichment_means.R -## | Creation date: 08 November 2023, 08:53:05 -## | File version: $Revision$ -## | Last changed: $Date$ -## | Last changed by: $Author$ -## | +## | Creation date: 27 May 2024, 13:07:08 +## | File version: $Revision: 7940 $ +## | Last changed: $Date: 2024-05-27 15:47:41 +0200 (Mo, 27 Mai 2024) $ +## | Last changed by: $Author: pahlke $ +## | test_plan_section("Testing Analysis Enrichment Means Function (one sub-population)") test_that("'getAnalysisResults': select S1 at first IA, gMax = 2, inverse normal design", { - .skipTestIfDisabled() - - # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} - # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichment} - # @refFS[Formula]{fs:computeRCIsEnrichment} - # @refFS[Formula]{fs:conditionalPowerEnrichment} - # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} - # @refFS[Formula]{fs:stratifiedtTestEnrichment} - S1 <- getDataset( - sampleSize1 = c(12, 21), - sampleSize2 = c(18, 21), - mean1 = c(107.7, 84.9), - mean2 = c(165.6, 195.9), - stDev1 = c(128.5, 139.5), - stDev2 = c(120.1, 185.0) - ) - - F <- getDataset( - sampleSize1 = c(26, NA), - sampleSize2 = c(29, NA), - mean1 = c(86.48462, NA), - mean2 = c(148.34138, NA), - stDev1 = c(129.1485, NA), - stDev2 = c(122.888, NA) - ) - - dataInput1 <- getDataset(S1 = S1, F = F) - - ## Comparison of the results of DatasetMeans object 'dataInput1' with expected results - expect_equal(dataInput1$overallSampleSizes, c(12, 26, 18, 29, 33, NA_real_, 39, NA_real_), label = paste0("c(", paste0(dataInput1$overallSampleSizes, collapse = ", "), ")")) - expect_equal(dataInput1$overallMeans, c(107.7, 86.48462, 165.6, 148.34138, 93.190909, NA_real_, 181.91538, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput1$overallMeans, collapse = ", "), ")")) - expect_equal(dataInput1$overallStDevs, c(128.5, 129.1485, 120.1, 122.888, 134.02535, NA_real_, 157.16289, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput1$overallStDevs, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(dataInput1), NA))) - expect_output(print(dataInput1)$show()) - invisible(capture.output(expect_error(summary(dataInput1), NA))) - expect_output(summary(dataInput1)$show()) - dataInput1CodeBased <- eval(parse(text = getObjectRCode(dataInput1, stringWrapParagraphWidth = NULL))) - expect_equal(dataInput1CodeBased$overallSampleSizes, dataInput1$overallSampleSizes, tolerance = 1e-07) - expect_equal(dataInput1CodeBased$overallMeans, dataInput1$overallMeans, tolerance = 1e-07) - expect_equal(dataInput1CodeBased$overallStDevs, dataInput1$overallStDevs, tolerance = 1e-07) - expect_type(names(dataInput1), "character") - df <- as.data.frame(dataInput1) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(dataInput1) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - design1 <- getDesignInverseNormal( - kMax = 3, alpha = 0.02, futilityBounds = c(-0.5, 0), - bindingFutility = FALSE, typeOfDesign = "OF", informationRates = c(0.5, 0.7, 1) - ) - - x1 <- getAnalysisResults( - design = design1, dataInput = dataInput1, - directionUpper = FALSE, - normalApproximation = FALSE, - varianceOption = "pooledFromFull", - intersectionTest = "Bonferroni", - stratifiedAnalysis = FALSE, - stage = 2, - thetaH1 = c(-30, NA), - assumedStDevs = c(88, NA), - nPlanned = c(30), - allocationRatioPlanned = 2 - ) - - ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x1' with expected results - expect_equal(x1$conditionalRejectionProbabilities[1, ], c(0.040655272, 0.29596348, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x1$conditionalRejectionProbabilities[2, ], c(0.065736952, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x1$conditionalPower[1, ], c(NA_real_, NA_real_, 0.6346437), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x1$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x1$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalLowerBounds[1, ], c(-215.41406, -176.0794, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalLowerBounds[2, ], c(-176.00816, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalUpperBounds[1, ], c(99.614058, 24.117528, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalUpperBounds[2, ], c(52.294639, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x1$repeatedPValues[1, ], c(0.25380947, 0.041128123, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x1$repeatedPValues[2, ], c(0.19818652, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedPValues[2, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x1), NA))) - expect_output(print(x1)$show()) - invisible(capture.output(expect_error(summary(x1), NA))) - expect_output(summary(x1)$show()) - x1CodeBased <- eval(parse(text = getObjectRCode(x1, stringWrapParagraphWidth = NULL))) - expect_equal(x1CodeBased$conditionalRejectionProbabilities, x1$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x1CodeBased$conditionalPower, x1$conditionalPower, tolerance = 1e-07) - expect_equal(x1CodeBased$repeatedConfidenceIntervalLowerBounds, x1$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x1CodeBased$repeatedConfidenceIntervalUpperBounds, x1$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x1CodeBased$repeatedPValues, x1$repeatedPValues, tolerance = 1e-07) - expect_type(names(x1), "character") - df <- as.data.frame(x1) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x1) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - + .skipTestIfDisabled() + + # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} + # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichment} + # @refFS[Formula]{fs:computeRCIsEnrichment} + # @refFS[Formula]{fs:conditionalPowerEnrichment} + # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} + # @refFS[Formula]{fs:stratifiedtTestEnrichment} + S1 <- getDataset( + sampleSize1 = c(12, 21), + sampleSize2 = c(18, 21), + mean1 = c(107.7, 84.9), + mean2 = c(165.6, 195.9), + stDev1 = c(128.5, 139.5), + stDev2 = c(120.1, 185.0) + ) + + F <- getDataset( + sampleSize1 = c(26, NA), + sampleSize2 = c(29, NA), + mean1 = c(86.48462, NA), + mean2 = c(148.34138, NA), + stDev1 = c(129.1485, NA), + stDev2 = c(122.888, NA) + ) + + dataInput1 <- getDataset(S1 = S1, F = F) + + ## Comparison of the results of DatasetMeans object 'dataInput1' with expected results + expect_equal(dataInput1$overallSampleSizes, c(12, 26, 18, 29, 33, NA_real_, 39, NA_real_), label = paste0(dataInput1$overallSampleSizes)) + expect_equal(dataInput1$overallMeans, c(107.7, 86.48462, 165.6, 148.34138, 93.190909, NA_real_, 181.91538, NA_real_), tolerance = 1e-07, label = paste0(dataInput1$overallMeans)) + expect_equal(dataInput1$overallStDevs, c(128.5, 129.1485, 120.1, 122.888, 134.02535, NA_real_, 157.16289, NA_real_), tolerance = 1e-07, label = paste0(dataInput1$overallStDevs)) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(dataInput1), NA))) + expect_output(print(dataInput1)$show()) + invisible(capture.output(expect_error(summary(dataInput1), NA))) + expect_output(summary(dataInput1)$show()) + dataInput1CodeBased <- eval(parse(text = getObjectRCode(dataInput1, stringWrapParagraphWidth = NULL))) + expect_equal(dataInput1CodeBased$overallSampleSizes, dataInput1$overallSampleSizes, tolerance = 1e-07) + expect_equal(dataInput1CodeBased$overallMeans, dataInput1$overallMeans, tolerance = 1e-07) + expect_equal(dataInput1CodeBased$overallStDevs, dataInput1$overallStDevs, tolerance = 1e-07) + expect_type(names(dataInput1), "character") + df <- as.data.frame(dataInput1) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(dataInput1) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + design1 <- getDesignInverseNormal( + kMax = 3, alpha = 0.02, futilityBounds = c(-0.5, 0), + bindingFutility = FALSE, typeOfDesign = "OF", informationRates = c(0.5, 0.7, 1) + ) + + repeatedConfidenceIntervals <- getRepeatedConfidenceIntervals(design1, dataInput1) + + ## Comparison of the results of array object 'repeatedConfidenceIntervals' with expected results + expect_equal(unlist(as.list(repeatedConfidenceIntervals)), c(-220.29061, -176.00816, 104.49061, 52.294639, -176.90621, NA_real_, 23.990701, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(unlist(as.list(repeatedConfidenceIntervals)))) + + stageResults <- getStageResults(design1, dataInput1) + + ## Comparison of the results of StageResultsEnrichmentMeans object 'stageResults' with expected results + expect_equal(stageResults$overallTestStatistics[1, ], c(NA_real_, NA_real_, NA_real_), label = paste0(stageResults$overallTestStatistics[1, ])) + expect_equal(stageResults$overallTestStatistics[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0(stageResults$overallTestStatistics[2, ])) + expect_equal(stageResults$overallStDevs[1, ], c(123.46817, 147.03819, NA_real_), tolerance = 1e-07, label = paste0(stageResults$overallStDevs[1, ])) + expect_equal(stageResults$overallStDevs[2, ], c(125.87987, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(stageResults$overallStDevs[2, ])) + expect_equal(stageResults$testStatistics[1, ], c("stage 1" = -1.2583162, "stage 2" = -2.1953569, "stage 3" = NA_real_), tolerance = 1e-07, label = paste0(stageResults$testStatistics[1, ])) + expect_equal(stageResults$testStatistics[2, ], c("stage 1" = -1.8194295, "stage 2" = NA_real_, "stage 3" = NA_real_), tolerance = 1e-07, label = paste0(stageResults$testStatistics[2, ])) + expect_equal(stageResults$separatePValues[1, ], c("stage 1" = 0.89066535, "stage 2" = 0.98299949, "stage 3" = NA_real_), tolerance = 1e-07, label = paste0(stageResults$separatePValues[1, ])) + expect_equal(stageResults$separatePValues[2, ], c("stage 1" = 0.96275182, "stage 2" = NA_real_, "stage 3" = NA_real_), tolerance = 1e-07, label = paste0(stageResults$separatePValues[2, ])) + expect_equal(stageResults$effectSizes[1, ], c(-57.9, -88.724476, NA_real_), tolerance = 1e-07, label = paste0(stageResults$effectSizes[1, ])) + expect_equal(stageResults$effectSizes[2, ], c(-61.85676, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(stageResults$effectSizes[2, ])) + expect_equal(stageResults$weightsInverseNormal, c(0.70710678, 0.4472136, 0.54772256), tolerance = 1e-07, label = paste0(stageResults$weightsInverseNormal)) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(stageResults), NA))) + expect_output(print(stageResults)$show()) + invisible(capture.output(expect_error(summary(stageResults), NA))) + expect_output(summary(stageResults)$show()) + stageResultsCodeBased <- eval(parse(text = getObjectRCode(stageResults, stringWrapParagraphWidth = NULL))) + expect_equal(stageResultsCodeBased$overallTestStatistics, stageResults$overallTestStatistics, tolerance = 1e-07) + expect_equal(stageResultsCodeBased$overallPValues, stageResults$overallPValues, tolerance = 1e-07) + expect_equal(stageResultsCodeBased$overallStDevs, stageResults$overallStDevs, tolerance = 1e-07) + expect_equal(stageResultsCodeBased$overallPooledStDevs, stageResults$overallPooledStDevs, tolerance = 1e-07) + expect_equal(stageResultsCodeBased$testStatistics, stageResults$testStatistics, tolerance = 1e-07) + expect_equal(stageResultsCodeBased$separatePValues, stageResults$separatePValues, tolerance = 1e-07) + expect_equal(stageResultsCodeBased$effectSizes, stageResults$effectSizes, tolerance = 1e-07) + expect_equal(stageResultsCodeBased$weightsInverseNormal, stageResults$weightsInverseNormal, tolerance = 1e-07) + expect_type(names(stageResults), "character") + df <- as.data.frame(stageResults) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(stageResults) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + conditionalPower <- getConditionalPower(stageResults, nPlanned = 50) + + ## Comparison of the results of ConditionalPowerResultsEnrichmentMeans object 'conditionalPower' with expected results + expect_equal(conditionalPower$conditionalPower[1, ], c(NA_real_, NA_real_, 6.6613381e-16), tolerance = 1e-07, label = paste0(conditionalPower$conditionalPower[1, ])) + expect_equal(conditionalPower$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0(conditionalPower$conditionalPower[2, ])) + + conditionalPowerPlot <- .getConditionalPowerPlot( + stageResults = stageResults, + thetaRange = seq(-0.8, 0.5, 0.1), nPlanned = 60, assumedStDev = 2, allocationRatioPlanned = 3 + ) + + ## Comparison of the results of list object 'conditionalPowerPlot' with expected results + expect_equal(conditionalPowerPlot$populations, c(1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2), label = paste0(conditionalPowerPlot$populations)) + expect_equal(conditionalPowerPlot$xValues, c(-0.8, -0.8, -0.7, -0.7, -0.6, -0.6, -0.5, -0.5, -0.4, -0.4, -0.3, -0.3, -0.2, -0.2, -0.1, -0.1, 0, 0, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3, 0.4, 0.4, 0.5, 0.5), tolerance = 1e-07, label = paste0(conditionalPowerPlot$xValues)) + expect_equal(conditionalPowerPlot$condPowerValues, c(1.4432899e-15, NA_real_, 1.4432899e-15, NA_real_, 1.5543122e-15, NA_real_, 1.5543122e-15, NA_real_, 1.5543122e-15, NA_real_, 1.5543122e-15, NA_real_, 1.6653345e-15, NA_real_, 1.6653345e-15, NA_real_, 1.6653345e-15, NA_real_, 1.7763568e-15, NA_real_, 1.7763568e-15, NA_real_, 1.7763568e-15, NA_real_, 1.7763568e-15, NA_real_, 1.8873791e-15, NA_real_), tolerance = 1e-07, label = paste0(conditionalPowerPlot$condPowerValues)) + expect_equal(conditionalPowerPlot$likelihoodValues, c(0.012773695, NA_real_, 0.012647555, NA_real_, 0.012522519, NA_real_, 0.012398579, NA_real_, 0.012275728, NA_real_, 0.012153957, NA_real_, 0.012033258, NA_real_, 0.011913623, NA_real_, 0.011795044, NA_real_, 0.011677515, NA_real_, 0.011561025, NA_real_, 0.011445569, NA_real_, 0.011331138, NA_real_, 0.011217724, NA_real_), tolerance = 1e-07, label = paste0(conditionalPowerPlot$likelihoodValues)) + expect_equal(conditionalPowerPlot$main, "Conditional Power with Likelihood", label = paste0(conditionalPowerPlot$main)) + expect_equal(conditionalPowerPlot$xlab, "Effect size", label = paste0(conditionalPowerPlot$xlab)) + expect_equal(conditionalPowerPlot$ylab, "Conditional power / Likelihood", label = paste0(conditionalPowerPlot$ylab)) + expect_equal(conditionalPowerPlot$sub, "Intersection test = Simes, stage = 2, # of remaining subjects = 60, sd = (147, NA), allocation ratio = 3", label = paste0(conditionalPowerPlot$sub)) + + x1 <- getAnalysisResults( + design = design1, dataInput = dataInput1, + directionUpper = FALSE, + normalApproximation = FALSE, + varianceOption = "pooledFromFull", + intersectionTest = "Bonferroni", + stratifiedAnalysis = FALSE, + stage = 2, + thetaH1 = c(-30, NA), + assumedStDevs = c(88, NA), + nPlanned = c(30), + allocationRatioPlanned = 2 + ) + + ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x1' with expected results + expect_equal(x1$conditionalRejectionProbabilities[1, ], c(0.040655272, 0.29596348, NA_real_), tolerance = 1e-07, label = paste0(x1$conditionalRejectionProbabilities[1, ])) + expect_equal(x1$conditionalRejectionProbabilities[2, ], c(0.065736952, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x1$conditionalRejectionProbabilities[2, ])) + expect_equal(x1$conditionalPower[1, ], c(NA_real_, NA_real_, 0.6346437), tolerance = 1e-07, label = paste0(x1$conditionalPower[1, ])) + expect_equal(x1$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x1$conditionalPower[2, ])) + expect_equal(x1$repeatedConfidenceIntervalLowerBounds[1, ], c(-215.41406, -176.0794, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedConfidenceIntervalLowerBounds[1, ])) + expect_equal(x1$repeatedConfidenceIntervalLowerBounds[2, ], c(-176.00816, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedConfidenceIntervalLowerBounds[2, ])) + expect_equal(x1$repeatedConfidenceIntervalUpperBounds[1, ], c(99.614058, 24.117528, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedConfidenceIntervalUpperBounds[1, ])) + expect_equal(x1$repeatedConfidenceIntervalUpperBounds[2, ], c(52.294639, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedConfidenceIntervalUpperBounds[2, ])) + expect_equal(x1$repeatedPValues[1, ], c(0.25380947, 0.041128123, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedPValues[1, ])) + expect_equal(x1$repeatedPValues[2, ], c(0.19818652, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedPValues[2, ])) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x1), NA))) + expect_output(print(x1)$show()) + invisible(capture.output(expect_error(summary(x1), NA))) + expect_output(summary(x1)$show()) + x1CodeBased <- eval(parse(text = getObjectRCode(x1, stringWrapParagraphWidth = NULL))) + expect_equal(x1CodeBased$conditionalRejectionProbabilities, x1$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x1CodeBased$conditionalPower, x1$conditionalPower, tolerance = 1e-07) + expect_equal(x1CodeBased$repeatedConfidenceIntervalLowerBounds, x1$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x1CodeBased$repeatedConfidenceIntervalUpperBounds, x1$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x1CodeBased$repeatedPValues, x1$repeatedPValues, tolerance = 1e-07) + expect_type(names(x1), "character") + df <- as.data.frame(x1) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x1) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } }) test_that("'getAnalysisResults': stratified analysis, select S1 at first IA, gMax = 2, Fisher design", { - - .skipTestIfDisabled() - - # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} - # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichment} - # @refFS[Formula]{fs:computeRCIsEnrichment} - # @refFS[Formula]{fs:conditionalPowerEnrichment} - # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} - # @refFS[Formula]{fs:stratifiedtTestEnrichment} - S1 <- getDataset( - sampleSize1 = c(12, 21), - sampleSize2 = c(18, 21), - mean1 = c(107.7, 84.9), - mean2 = c(165.6, 195.9), - stDev1 = c(128.5, 139.5), - stDev2 = c(120.1, 185.0) - ) - - R <- getDataset( - sampleSize1 = c(14, NA), - sampleSize2 = c(11, NA), - mean1 = c(68.3, NA), - mean2 = c(120.1, NA), - stDev1 = c(124.0, NA), - stDev2 = c(116.8, NA) - ) - - dataInput2 <- getDataset(S1 = S1, R = R) - - ## Comparison of the results of DatasetMeans object 'dataInput2' with expected results - expect_equal(dataInput2$overallSampleSizes, c(12, 14, 18, 11, 33, NA_real_, 39, NA_real_), label = paste0("c(", paste0(dataInput2$overallSampleSizes, collapse = ", "), ")")) - expect_equal(dataInput2$overallMeans, c(107.7, 68.3, 165.6, 120.1, 93.190909, NA_real_, 181.91538, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput2$overallMeans, collapse = ", "), ")")) - expect_equal(dataInput2$overallStDevs, c(128.5, 124, 120.1, 116.8, 134.02535, NA_real_, 157.16289, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput2$overallStDevs, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(dataInput2), NA))) - expect_output(print(dataInput2)$show()) - invisible(capture.output(expect_error(summary(dataInput2), NA))) - expect_output(summary(dataInput2)$show()) - dataInput2CodeBased <- eval(parse(text = getObjectRCode(dataInput2, stringWrapParagraphWidth = NULL))) - expect_equal(dataInput2CodeBased$overallSampleSizes, dataInput2$overallSampleSizes, tolerance = 1e-07) - expect_equal(dataInput2CodeBased$overallMeans, dataInput2$overallMeans, tolerance = 1e-07) - expect_equal(dataInput2CodeBased$overallStDevs, dataInput2$overallStDevs, tolerance = 1e-07) - expect_type(names(dataInput2), "character") - df <- as.data.frame(dataInput2) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(dataInput2) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - design2 <- getDesignFisher( - kMax = 3, alpha = 0.02, alpha0Vec = c(0.7, 0.5), method = "fullAlpha", - bindingFutility = TRUE, informationRates = c(0.3, 0.7, 1) - ) - - x2 <- getAnalysisResults( - design = design2, dataInput = dataInput2, - directionUpper = FALSE, - normalApproximation = FALSE, - varianceOption = "pooledFromFull", - intersectionTest = "Bonferroni", - stratifiedAnalysis = FALSE, - stage = 2, - thetaH1 = c(-30, NA), - assumedStDevs = c(88, NA), - nPlanned = c(30), - allocationRatioPlanned = 2 - ) - - ## Comparison of the results of AnalysisResultsEnrichmentFisher object 'x2' with expected results - expect_equal(x2$conditionalRejectionProbabilities[1, ], c(0.030372979, 0.38266716, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x2$conditionalRejectionProbabilities[2, ], c(0.042518986, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x2$conditionalPower[1, ], c(NA_real_, NA_real_, 0.71962915), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x2$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x2$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalLowerBounds[1, ], c(-187.96966, -183.80634, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalLowerBounds[2, ], c(-156.27269, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalUpperBounds[1, ], c(72.16966, 16.133901, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalUpperBounds[2, ], c(32.559163, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x2$repeatedPValues[1, ], c(0.19557155, 0.034517266, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x2$repeatedPValues[2, ], c(0.13877083, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedPValues[2, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x2), NA))) - expect_output(print(x2)$show()) - invisible(capture.output(expect_error(summary(x2), NA))) - expect_output(summary(x2)$show()) - x2CodeBased <- eval(parse(text = getObjectRCode(x2, stringWrapParagraphWidth = NULL))) - expect_equal(x2CodeBased$conditionalRejectionProbabilities, x2$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x2CodeBased$conditionalPower, x2$conditionalPower, tolerance = 1e-07) - expect_equal(x2CodeBased$repeatedConfidenceIntervalLowerBounds, x2$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x2CodeBased$repeatedConfidenceIntervalUpperBounds, x2$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x2CodeBased$repeatedPValues, x2$repeatedPValues, tolerance = 1e-07) - expect_type(names(x2), "character") - df <- as.data.frame(x2) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x2) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - design1 <- getDesignInverseNormal( - kMax = 3, alpha = 0.02, futilityBounds = c(-0.5, 0), - bindingFutility = FALSE, typeOfDesign = "OF", informationRates = c(0.5, 0.7, 1) - ) - - x3 <- getAnalysisResults( - design = design1, dataInput = dataInput2, - directionUpper = FALSE, - normalApproximation = FALSE, - intersectionTest = "Sidak", - stratifiedAnalysis = TRUE, - stage = 2, - thetaH1 = c(-30, NA), - assumedStDevs = c(88, NA), - nPlanned = c(30), - allocationRatioPlanned = 2 - ) - - ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x3' with expected results - expect_equal(x3$conditionalRejectionProbabilities[1, ], c(0.041603465, 0.30059767, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x3$conditionalRejectionProbabilities[2, ], c(0.044887021, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x3$conditionalPower[1, ], c(NA_real_, NA_real_, 0.63965664), tolerance = 1e-07, label = paste0("c(", paste0(x3$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x3$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x3$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x3$repeatedConfidenceIntervalLowerBounds[1, ], c(-220.28415, -176.85912, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x3$repeatedConfidenceIntervalLowerBounds[2, ], c(-167.67059, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x3$repeatedConfidenceIntervalUpperBounds[1, ], c(104.48415, 23.636689, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x3$repeatedConfidenceIntervalUpperBounds[2, ], c(57.495741, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x3$repeatedPValues[1, ], c(0.25104477, 0.040430988, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x3$repeatedPValues[2, ], c(0.24199442, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedPValues[2, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x3), NA))) - expect_output(print(x3)$show()) - invisible(capture.output(expect_error(summary(x3), NA))) - expect_output(summary(x3)$show()) - x3CodeBased <- eval(parse(text = getObjectRCode(x3, stringWrapParagraphWidth = NULL))) - expect_equal(x3CodeBased$conditionalRejectionProbabilities, x3$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x3CodeBased$conditionalPower, x3$conditionalPower, tolerance = 1e-07) - expect_equal(x3CodeBased$repeatedConfidenceIntervalLowerBounds, x3$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x3CodeBased$repeatedConfidenceIntervalUpperBounds, x3$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x3CodeBased$repeatedPValues, x3$repeatedPValues, tolerance = 1e-07) - expect_type(names(x3), "character") - df <- as.data.frame(x3) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x3) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - + .skipTestIfDisabled() + + # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} + # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichment} + # @refFS[Formula]{fs:computeRCIsEnrichment} + # @refFS[Formula]{fs:conditionalPowerEnrichment} + # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} + # @refFS[Formula]{fs:stratifiedtTestEnrichment} + S1 <- getDataset( + sampleSize1 = c(12, 21), + sampleSize2 = c(18, 21), + mean1 = c(107.7, 84.9), + mean2 = c(165.6, 195.9), + stDev1 = c(128.5, 139.5), + stDev2 = c(120.1, 185.0) + ) + + R <- getDataset( + sampleSize1 = c(14, NA), + sampleSize2 = c(11, NA), + mean1 = c(68.3, NA), + mean2 = c(120.1, NA), + stDev1 = c(124.0, NA), + stDev2 = c(116.8, NA) + ) + + dataInput2 <- getDataset(S1 = S1, R = R) + + ## Comparison of the results of DatasetMeans object 'dataInput2' with expected results + expect_equal(dataInput2$overallSampleSizes, c(12, 14, 18, 11, 33, NA_real_, 39, NA_real_), label = paste0(dataInput2$overallSampleSizes)) + expect_equal(dataInput2$overallMeans, c(107.7, 68.3, 165.6, 120.1, 93.190909, NA_real_, 181.91538, NA_real_), tolerance = 1e-07, label = paste0(dataInput2$overallMeans)) + expect_equal(dataInput2$overallStDevs, c(128.5, 124, 120.1, 116.8, 134.02535, NA_real_, 157.16289, NA_real_), tolerance = 1e-07, label = paste0(dataInput2$overallStDevs)) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(dataInput2), NA))) + expect_output(print(dataInput2)$show()) + invisible(capture.output(expect_error(summary(dataInput2), NA))) + expect_output(summary(dataInput2)$show()) + dataInput2CodeBased <- eval(parse(text = getObjectRCode(dataInput2, stringWrapParagraphWidth = NULL))) + expect_equal(dataInput2CodeBased$overallSampleSizes, dataInput2$overallSampleSizes, tolerance = 1e-07) + expect_equal(dataInput2CodeBased$overallMeans, dataInput2$overallMeans, tolerance = 1e-07) + expect_equal(dataInput2CodeBased$overallStDevs, dataInput2$overallStDevs, tolerance = 1e-07) + expect_type(names(dataInput2), "character") + df <- as.data.frame(dataInput2) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(dataInput2) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + design2 <- getDesignFisher( + kMax = 3, alpha = 0.02, alpha0Vec = c(0.7, 0.5), method = "fullAlpha", + bindingFutility = TRUE, informationRates = c(0.3, 0.7, 1) + ) + + x2 <- getAnalysisResults( + design = design2, dataInput = dataInput2, + directionUpper = FALSE, + normalApproximation = FALSE, + varianceOption = "pooledFromFull", + intersectionTest = "Bonferroni", + stratifiedAnalysis = FALSE, + stage = 2, + thetaH1 = c(-30, NA), + assumedStDevs = c(88, NA), + nPlanned = c(30), + allocationRatioPlanned = 2 + ) + + ## Comparison of the results of AnalysisResultsEnrichmentFisher object 'x2' with expected results + expect_equal(x2$conditionalRejectionProbabilities[1, ], c(0.030372979, 0.38266716, NA_real_), tolerance = 1e-07, label = paste0(x2$conditionalRejectionProbabilities[1, ])) + expect_equal(x2$conditionalRejectionProbabilities[2, ], c(0.042518986, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x2$conditionalRejectionProbabilities[2, ])) + expect_equal(x2$conditionalPower[1, ], c(NA_real_, NA_real_, 0.71962915), tolerance = 1e-07, label = paste0(x2$conditionalPower[1, ])) + expect_equal(x2$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x2$conditionalPower[2, ])) + expect_equal(x2$repeatedConfidenceIntervalLowerBounds[1, ], c(-187.96966, -183.80634, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedConfidenceIntervalLowerBounds[1, ])) + expect_equal(x2$repeatedConfidenceIntervalLowerBounds[2, ], c(-156.27269, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedConfidenceIntervalLowerBounds[2, ])) + expect_equal(x2$repeatedConfidenceIntervalUpperBounds[1, ], c(72.16966, 16.133901, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedConfidenceIntervalUpperBounds[1, ])) + expect_equal(x2$repeatedConfidenceIntervalUpperBounds[2, ], c(32.559163, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedConfidenceIntervalUpperBounds[2, ])) + expect_equal(x2$repeatedPValues[1, ], c(0.19557155, 0.034517266, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedPValues[1, ])) + expect_equal(x2$repeatedPValues[2, ], c(0.13877083, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedPValues[2, ])) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x2), NA))) + expect_output(print(x2)$show()) + invisible(capture.output(expect_error(summary(x2), NA))) + expect_output(summary(x2)$show()) + x2CodeBased <- eval(parse(text = getObjectRCode(x2, stringWrapParagraphWidth = NULL))) + expect_equal(x2CodeBased$conditionalRejectionProbabilities, x2$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x2CodeBased$conditionalPower, x2$conditionalPower, tolerance = 1e-07) + expect_equal(x2CodeBased$repeatedConfidenceIntervalLowerBounds, x2$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x2CodeBased$repeatedConfidenceIntervalUpperBounds, x2$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x2CodeBased$repeatedPValues, x2$repeatedPValues, tolerance = 1e-07) + expect_type(names(x2), "character") + df <- as.data.frame(x2) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x2) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + design1 <- getDesignInverseNormal( + kMax = 3, alpha = 0.02, futilityBounds = c(-0.5, 0), + bindingFutility = FALSE, typeOfDesign = "OF", informationRates = c(0.5, 0.7, 1) + ) + + x3 <- getAnalysisResults( + design = design1, dataInput = dataInput2, + directionUpper = FALSE, + normalApproximation = FALSE, + intersectionTest = "Sidak", + stratifiedAnalysis = TRUE, + stage = 2, + thetaH1 = c(-30, NA), + assumedStDevs = c(88, NA), + nPlanned = c(30), + allocationRatioPlanned = 2 + ) + + ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x3' with expected results + expect_equal(x3$conditionalRejectionProbabilities[1, ], c(0.041603465, 0.30059767, NA_real_), tolerance = 1e-07, label = paste0(x3$conditionalRejectionProbabilities[1, ])) + expect_equal(x3$conditionalRejectionProbabilities[2, ], c(0.044887021, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x3$conditionalRejectionProbabilities[2, ])) + expect_equal(x3$conditionalPower[1, ], c(NA_real_, NA_real_, 0.63965664), tolerance = 1e-07, label = paste0(x3$conditionalPower[1, ])) + expect_equal(x3$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x3$conditionalPower[2, ])) + expect_equal(x3$repeatedConfidenceIntervalLowerBounds[1, ], c(-220.28415, -176.85912, NA_real_), tolerance = 1e-07, label = paste0(x3$repeatedConfidenceIntervalLowerBounds[1, ])) + expect_equal(x3$repeatedConfidenceIntervalLowerBounds[2, ], c(-167.67059, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x3$repeatedConfidenceIntervalLowerBounds[2, ])) + expect_equal(x3$repeatedConfidenceIntervalUpperBounds[1, ], c(104.48415, 23.636689, NA_real_), tolerance = 1e-07, label = paste0(x3$repeatedConfidenceIntervalUpperBounds[1, ])) + expect_equal(x3$repeatedConfidenceIntervalUpperBounds[2, ], c(57.495741, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x3$repeatedConfidenceIntervalUpperBounds[2, ])) + expect_equal(x3$repeatedPValues[1, ], c(0.25104477, 0.040430988, NA_real_), tolerance = 1e-07, label = paste0(x3$repeatedPValues[1, ])) + expect_equal(x3$repeatedPValues[2, ], c(0.24199442, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x3$repeatedPValues[2, ])) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x3), NA))) + expect_output(print(x3)$show()) + invisible(capture.output(expect_error(summary(x3), NA))) + expect_output(summary(x3)$show()) + x3CodeBased <- eval(parse(text = getObjectRCode(x3, stringWrapParagraphWidth = NULL))) + expect_equal(x3CodeBased$conditionalRejectionProbabilities, x3$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x3CodeBased$conditionalPower, x3$conditionalPower, tolerance = 1e-07) + expect_equal(x3CodeBased$repeatedConfidenceIntervalLowerBounds, x3$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x3CodeBased$repeatedConfidenceIntervalUpperBounds, x3$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x3CodeBased$repeatedPValues, x3$repeatedPValues, tolerance = 1e-07) + expect_type(names(x3), "character") + df <- as.data.frame(x3) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x3) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } }) test_that("'getAnalysisResults': select S1 at first IA, gMax = 2, inverse normal design, Sidak and Spiessens & Debois", { - - .skipTestIfDisabled() - - # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} - # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichment} - # @refFS[Formula]{fs:computeRCIsEnrichment} - # @refFS[Formula]{fs:conditionalPowerEnrichment} - # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} - # @refFS[Formula]{fs:stratifiedtTestEnrichment} - design1 <- getDesignInverseNormal( - kMax = 3, alpha = 0.02, futilityBounds = c(-0.5, 0), - bindingFutility = FALSE, typeOfDesign = "OF", informationRates = c(0.5, 0.7, 1) - ) - - S1 <- getDataset( - sampleSize1 = c(12, 21), - sampleSize2 = c(18, 21), - mean1 = c(107.7, 84.9), - mean2 = c(165.6, 195.9), - stDev1 = c(128.5, 139.5), - stDev2 = c(120.1, 185.0) - ) - - F <- getDataset( - sampleSize1 = c(26, NA), - sampleSize2 = c(29, NA), - mean1 = c(86.48462, NA), - mean2 = c(148.34138, NA), - stDev1 = c(129.1485, NA), - stDev2 = c(122.888, NA) - ) - - dataInput1 <- getDataset(S1 = S1, F = F) - - x4 <- getAnalysisResults( - design = design1, dataInput = dataInput1, - directionUpper = FALSE, - normalApproximation = FALSE, - varianceOption = "notPooled", - intersectionTest = "Sidak", - stratifiedAnalysis = FALSE, - stage = 2, - nPlanned = c(30), - allocationRatioPlanned = 2 - ) - - ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x4' with expected results - expect_equal(x4$thetaH1[1, ], -88.724476, tolerance = 1e-07, label = paste0("c(", paste0(x4$thetaH1[1, ], collapse = ", "), ")")) - expect_equal(x4$thetaH1[2, ], NA_real_, label = paste0("c(", paste0(x4$thetaH1[2, ], collapse = ", "), ")")) - expect_equal(x4$assumedStDevs[1, ], 147.03819, tolerance = 1e-07, label = paste0("c(", paste0(x4$assumedStDevs[1, ], collapse = ", "), ")")) - expect_equal(x4$assumedStDevs[2, ], NA_real_, label = paste0("c(", paste0(x4$assumedStDevs[2, ], collapse = ", "), ")")) - expect_equal(x4$conditionalRejectionProbabilities[1, ], c(0.039522227, 0.28885292, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x4$conditionalRejectionProbabilities[2, ], c(0.066220149, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x4$conditionalPower[1, ], c(NA_real_, NA_real_, 0.84164989), tolerance = 1e-07, label = paste0("c(", paste0(x4$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x4$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x4$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x4$repeatedConfidenceIntervalLowerBounds[1, ], c(-226.91549, -179.08628, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x4$repeatedConfidenceIntervalLowerBounds[2, ], c(-176.48166, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x4$repeatedConfidenceIntervalUpperBounds[1, ], c(111.11549, 25.050962, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x4$repeatedConfidenceIntervalUpperBounds[2, ], c(52.768138, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x4$repeatedPValues[1, ], c(0.25721122, 0.042227707, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x4$repeatedPValues[2, ], c(0.1973759, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedPValues[2, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x4), NA))) - expect_output(print(x4)$show()) - invisible(capture.output(expect_error(summary(x4), NA))) - expect_output(summary(x4)$show()) - x4CodeBased <- eval(parse(text = getObjectRCode(x4, stringWrapParagraphWidth = NULL))) - expect_equal(x4CodeBased$thetaH1, x4$thetaH1, tolerance = 1e-07) - expect_equal(x4CodeBased$assumedStDevs, x4$assumedStDevs, tolerance = 1e-07) - expect_equal(x4CodeBased$conditionalRejectionProbabilities, x4$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x4CodeBased$conditionalPower, x4$conditionalPower, tolerance = 1e-07) - expect_equal(x4CodeBased$repeatedConfidenceIntervalLowerBounds, x4$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x4CodeBased$repeatedConfidenceIntervalUpperBounds, x4$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x4CodeBased$repeatedPValues, x4$repeatedPValues, tolerance = 1e-07) - expect_type(names(x4), "character") - df <- as.data.frame(x4) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x4) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - x5 <- getAnalysisResults( - design = design1, dataInput = dataInput1, - directionUpper = FALSE, - normalApproximation = FALSE, - varianceOption = "pooledFromFull", - intersectionTest = "SpiessensDebois", - stratifiedAnalysis = TRUE, - stage = 2, - nPlanned = c(30), - allocationRatioPlanned = 2 - ) - - ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x5' with expected results - expect_equal(x5$thetaH1[1, ], -88.724476, tolerance = 1e-07, label = paste0("c(", paste0(x5$thetaH1[1, ], collapse = ", "), ")")) - expect_equal(x5$thetaH1[2, ], NA_real_, label = paste0("c(", paste0(x5$thetaH1[2, ], collapse = ", "), ")")) - expect_equal(x5$assumedStDevs[1, ], 147.03819, tolerance = 1e-07, label = paste0("c(", paste0(x5$assumedStDevs[1, ], collapse = ", "), ")")) - expect_equal(x5$assumedStDevs[2, ], NA_real_, label = paste0("c(", paste0(x5$assumedStDevs[2, ], collapse = ", "), ")")) - expect_equal(x5$conditionalRejectionProbabilities[1, ], c(0.039526191, 0.29036799, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x5$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x5$conditionalRejectionProbabilities[2, ], c(0.083357636, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x5$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x5$conditionalPower[1, ], c(NA_real_, NA_real_, 0.84271782), tolerance = 1e-07, label = paste0("c(", paste0(x5$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x5$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x5$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x5$repeatedConfidenceIntervalLowerBounds[1, ], c(-213.99088, -174.2069, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x5$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x5$repeatedConfidenceIntervalLowerBounds[2, ], c(-174.97677, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x5$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x5$repeatedConfidenceIntervalUpperBounds[1, ], c(98.190881, 20.342564, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x5$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x5$repeatedConfidenceIntervalUpperBounds[2, ], c(51.263255, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x5$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x5$repeatedPValues[1, ], c(0.25719977, 0.041990242, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x5$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x5$repeatedPValues[2, ], c(0.17255372, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x5$repeatedPValues[2, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x5), NA))) - expect_output(print(x5)$show()) - invisible(capture.output(expect_error(summary(x5), NA))) - expect_output(summary(x5)$show()) - x5CodeBased <- eval(parse(text = getObjectRCode(x5, stringWrapParagraphWidth = NULL))) - expect_equal(x5CodeBased$thetaH1, x5$thetaH1, tolerance = 1e-07) - expect_equal(x5CodeBased$assumedStDevs, x5$assumedStDevs, tolerance = 1e-07) - expect_equal(x5CodeBased$conditionalRejectionProbabilities, x5$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x5CodeBased$conditionalPower, x5$conditionalPower, tolerance = 1e-07) - expect_equal(x5CodeBased$repeatedConfidenceIntervalLowerBounds, x5$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x5CodeBased$repeatedConfidenceIntervalUpperBounds, x5$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x5CodeBased$repeatedPValues, x5$repeatedPValues, tolerance = 1e-07) - expect_type(names(x5), "character") - df <- as.data.frame(x5) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x5) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - x6 <- getAnalysisResults( - design = design1, dataInput = dataInput1, - directionUpper = FALSE, - normalApproximation = TRUE, - varianceOption = "notPooled", - intersectionTest = "SpiessensDebois", - stratifiedAnalysis = FALSE, - stage = 2, - nPlanned = c(30), - allocationRatioPlanned = 2 - ) - - ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x6' with expected results - expect_equal(x6$thetaH1[1, ], -88.724476, tolerance = 1e-07, label = paste0("c(", paste0(x6$thetaH1[1, ], collapse = ", "), ")")) - expect_equal(x6$thetaH1[2, ], NA_real_, label = paste0("c(", paste0(x6$thetaH1[2, ], collapse = ", "), ")")) - expect_equal(x6$assumedStDevs[1, ], 147.03819, tolerance = 1e-07, label = paste0("c(", paste0(x6$assumedStDevs[1, ], collapse = ", "), ")")) - expect_equal(x6$assumedStDevs[2, ], NA_real_, label = paste0("c(", paste0(x6$assumedStDevs[2, ], collapse = ", "), ")")) - expect_equal(x6$conditionalRejectionProbabilities[1, ], c(0.042609088, 0.32732548, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x6$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x6$conditionalRejectionProbabilities[2, ], c(0.088609159, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x6$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x6$conditionalPower[1, ], c(NA_real_, NA_real_, 0.86664918), tolerance = 1e-07, label = paste0("c(", paste0(x6$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x6$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x6$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x6$repeatedConfidenceIntervalLowerBounds[1, ], c(-205.06578, -171.09275, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x6$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x6$repeatedConfidenceIntervalLowerBounds[2, ], c(-169.37758, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x6$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x6$repeatedConfidenceIntervalUpperBounds[1, ], c(89.26578, 17.032517, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x6$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x6$repeatedConfidenceIntervalUpperBounds[2, ], c(45.664059, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x6$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x6$repeatedPValues[1, ], c(0.24818852, 0.036684963, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x6$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x6$repeatedPValues[2, ], c(0.16618986, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x6$repeatedPValues[2, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x6), NA))) - expect_output(print(x6)$show()) - invisible(capture.output(expect_error(summary(x6), NA))) - expect_output(summary(x6)$show()) - x6CodeBased <- eval(parse(text = getObjectRCode(x6, stringWrapParagraphWidth = NULL))) - expect_equal(x6CodeBased$thetaH1, x6$thetaH1, tolerance = 1e-07) - expect_equal(x6CodeBased$assumedStDevs, x6$assumedStDevs, tolerance = 1e-07) - expect_equal(x6CodeBased$conditionalRejectionProbabilities, x6$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x6CodeBased$conditionalPower, x6$conditionalPower, tolerance = 1e-07) - expect_equal(x6CodeBased$repeatedConfidenceIntervalLowerBounds, x6$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x6CodeBased$repeatedConfidenceIntervalUpperBounds, x6$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x6CodeBased$repeatedPValues, x6$repeatedPValues, tolerance = 1e-07) - expect_type(names(x6), "character") - df <- as.data.frame(x6) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x6) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - + .skipTestIfDisabled() + + # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} + # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichment} + # @refFS[Formula]{fs:computeRCIsEnrichment} + # @refFS[Formula]{fs:conditionalPowerEnrichment} + # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} + # @refFS[Formula]{fs:stratifiedtTestEnrichment} + design1 <- getDesignInverseNormal( + kMax = 3, alpha = 0.02, futilityBounds = c(-0.5, 0), + bindingFutility = FALSE, typeOfDesign = "OF", informationRates = c(0.5, 0.7, 1) + ) + + S1 <- getDataset( + sampleSize1 = c(12, 21), + sampleSize2 = c(18, 21), + mean1 = c(107.7, 84.9), + mean2 = c(165.6, 195.9), + stDev1 = c(128.5, 139.5), + stDev2 = c(120.1, 185.0) + ) + + F <- getDataset( + sampleSize1 = c(26, NA), + sampleSize2 = c(29, NA), + mean1 = c(86.48462, NA), + mean2 = c(148.34138, NA), + stDev1 = c(129.1485, NA), + stDev2 = c(122.888, NA) + ) + + dataInput1 <- getDataset(S1 = S1, F = F) + + x4 <- getAnalysisResults( + design = design1, dataInput = dataInput1, + directionUpper = FALSE, + normalApproximation = FALSE, + varianceOption = "notPooled", + intersectionTest = "Sidak", + stratifiedAnalysis = FALSE, + stage = 2, + nPlanned = c(30), + allocationRatioPlanned = 2 + ) + + ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x4' with expected results + expect_equal(x4$thetaH1[1, ], -88.724476, tolerance = 1e-07, label = paste0(x4$thetaH1[1, ])) + expect_equal(x4$thetaH1[2, ], NA_real_, label = paste0(x4$thetaH1[2, ])) + expect_equal(x4$assumedStDevs[1, ], 147.03819, tolerance = 1e-07, label = paste0(x4$assumedStDevs[1, ])) + expect_equal(x4$assumedStDevs[2, ], NA_real_, label = paste0(x4$assumedStDevs[2, ])) + expect_equal(x4$conditionalRejectionProbabilities[1, ], c(0.039522227, 0.28885292, NA_real_), tolerance = 1e-07, label = paste0(x4$conditionalRejectionProbabilities[1, ])) + expect_equal(x4$conditionalRejectionProbabilities[2, ], c(0.066220149, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x4$conditionalRejectionProbabilities[2, ])) + expect_equal(x4$conditionalPower[1, ], c(NA_real_, NA_real_, 0.84164989), tolerance = 1e-07, label = paste0(x4$conditionalPower[1, ])) + expect_equal(x4$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x4$conditionalPower[2, ])) + expect_equal(x4$repeatedConfidenceIntervalLowerBounds[1, ], c(-226.91549, -179.08628, NA_real_), tolerance = 1e-07, label = paste0(x4$repeatedConfidenceIntervalLowerBounds[1, ])) + expect_equal(x4$repeatedConfidenceIntervalLowerBounds[2, ], c(-176.48166, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x4$repeatedConfidenceIntervalLowerBounds[2, ])) + expect_equal(x4$repeatedConfidenceIntervalUpperBounds[1, ], c(111.11549, 25.050962, NA_real_), tolerance = 1e-07, label = paste0(x4$repeatedConfidenceIntervalUpperBounds[1, ])) + expect_equal(x4$repeatedConfidenceIntervalUpperBounds[2, ], c(52.768138, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x4$repeatedConfidenceIntervalUpperBounds[2, ])) + expect_equal(x4$repeatedPValues[1, ], c(0.25721122, 0.042227707, NA_real_), tolerance = 1e-07, label = paste0(x4$repeatedPValues[1, ])) + expect_equal(x4$repeatedPValues[2, ], c(0.1973759, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x4$repeatedPValues[2, ])) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x4), NA))) + expect_output(print(x4)$show()) + invisible(capture.output(expect_error(summary(x4), NA))) + expect_output(summary(x4)$show()) + x4CodeBased <- eval(parse(text = getObjectRCode(x4, stringWrapParagraphWidth = NULL))) + expect_equal(x4CodeBased$thetaH1, x4$thetaH1, tolerance = 1e-07) + expect_equal(x4CodeBased$assumedStDevs, x4$assumedStDevs, tolerance = 1e-07) + expect_equal(x4CodeBased$conditionalRejectionProbabilities, x4$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x4CodeBased$conditionalPower, x4$conditionalPower, tolerance = 1e-07) + expect_equal(x4CodeBased$repeatedConfidenceIntervalLowerBounds, x4$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x4CodeBased$repeatedConfidenceIntervalUpperBounds, x4$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x4CodeBased$repeatedPValues, x4$repeatedPValues, tolerance = 1e-07) + expect_type(names(x4), "character") + df <- as.data.frame(x4) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x4) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + x5 <- getAnalysisResults( + design = design1, dataInput = dataInput1, + directionUpper = FALSE, + normalApproximation = FALSE, + varianceOption = "pooledFromFull", + intersectionTest = "SpiessensDebois", + stratifiedAnalysis = TRUE, + stage = 2, + nPlanned = c(30), + allocationRatioPlanned = 2 + ) + + ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x5' with expected results + expect_equal(x5$thetaH1[1, ], -88.724476, tolerance = 1e-07, label = paste0(x5$thetaH1[1, ])) + expect_equal(x5$thetaH1[2, ], NA_real_, label = paste0(x5$thetaH1[2, ])) + expect_equal(x5$assumedStDevs[1, ], 147.03819, tolerance = 1e-07, label = paste0(x5$assumedStDevs[1, ])) + expect_equal(x5$assumedStDevs[2, ], NA_real_, label = paste0(x5$assumedStDevs[2, ])) + expect_equal(x5$conditionalRejectionProbabilities[1, ], c(0.039526191, 0.29036799, NA_real_), tolerance = 1e-07, label = paste0(x5$conditionalRejectionProbabilities[1, ])) + expect_equal(x5$conditionalRejectionProbabilities[2, ], c(0.083357636, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x5$conditionalRejectionProbabilities[2, ])) + expect_equal(x5$conditionalPower[1, ], c(NA_real_, NA_real_, 0.84271782), tolerance = 1e-07, label = paste0(x5$conditionalPower[1, ])) + expect_equal(x5$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x5$conditionalPower[2, ])) + expect_equal(x5$repeatedConfidenceIntervalLowerBounds[1, ], c(-213.99088, -174.2069, NA_real_), tolerance = 1e-07, label = paste0(x5$repeatedConfidenceIntervalLowerBounds[1, ])) + expect_equal(x5$repeatedConfidenceIntervalLowerBounds[2, ], c(-174.97677, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x5$repeatedConfidenceIntervalLowerBounds[2, ])) + expect_equal(x5$repeatedConfidenceIntervalUpperBounds[1, ], c(98.190881, 20.342564, NA_real_), tolerance = 1e-07, label = paste0(x5$repeatedConfidenceIntervalUpperBounds[1, ])) + expect_equal(x5$repeatedConfidenceIntervalUpperBounds[2, ], c(51.263255, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x5$repeatedConfidenceIntervalUpperBounds[2, ])) + expect_equal(x5$repeatedPValues[1, ], c(0.25719977, 0.041990242, NA_real_), tolerance = 1e-07, label = paste0(x5$repeatedPValues[1, ])) + expect_equal(x5$repeatedPValues[2, ], c(0.17255372, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x5$repeatedPValues[2, ])) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x5), NA))) + expect_output(print(x5)$show()) + invisible(capture.output(expect_error(summary(x5), NA))) + expect_output(summary(x5)$show()) + x5CodeBased <- eval(parse(text = getObjectRCode(x5, stringWrapParagraphWidth = NULL))) + expect_equal(x5CodeBased$thetaH1, x5$thetaH1, tolerance = 1e-07) + expect_equal(x5CodeBased$assumedStDevs, x5$assumedStDevs, tolerance = 1e-07) + expect_equal(x5CodeBased$conditionalRejectionProbabilities, x5$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x5CodeBased$conditionalPower, x5$conditionalPower, tolerance = 1e-07) + expect_equal(x5CodeBased$repeatedConfidenceIntervalLowerBounds, x5$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x5CodeBased$repeatedConfidenceIntervalUpperBounds, x5$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x5CodeBased$repeatedPValues, x5$repeatedPValues, tolerance = 1e-07) + expect_type(names(x5), "character") + df <- as.data.frame(x5) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x5) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + x6 <- getAnalysisResults( + design = design1, dataInput = dataInput1, + directionUpper = FALSE, + normalApproximation = TRUE, + varianceOption = "notPooled", + intersectionTest = "SpiessensDebois", + stratifiedAnalysis = FALSE, + stage = 2, + nPlanned = c(30), + allocationRatioPlanned = 2 + ) + + ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x6' with expected results + expect_equal(x6$thetaH1[1, ], -88.724476, tolerance = 1e-07, label = paste0(x6$thetaH1[1, ])) + expect_equal(x6$thetaH1[2, ], NA_real_, label = paste0(x6$thetaH1[2, ])) + expect_equal(x6$assumedStDevs[1, ], 147.03819, tolerance = 1e-07, label = paste0(x6$assumedStDevs[1, ])) + expect_equal(x6$assumedStDevs[2, ], NA_real_, label = paste0(x6$assumedStDevs[2, ])) + expect_equal(x6$conditionalRejectionProbabilities[1, ], c(0.042609088, 0.32732548, NA_real_), tolerance = 1e-07, label = paste0(x6$conditionalRejectionProbabilities[1, ])) + expect_equal(x6$conditionalRejectionProbabilities[2, ], c(0.088609159, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x6$conditionalRejectionProbabilities[2, ])) + expect_equal(x6$conditionalPower[1, ], c(NA_real_, NA_real_, 0.86664918), tolerance = 1e-07, label = paste0(x6$conditionalPower[1, ])) + expect_equal(x6$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x6$conditionalPower[2, ])) + expect_equal(x6$repeatedConfidenceIntervalLowerBounds[1, ], c(-205.06578, -171.09275, NA_real_), tolerance = 1e-07, label = paste0(x6$repeatedConfidenceIntervalLowerBounds[1, ])) + expect_equal(x6$repeatedConfidenceIntervalLowerBounds[2, ], c(-169.37758, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x6$repeatedConfidenceIntervalLowerBounds[2, ])) + expect_equal(x6$repeatedConfidenceIntervalUpperBounds[1, ], c(89.26578, 17.032517, NA_real_), tolerance = 1e-07, label = paste0(x6$repeatedConfidenceIntervalUpperBounds[1, ])) + expect_equal(x6$repeatedConfidenceIntervalUpperBounds[2, ], c(45.664059, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x6$repeatedConfidenceIntervalUpperBounds[2, ])) + expect_equal(x6$repeatedPValues[1, ], c(0.24818852, 0.036684963, NA_real_), tolerance = 1e-07, label = paste0(x6$repeatedPValues[1, ])) + expect_equal(x6$repeatedPValues[2, ], c(0.16618986, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x6$repeatedPValues[2, ])) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x6), NA))) + expect_output(print(x6)$show()) + invisible(capture.output(expect_error(summary(x6), NA))) + expect_output(summary(x6)$show()) + x6CodeBased <- eval(parse(text = getObjectRCode(x6, stringWrapParagraphWidth = NULL))) + expect_equal(x6CodeBased$thetaH1, x6$thetaH1, tolerance = 1e-07) + expect_equal(x6CodeBased$assumedStDevs, x6$assumedStDevs, tolerance = 1e-07) + expect_equal(x6CodeBased$conditionalRejectionProbabilities, x6$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x6CodeBased$conditionalPower, x6$conditionalPower, tolerance = 1e-07) + expect_equal(x6CodeBased$repeatedConfidenceIntervalLowerBounds, x6$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x6CodeBased$repeatedConfidenceIntervalUpperBounds, x6$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x6CodeBased$repeatedPValues, x6$repeatedPValues, tolerance = 1e-07) + expect_type(names(x6), "character") + df <- as.data.frame(x6) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x6) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } }) test_that("'getAnalysisResults': select S1 at first IA, gMax = 2, Fisher design, Sidak and Bonferroni", { - - .skipTestIfDisabled() - - # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} - # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichment} - # @refFS[Formula]{fs:computeRCIsEnrichment} - # @refFS[Formula]{fs:conditionalPowerEnrichment} - # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} - # @refFS[Formula]{fs:stratifiedtTestEnrichment} - design2 <- getDesignFisher( - kMax = 3, alpha = 0.02, alpha0Vec = c(0.7, 0.5), method = "fullAlpha", - bindingFutility = TRUE, informationRates = c(0.3, 0.7, 1) - ) - - S1 <- getDataset( - sampleSize1 = c(12, 21), - sampleSize2 = c(18, 21), - mean1 = c(107.7, 84.9), - mean2 = c(165.6, 195.9), - stDev1 = c(128.5, 139.5), - stDev2 = c(120.1, 185.0) - ) - - F <- getDataset( - sampleSize1 = c(26, NA), - sampleSize2 = c(29, NA), - mean1 = c(86.48462, NA), - mean2 = c(148.34138, NA), - stDev1 = c(129.1485, NA), - stDev2 = c(122.888, NA) - ) - - dataInput1 <- getDataset(S1 = S1, F = F) - - x7 <- getAnalysisResults( - design = design2, dataInput = dataInput1, - directionUpper = FALSE, - normalApproximation = FALSE, - varianceOption = "pooled", - intersectionTest = "Sidak", - stratifiedAnalysis = FALSE, - stage = 2, - thetaH1 = c(-30, NA), - assumedStDevs = c(88, NA), - nPlanned = c(30), - allocationRatioPlanned = 2 - ) - - ## Comparison of the results of AnalysisResultsEnrichmentFisher object 'x7' with expected results - expect_equal(x7$conditionalRejectionProbabilities[1, ], c(0.029419226, 0.36686704, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x7$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x7$conditionalRejectionProbabilities[2, ], c(0.039811318, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x7$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x7$conditionalPower[1, ], c(NA_real_, NA_real_, 0.70542247), tolerance = 1e-07, label = paste0("c(", paste0(x7$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x7$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x7$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x7$repeatedConfidenceIntervalLowerBounds[1, ], c(-194.17913, -187.01693, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x7$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x7$repeatedConfidenceIntervalLowerBounds[2, ], c(-158.83149, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x7$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x7$repeatedConfidenceIntervalUpperBounds[1, ], c(78.379133, 16.599438, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x7$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x7$repeatedConfidenceIntervalUpperBounds[2, ], c(35.117971, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x7$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x7$repeatedPValues[1, ], c(0.20187628, 0.035489058, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x7$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x7$repeatedPValues[2, ], c(0.14858412, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x7$repeatedPValues[2, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x7), NA))) - expect_output(print(x7)$show()) - invisible(capture.output(expect_error(summary(x7), NA))) - expect_output(summary(x7)$show()) - x7CodeBased <- eval(parse(text = getObjectRCode(x7, stringWrapParagraphWidth = NULL))) - expect_equal(x7CodeBased$conditionalRejectionProbabilities, x7$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x7CodeBased$conditionalPower, x7$conditionalPower, tolerance = 1e-07) - expect_equal(x7CodeBased$repeatedConfidenceIntervalLowerBounds, x7$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x7CodeBased$repeatedConfidenceIntervalUpperBounds, x7$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x7CodeBased$repeatedPValues, x7$repeatedPValues, tolerance = 1e-07) - expect_type(names(x7), "character") - df <- as.data.frame(x7) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x7) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - x8 <- getAnalysisResults( - design = design2, dataInput = dataInput1, - directionUpper = FALSE, - normalApproximation = FALSE, - varianceOption = "notPooled", - intersectionTest = "Bonferroni", - stratifiedAnalysis = FALSE, - stage = 2, - nPlanned = c(30), - allocationRatioPlanned = 2 - ) - - ## Comparison of the results of AnalysisResultsEnrichmentFisher object 'x8' with expected results - expect_equal(x8$thetaH1[1, ], -88.724476, tolerance = 1e-07, label = paste0("c(", paste0(x8$thetaH1[1, ], collapse = ", "), ")")) - expect_equal(x8$thetaH1[2, ], NA_real_, label = paste0("c(", paste0(x8$thetaH1[2, ], collapse = ", "), ")")) - expect_equal(x8$assumedStDevs[1, ], 147.03819, tolerance = 1e-07, label = paste0("c(", paste0(x8$assumedStDevs[1, ], collapse = ", "), ")")) - expect_equal(x8$assumedStDevs[2, ], NA_real_, label = paste0("c(", paste0(x8$assumedStDevs[2, ], collapse = ", "), ")")) - expect_equal(x8$conditionalRejectionProbabilities[1, ], c(0.028559196, 0.34741778, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x8$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x8$conditionalRejectionProbabilities[2, ], c(0.038896649, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x8$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x8$conditionalPower[1, ], c(NA_real_, NA_real_, 0.878132), tolerance = 1e-07, label = paste0("c(", paste0(x8$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x8$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x8$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x8$repeatedConfidenceIntervalLowerBounds[1, ], c(-198.85804, -189.35465, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x8$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x8$repeatedConfidenceIntervalLowerBounds[2, ], c(-159.22325, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x8$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x8$repeatedConfidenceIntervalUpperBounds[1, ], c(83.058044, 17.838621, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x8$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x8$repeatedConfidenceIntervalUpperBounds[2, ], c(35.509728, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x8$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x8$repeatedPValues[1, ], c(0.20789586, 0.036783191, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x8$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x8$repeatedPValues[2, ], c(0.15219281, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x8$repeatedPValues[2, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x8), NA))) - expect_output(print(x8)$show()) - invisible(capture.output(expect_error(summary(x8), NA))) - expect_output(summary(x8)$show()) - x8CodeBased <- eval(parse(text = getObjectRCode(x8, stringWrapParagraphWidth = NULL))) - expect_equal(x8CodeBased$thetaH1, x8$thetaH1, tolerance = 1e-07) - expect_equal(x8CodeBased$assumedStDevs, x8$assumedStDevs, tolerance = 1e-07) - expect_equal(x8CodeBased$conditionalRejectionProbabilities, x8$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x8CodeBased$conditionalPower, x8$conditionalPower, tolerance = 1e-07) - expect_equal(x8CodeBased$repeatedConfidenceIntervalLowerBounds, x8$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x8CodeBased$repeatedConfidenceIntervalUpperBounds, x8$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x8CodeBased$repeatedPValues, x8$repeatedPValues, tolerance = 1e-07) - expect_type(names(x8), "character") - df <- as.data.frame(x8) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x8) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - + .skipTestIfDisabled() + + # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} + # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichment} + # @refFS[Formula]{fs:computeRCIsEnrichment} + # @refFS[Formula]{fs:conditionalPowerEnrichment} + # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} + # @refFS[Formula]{fs:stratifiedtTestEnrichment} + design2 <- getDesignFisher( + kMax = 3, alpha = 0.02, alpha0Vec = c(0.7, 0.5), method = "fullAlpha", + bindingFutility = TRUE, informationRates = c(0.3, 0.7, 1) + ) + + S1 <- getDataset( + sampleSize1 = c(12, 21), + sampleSize2 = c(18, 21), + mean1 = c(107.7, 84.9), + mean2 = c(165.6, 195.9), + stDev1 = c(128.5, 139.5), + stDev2 = c(120.1, 185.0) + ) + + F <- getDataset( + sampleSize1 = c(26, NA), + sampleSize2 = c(29, NA), + mean1 = c(86.48462, NA), + mean2 = c(148.34138, NA), + stDev1 = c(129.1485, NA), + stDev2 = c(122.888, NA) + ) + + dataInput1 <- getDataset(S1 = S1, F = F) + + x7 <- getAnalysisResults( + design = design2, dataInput = dataInput1, + directionUpper = FALSE, + normalApproximation = FALSE, + varianceOption = "pooled", + intersectionTest = "Sidak", + stratifiedAnalysis = FALSE, + stage = 2, + thetaH1 = c(-30, NA), + assumedStDevs = c(88, NA), + nPlanned = c(30), + allocationRatioPlanned = 2 + ) + + ## Comparison of the results of AnalysisResultsEnrichmentFisher object 'x7' with expected results + expect_equal(x7$conditionalRejectionProbabilities[1, ], c(0.029419226, 0.36686704, NA_real_), tolerance = 1e-07, label = paste0(x7$conditionalRejectionProbabilities[1, ])) + expect_equal(x7$conditionalRejectionProbabilities[2, ], c(0.039811318, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x7$conditionalRejectionProbabilities[2, ])) + expect_equal(x7$conditionalPower[1, ], c(NA_real_, NA_real_, 0.70542247), tolerance = 1e-07, label = paste0(x7$conditionalPower[1, ])) + expect_equal(x7$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x7$conditionalPower[2, ])) + expect_equal(x7$repeatedConfidenceIntervalLowerBounds[1, ], c(-194.17913, -187.01693, NA_real_), tolerance = 1e-07, label = paste0(x7$repeatedConfidenceIntervalLowerBounds[1, ])) + expect_equal(x7$repeatedConfidenceIntervalLowerBounds[2, ], c(-158.83149, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x7$repeatedConfidenceIntervalLowerBounds[2, ])) + expect_equal(x7$repeatedConfidenceIntervalUpperBounds[1, ], c(78.379133, 16.599438, NA_real_), tolerance = 1e-07, label = paste0(x7$repeatedConfidenceIntervalUpperBounds[1, ])) + expect_equal(x7$repeatedConfidenceIntervalUpperBounds[2, ], c(35.117971, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x7$repeatedConfidenceIntervalUpperBounds[2, ])) + expect_equal(x7$repeatedPValues[1, ], c(0.20187628, 0.035489058, NA_real_), tolerance = 1e-07, label = paste0(x7$repeatedPValues[1, ])) + expect_equal(x7$repeatedPValues[2, ], c(0.14858412, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x7$repeatedPValues[2, ])) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x7), NA))) + expect_output(print(x7)$show()) + invisible(capture.output(expect_error(summary(x7), NA))) + expect_output(summary(x7)$show()) + x7CodeBased <- eval(parse(text = getObjectRCode(x7, stringWrapParagraphWidth = NULL))) + expect_equal(x7CodeBased$conditionalRejectionProbabilities, x7$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x7CodeBased$conditionalPower, x7$conditionalPower, tolerance = 1e-07) + expect_equal(x7CodeBased$repeatedConfidenceIntervalLowerBounds, x7$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x7CodeBased$repeatedConfidenceIntervalUpperBounds, x7$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x7CodeBased$repeatedPValues, x7$repeatedPValues, tolerance = 1e-07) + expect_type(names(x7), "character") + df <- as.data.frame(x7) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x7) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + x8 <- getAnalysisResults( + design = design2, dataInput = dataInput1, + directionUpper = FALSE, + normalApproximation = FALSE, + varianceOption = "notPooled", + intersectionTest = "Bonferroni", + stratifiedAnalysis = FALSE, + stage = 2, + nPlanned = c(30), + allocationRatioPlanned = 2 + ) + + ## Comparison of the results of AnalysisResultsEnrichmentFisher object 'x8' with expected results + expect_equal(x8$thetaH1[1, ], -88.724476, tolerance = 1e-07, label = paste0(x8$thetaH1[1, ])) + expect_equal(x8$thetaH1[2, ], NA_real_, label = paste0(x8$thetaH1[2, ])) + expect_equal(x8$assumedStDevs[1, ], 147.03819, tolerance = 1e-07, label = paste0(x8$assumedStDevs[1, ])) + expect_equal(x8$assumedStDevs[2, ], NA_real_, label = paste0(x8$assumedStDevs[2, ])) + expect_equal(x8$conditionalRejectionProbabilities[1, ], c(0.028559196, 0.34741778, NA_real_), tolerance = 1e-07, label = paste0(x8$conditionalRejectionProbabilities[1, ])) + expect_equal(x8$conditionalRejectionProbabilities[2, ], c(0.038896649, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x8$conditionalRejectionProbabilities[2, ])) + expect_equal(x8$conditionalPower[1, ], c(NA_real_, NA_real_, 0.878132), tolerance = 1e-07, label = paste0(x8$conditionalPower[1, ])) + expect_equal(x8$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x8$conditionalPower[2, ])) + expect_equal(x8$repeatedConfidenceIntervalLowerBounds[1, ], c(-198.85804, -189.35465, NA_real_), tolerance = 1e-07, label = paste0(x8$repeatedConfidenceIntervalLowerBounds[1, ])) + expect_equal(x8$repeatedConfidenceIntervalLowerBounds[2, ], c(-159.22325, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x8$repeatedConfidenceIntervalLowerBounds[2, ])) + expect_equal(x8$repeatedConfidenceIntervalUpperBounds[1, ], c(83.058044, 17.838621, NA_real_), tolerance = 1e-07, label = paste0(x8$repeatedConfidenceIntervalUpperBounds[1, ])) + expect_equal(x8$repeatedConfidenceIntervalUpperBounds[2, ], c(35.509728, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x8$repeatedConfidenceIntervalUpperBounds[2, ])) + expect_equal(x8$repeatedPValues[1, ], c(0.20789586, 0.036783191, NA_real_), tolerance = 1e-07, label = paste0(x8$repeatedPValues[1, ])) + expect_equal(x8$repeatedPValues[2, ], c(0.15219281, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x8$repeatedPValues[2, ])) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x8), NA))) + expect_output(print(x8)$show()) + invisible(capture.output(expect_error(summary(x8), NA))) + expect_output(summary(x8)$show()) + x8CodeBased <- eval(parse(text = getObjectRCode(x8, stringWrapParagraphWidth = NULL))) + expect_equal(x8CodeBased$thetaH1, x8$thetaH1, tolerance = 1e-07) + expect_equal(x8CodeBased$assumedStDevs, x8$assumedStDevs, tolerance = 1e-07) + expect_equal(x8CodeBased$conditionalRejectionProbabilities, x8$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x8CodeBased$conditionalPower, x8$conditionalPower, tolerance = 1e-07) + expect_equal(x8CodeBased$repeatedConfidenceIntervalLowerBounds, x8$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x8CodeBased$repeatedConfidenceIntervalUpperBounds, x8$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x8CodeBased$repeatedPValues, x8$repeatedPValues, tolerance = 1e-07) + expect_type(names(x8), "character") + df <- as.data.frame(x8) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x8) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } }) test_plan_section("Testing Analysis Enrichment Means Function (two sub-populations)") test_that("'getAnalysisResults': stratified analysis, select S1 at first IA, gMax = 3", { - .skipTestIfDisabled() - - # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} - # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichment} - # @refFS[Formula]{fs:computeRCIsEnrichment} - # @refFS[Formula]{fs:conditionalPowerEnrichment} - # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} - # @refFS[Formula]{fs:stratifiedtTestEnrichment} - S1 <- getDataset( - sampleSize2 = c(12, 33, 21), - sampleSize1 = c(18, 17, 23), - mean2 = c(107.7, 77.7, 84.9), - mean1 = c(125.6, 111.1, 99.9), - stDev2 = c(128.5, 133.3, 84.9), - stDev1 = c(120.1, 145.6, 74.3) - ) - - S2 <- getDataset( - sampleSize2 = c(14, NA, NA), - sampleSize1 = c(11, NA, NA), - mean2 = c(68.3, NA, NA), - mean1 = c(100.1, NA, NA), - stDev2 = c(124.0, NA, NA), - stDev1 = c(116.8, NA, NA) - ) - - S12 <- getDataset( - sampleSize2 = c(21, 12, 33), - sampleSize1 = c(21, 17, 31), - mean2 = c(84.9, 107.7, 77.7), - mean1 = c(135.9, 117.7, 97.7), - stDev2 = c(139.5, 107.7, 77.7), - stDev1 = c(185.0, 92.3, 87.3) - ) - - R <- getDataset( - sampleSize2 = c(33, NA, NA), - sampleSize1 = c(19, NA, NA), - mean2 = c(77.1, NA, NA), - mean1 = c(142.4, NA, NA), - stDev2 = c(163.5, NA, NA), - stDev1 = c(120.6, NA, NA) - ) - - dataInput1 <- getDataset(S1 = S1, S2 = S2, S12 = S12, R = R) - - ## Comparison of the results of DatasetMeans object 'dataInput1' with expected results - expect_equal(dataInput1$overallSampleSizes, c(18, 11, 21, 19, 12, 14, 21, 33, 35, NA_real_, 38, NA_real_, 45, NA_real_, 33, NA_real_, 58, NA_real_, 69, NA_real_, 66, NA_real_, 66, NA_real_), label = paste0("c(", paste0(dataInput1$overallSampleSizes, collapse = ", "), ")")) - expect_equal(dataInput1$overallMeans, c(125.6, 100.1, 135.9, 142.4, 107.7, 68.3, 84.9, 77.1, 118.55714, NA_real_, 127.75789, NA_real_, 85.7, NA_real_, 93.190909, NA_real_, 111.15862, NA_real_, 114.25362, NA_real_, 85.445455, NA_real_, 85.445455, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput1$overallMeans, collapse = ", "), ")")) - expect_equal(dataInput1$overallStDevs, c(120.1, 116.8, 185, 120.6, 128.5, 124, 139.5, 163.5, 131.30971, NA_real_, 149.22508, NA_real_, 131.26649, NA_real_, 127.56945, NA_real_, 111.80482, NA_real_, 125.32216, NA_real_, 117.82181, NA_real_, 105.0948, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput1$overallStDevs, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(dataInput1), NA))) - expect_output(print(dataInput1)$show()) - invisible(capture.output(expect_error(summary(dataInput1), NA))) - expect_output(summary(dataInput1)$show()) - dataInput1CodeBased <- eval(parse(text = getObjectRCode(dataInput1, stringWrapParagraphWidth = NULL))) - expect_equal(dataInput1CodeBased$overallSampleSizes, dataInput1$overallSampleSizes, tolerance = 1e-07) - expect_equal(dataInput1CodeBased$overallMeans, dataInput1$overallMeans, tolerance = 1e-07) - expect_equal(dataInput1CodeBased$overallStDevs, dataInput1$overallStDevs, tolerance = 1e-07) - expect_type(names(dataInput1), "character") - df <- as.data.frame(dataInput1) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(dataInput1) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - + .skipTestIfDisabled() + + # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} + # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichment} + # @refFS[Formula]{fs:computeRCIsEnrichment} + # @refFS[Formula]{fs:conditionalPowerEnrichment} + # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} + # @refFS[Formula]{fs:stratifiedtTestEnrichment} + S1 <- getDataset( + sampleSize2 = c(12, 33, 21), + sampleSize1 = c(18, 17, 23), + mean2 = c(107.7, 77.7, 84.9), + mean1 = c(125.6, 111.1, 99.9), + stDev2 = c(128.5, 133.3, 84.9), + stDev1 = c(120.1, 145.6, 74.3) + ) + + S2 <- getDataset( + sampleSize2 = c(14, NA, NA), + sampleSize1 = c(11, NA, NA), + mean2 = c(68.3, NA, NA), + mean1 = c(100.1, NA, NA), + stDev2 = c(124.0, NA, NA), + stDev1 = c(116.8, NA, NA) + ) + + S12 <- getDataset( + sampleSize2 = c(21, 12, 33), + sampleSize1 = c(21, 17, 31), + mean2 = c(84.9, 107.7, 77.7), + mean1 = c(135.9, 117.7, 97.7), + stDev2 = c(139.5, 107.7, 77.7), + stDev1 = c(185.0, 92.3, 87.3) + ) + + R <- getDataset( + sampleSize2 = c(33, NA, NA), + sampleSize1 = c(19, NA, NA), + mean2 = c(77.1, NA, NA), + mean1 = c(142.4, NA, NA), + stDev2 = c(163.5, NA, NA), + stDev1 = c(120.6, NA, NA) + ) + + dataInput1 <- getDataset(S1 = S1, S2 = S2, S12 = S12, R = R) + + ## Comparison of the results of DatasetMeans object 'dataInput1' with expected results + expect_equal(dataInput1$overallSampleSizes, c(18, 11, 21, 19, 12, 14, 21, 33, 35, NA_real_, 38, NA_real_, 45, NA_real_, 33, NA_real_, 58, NA_real_, 69, NA_real_, 66, NA_real_, 66, NA_real_), label = paste0(dataInput1$overallSampleSizes)) + expect_equal(dataInput1$overallMeans, c(125.6, 100.1, 135.9, 142.4, 107.7, 68.3, 84.9, 77.1, 118.55714, NA_real_, 127.75789, NA_real_, 85.7, NA_real_, 93.190909, NA_real_, 111.15862, NA_real_, 114.25362, NA_real_, 85.445455, NA_real_, 85.445455, NA_real_), tolerance = 1e-07, label = paste0(dataInput1$overallMeans)) + expect_equal(dataInput1$overallStDevs, c(120.1, 116.8, 185, 120.6, 128.5, 124, 139.5, 163.5, 131.30971, NA_real_, 149.22508, NA_real_, 131.26649, NA_real_, 127.56945, NA_real_, 111.80482, NA_real_, 125.32216, NA_real_, 117.82181, NA_real_, 105.0948, NA_real_), tolerance = 1e-07, label = paste0(dataInput1$overallStDevs)) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(dataInput1), NA))) + expect_output(print(dataInput1)$show()) + invisible(capture.output(expect_error(summary(dataInput1), NA))) + expect_output(summary(dataInput1)$show()) + dataInput1CodeBased <- eval(parse(text = getObjectRCode(dataInput1, stringWrapParagraphWidth = NULL))) + expect_equal(dataInput1CodeBased$overallSampleSizes, dataInput1$overallSampleSizes, tolerance = 1e-07) + expect_equal(dataInput1CodeBased$overallMeans, dataInput1$overallMeans, tolerance = 1e-07) + expect_equal(dataInput1CodeBased$overallStDevs, dataInput1$overallStDevs, tolerance = 1e-07) + expect_type(names(dataInput1), "character") + df <- as.data.frame(dataInput1) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(dataInput1) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } }) test_that("'getAnalysisResults': select S1 and S2 at first IA, select S1 at second, gMax = 3", { - - .skipTestIfDisabled() - - # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} - # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichment} - # @refFS[Formula]{fs:computeRCIsEnrichment} - # @refFS[Formula]{fs:conditionalPowerEnrichment} - # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} - # @refFS[Formula]{fs:stratifiedtTestEnrichment} - design1 <- getDesignInverseNormal( - kMax = 3, alpha = 0.02, futilityBounds = c(-0.5, 0), - bindingFutility = TRUE, typeOfDesign = "OF", informationRates = c(0.5, 0.7, 1) - ) - - S1N <- getDataset( - sampleSize1 = c(39, 34, NA), - sampleSize2 = c(33, 45, NA), - stDev1 = c(156.5026, 120.084, NA), - stDev2 = c(134.0254, 126.502, NA), - mean1 = c(131.146, 114.4, NA), - mean2 = c(93.191, 85.7, NA) - ) - - S2N <- getDataset( - sampleSize1 = c(32, NA, NA), - sampleSize2 = c(35, NA, NA), - stDev1 = c(163.645, NA, NA), - stDev2 = c(131.888, NA, NA), - mean1 = c(123.594, NA, NA), - mean2 = c(78.26, NA, NA) - ) - - F <- getDataset( - sampleSize1 = c(69, NA, NA), - sampleSize2 = c(80, NA, NA), - stDev1 = c(165.4682, NA, NA), - stDev2 = c(143.9796, NA, NA), - mean1 = c(129.2957, NA, NA), - mean2 = c(82.1875, NA, NA) - ) - - dataInput2 <- getDataset(S1 = S1N, S2 = S2N, F = F) - - ## Comparison of the results of DatasetMeans object 'dataInput2' with expected results - expect_equal(dataInput2$overallSampleSizes, c(39, 32, 69, 33, 35, 80, 73, NA_real_, NA_real_, 78, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(dataInput2$overallSampleSizes, collapse = ", "), ")")) - expect_equal(dataInput2$overallMeans, c(131.146, 123.594, 129.2957, 93.191, 78.26, 82.1875, 123.34649, NA_real_, NA_real_, 88.869269, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput2$overallMeans, collapse = ", "), ")")) - expect_equal(dataInput2$overallStDevs, c(156.5026, 163.645, 165.4682, 134.0254, 131.888, 143.9796, 140.02459, NA_real_, NA_real_, 128.93165, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput2$overallStDevs, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(dataInput2), NA))) - expect_output(print(dataInput2)$show()) - invisible(capture.output(expect_error(summary(dataInput2), NA))) - expect_output(summary(dataInput2)$show()) - dataInput2CodeBased <- eval(parse(text = getObjectRCode(dataInput2, stringWrapParagraphWidth = NULL))) - expect_equal(dataInput2CodeBased$overallSampleSizes, dataInput2$overallSampleSizes, tolerance = 1e-07) - expect_equal(dataInput2CodeBased$overallMeans, dataInput2$overallMeans, tolerance = 1e-07) - expect_equal(dataInput2CodeBased$overallStDevs, dataInput2$overallStDevs, tolerance = 1e-07) - expect_type(names(dataInput2), "character") - df <- as.data.frame(dataInput2) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(dataInput2) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - x1 <- getAnalysisResults( - design = design1, dataInput = dataInput2, - directionUpper = TRUE, - normalApproximation = FALSE, - varianceOption = "pooled", - intersectionTest = "Sidak", - stratifiedAnalysis = FALSE, - stage = 2, - nPlanned = c(80), - allocationRatioPlanned = 2 - ) - - ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x1' with expected results - expect_equal(x1$thetaH1[1, ], 34.477224, tolerance = 1e-07, label = paste0("c(", paste0(x1$thetaH1[1, ], collapse = ", "), ")")) - expect_equal(x1$thetaH1[2, ], NA_real_, label = paste0("c(", paste0(x1$thetaH1[2, ], collapse = ", "), ")")) - expect_equal(x1$thetaH1[3, ], NA_real_, label = paste0("c(", paste0(x1$thetaH1[3, ], collapse = ", "), ")")) - expect_equal(x1$assumedStDevs[1, ], 134.40636, tolerance = 1e-07, label = paste0("c(", paste0(x1$assumedStDevs[1, ], collapse = ", "), ")")) - expect_equal(x1$assumedStDevs[2, ], NA_real_, label = paste0("c(", paste0(x1$assumedStDevs[2, ], collapse = ", "), ")")) - expect_equal(x1$assumedStDevs[3, ], NA_real_, label = paste0("c(", paste0(x1$assumedStDevs[3, ], collapse = ", "), ")")) - expect_equal(x1$conditionalRejectionProbabilities[1, ], c(0.016142454, 0.02613542, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x1$conditionalRejectionProbabilities[2, ], c(0.016142454, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x1$conditionalRejectionProbabilities[3, ], c(0.050007377, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalRejectionProbabilities[3, ], collapse = ", "), ")")) - expect_equal(x1$conditionalPower[1, ], c(NA_real_, NA_real_, 0.19507788), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x1$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x1$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x1$conditionalPower[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x1$conditionalPower[3, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalLowerBounds[1, ], c(-81.45856, -34.885408, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalLowerBounds[2, ], c(-79.606691, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalLowerBounds[3, ], c(-38.192738, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalLowerBounds[3, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalUpperBounds[1, ], c(157.36856, 103.57092, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalUpperBounds[2, ], c(170.27469, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalUpperBounds[3, ], c(132.40914, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalUpperBounds[3, ], collapse = ", "), ")")) - expect_equal(x1$repeatedPValues[1, ], c(0.34605439, 0.18712011, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x1$repeatedPValues[2, ], c(0.34605439, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedPValues[2, ], collapse = ", "), ")")) - expect_equal(x1$repeatedPValues[3, ], c(0.22233542, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedPValues[3, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x1), NA))) - expect_output(print(x1)$show()) - invisible(capture.output(expect_error(summary(x1), NA))) - expect_output(summary(x1)$show()) - x1CodeBased <- eval(parse(text = getObjectRCode(x1, stringWrapParagraphWidth = NULL))) - expect_equal(x1CodeBased$thetaH1, x1$thetaH1, tolerance = 1e-07) - expect_equal(x1CodeBased$assumedStDevs, x1$assumedStDevs, tolerance = 1e-07) - expect_equal(x1CodeBased$conditionalRejectionProbabilities, x1$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x1CodeBased$conditionalPower, x1$conditionalPower, tolerance = 1e-07) - expect_equal(x1CodeBased$repeatedConfidenceIntervalLowerBounds, x1$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x1CodeBased$repeatedConfidenceIntervalUpperBounds, x1$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x1CodeBased$repeatedPValues, x1$repeatedPValues, tolerance = 1e-07) - expect_type(names(x1), "character") - df <- as.data.frame(x1) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x1) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - design3 <- getDesignInverseNormal( - kMax = 3, alpha = 0.02, futilityBounds = c(-0.5, 0), - bindingFutility = TRUE, typeOfDesign = "OF", informationRates = c(0.5, 0.7, 1) - ) - - design2 <- getDesignFisher( - kMax = 3, alpha = 0.02, alpha0Vec = c(0.7, 0.5), method = "equalAlpha", - bindingFutility = TRUE, informationRates = c(0.3, 0.7, 1) - ) - - x2 <- getAnalysisResults( - design = design3, dataInput = dataInput2, - directionUpper = TRUE, - normalApproximation = FALSE, - varianceOption = "notPooled", - intersectionTest = "Simes", - stratifiedAnalysis = FALSE, - stage = 2, - thetaH1 = c(50, 30, NA), - assumedStDevs = c(122, 88, NA), - nPlanned = 80, - allocationRatioPlanned = 0.5 - ) - - ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x2' with expected results - expect_equal(x2$conditionalRejectionProbabilities[1, ], c(0.03098783, 0.056162964, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x2$conditionalRejectionProbabilities[2, ], c(0.03098783, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x2$conditionalRejectionProbabilities[3, ], c(0.045486533, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalRejectionProbabilities[3, ], collapse = ", "), ")")) - expect_equal(x2$conditionalPower[1, ], c(NA_real_, NA_real_, 0.55574729), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x2$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x2$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x2$conditionalPower[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x2$conditionalPower[3, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalLowerBounds[1, ], c(-79.922689, -34.33441, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalLowerBounds[2, ], c(-81.369964, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalLowerBounds[3, ], c(-39.221831, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalLowerBounds[3, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalUpperBounds[1, ], c(155.83269, 103.18642, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalUpperBounds[2, ], c(172.03796, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalUpperBounds[3, ], c(133.43823, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalUpperBounds[3, ], collapse = ", "), ")")) - expect_equal(x2$repeatedPValues[1, ], c(0.27466247, 0.13478543, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x2$repeatedPValues[2, ], c(0.27466247, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedPValues[2, ], collapse = ", "), ")")) - expect_equal(x2$repeatedPValues[3, ], c(0.23257404, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedPValues[3, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x2), NA))) - expect_output(print(x2)$show()) - invisible(capture.output(expect_error(summary(x2), NA))) - expect_output(summary(x2)$show()) - x2CodeBased <- eval(parse(text = getObjectRCode(x2, stringWrapParagraphWidth = NULL))) - expect_equal(x2CodeBased$conditionalRejectionProbabilities, x2$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x2CodeBased$conditionalPower, x2$conditionalPower, tolerance = 1e-07) - expect_equal(x2CodeBased$repeatedConfidenceIntervalLowerBounds, x2$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x2CodeBased$repeatedConfidenceIntervalUpperBounds, x2$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x2CodeBased$repeatedPValues, x2$repeatedPValues, tolerance = 1e-07) - expect_type(names(x2), "character") - df <- as.data.frame(x2) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x2) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - x3 <- getAnalysisResults( - design = design2, dataInput = dataInput2, - directionUpper = TRUE, - normalApproximation = FALSE, - varianceOption = "pooled", - intersectionTest = "Sidak", - stratifiedAnalysis = FALSE, - stage = 2, - nPlanned = 80, - allocationRatioPlanned = 0.5 - ) - - ## Comparison of the results of AnalysisResultsEnrichmentFisher object 'x3' with expected results - expect_equal(x3$thetaH1[1, ], 34.477224, tolerance = 1e-07, label = paste0("c(", paste0(x3$thetaH1[1, ], collapse = ", "), ")")) - expect_equal(x3$thetaH1[2, ], NA_real_, label = paste0("c(", paste0(x3$thetaH1[2, ], collapse = ", "), ")")) - expect_equal(x3$thetaH1[3, ], NA_real_, label = paste0("c(", paste0(x3$thetaH1[3, ], collapse = ", "), ")")) - expect_equal(x3$assumedStDevs[1, ], 134.40636, tolerance = 1e-07, label = paste0("c(", paste0(x3$assumedStDevs[1, ], collapse = ", "), ")")) - expect_equal(x3$assumedStDevs[2, ], NA_real_, label = paste0("c(", paste0(x3$assumedStDevs[2, ], collapse = ", "), ")")) - expect_equal(x3$assumedStDevs[3, ], NA_real_, label = paste0("c(", paste0(x3$assumedStDevs[3, ], collapse = ", "), ")")) - expect_equal(x3$conditionalRejectionProbabilities[1, ], c(0.01300837, 0.0063168592, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x3$conditionalRejectionProbabilities[2, ], c(0.01300837, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x3$conditionalRejectionProbabilities[3, ], c(0.024114983, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$conditionalRejectionProbabilities[3, ], collapse = ", "), ")")) - expect_equal(x3$conditionalPower[1, ], c(NA_real_, NA_real_, 0.078920631), tolerance = 1e-07, label = paste0("c(", paste0(x3$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x3$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x3$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x3$conditionalPower[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x3$conditionalPower[3, ], collapse = ", "), ")")) - expect_equal(x3$repeatedConfidenceIntervalLowerBounds[1, ], c(-58.494162, -30.46834, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x3$repeatedConfidenceIntervalLowerBounds[2, ], c(-55.474155, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x3$repeatedConfidenceIntervalLowerBounds[3, ], c(-22.271868, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedConfidenceIntervalLowerBounds[3, ], collapse = ", "), ")")) - expect_equal(x3$repeatedConfidenceIntervalUpperBounds[1, ], c(134.40416, 94.713072, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x3$repeatedConfidenceIntervalUpperBounds[2, ], c(146.14216, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x3$repeatedConfidenceIntervalUpperBounds[3, ], c(116.48827, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedConfidenceIntervalUpperBounds[3, ], collapse = ", "), ")")) - expect_equal(x3$repeatedPValues[1, ], c(0.29239601, 0.21229229, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x3$repeatedPValues[2, ], c(0.29239601, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedPValues[2, ], collapse = ", "), ")")) - expect_equal(x3$repeatedPValues[3, ], c(0.15217469, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedPValues[3, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x3), NA))) - expect_output(print(x3)$show()) - invisible(capture.output(expect_error(summary(x3), NA))) - expect_output(summary(x3)$show()) - x3CodeBased <- eval(parse(text = getObjectRCode(x3, stringWrapParagraphWidth = NULL))) - expect_equal(x3CodeBased$thetaH1, x3$thetaH1, tolerance = 1e-07) - expect_equal(x3CodeBased$assumedStDevs, x3$assumedStDevs, tolerance = 1e-07) - expect_equal(x3CodeBased$conditionalRejectionProbabilities, x3$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x3CodeBased$conditionalPower, x3$conditionalPower, tolerance = 1e-07) - expect_equal(x3CodeBased$repeatedConfidenceIntervalLowerBounds, x3$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x3CodeBased$repeatedConfidenceIntervalUpperBounds, x3$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x3CodeBased$repeatedPValues, x3$repeatedPValues, tolerance = 1e-07) - expect_type(names(x3), "character") - df <- as.data.frame(x3) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x3) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - x4 <- getAnalysisResults( - design = design2, dataInput = dataInput2, - directionUpper = TRUE, - normalApproximation = FALSE, - varianceOption = "notPooled", - intersectionTest = "Simes", - stratifiedAnalysis = FALSE, - stage = 2, - thetaH1 = c(50, NA, NA), - assumedStDevs = c(122, NA, NA), - nPlanned = 80, - allocationRatioPlanned = 0.5 - ) - - ## Comparison of the results of AnalysisResultsEnrichmentFisher object 'x4' with expected results - expect_equal(x4$conditionalRejectionProbabilities[1, ], c(0.018024059, 0.0095704388, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x4$conditionalRejectionProbabilities[2, ], c(0.018024059, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x4$conditionalRejectionProbabilities[3, ], c(0.022674244, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$conditionalRejectionProbabilities[3, ], collapse = ", "), ")")) - expect_equal(x4$conditionalPower[1, ], c(NA_real_, NA_real_, 0.26935817), tolerance = 1e-07, label = paste0("c(", paste0(x4$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x4$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x4$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x4$conditionalPower[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x4$conditionalPower[3, ], collapse = ", "), ")")) - expect_equal(x4$repeatedConfidenceIntervalLowerBounds[1, ], c(-57.292213, -30.050759, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x4$repeatedConfidenceIntervalLowerBounds[2, ], c(-56.802775, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x4$repeatedConfidenceIntervalLowerBounds[3, ], c(-23.100932, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedConfidenceIntervalLowerBounds[3, ], collapse = ", "), ")")) - expect_equal(x4$repeatedConfidenceIntervalUpperBounds[1, ], c(133.20221, 94.521132, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x4$repeatedConfidenceIntervalUpperBounds[2, ], c(147.47078, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x4$repeatedConfidenceIntervalUpperBounds[3, ], c(117.31733, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedConfidenceIntervalUpperBounds[3, ], collapse = ", "), ")")) - expect_equal(x4$repeatedPValues[1, ], c(0.20840036, 0.16345568, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x4$repeatedPValues[2, ], c(0.20840036, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedPValues[2, ], collapse = ", "), ")")) - expect_equal(x4$repeatedPValues[3, ], c(0.16277762, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedPValues[3, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x4), NA))) - expect_output(print(x4)$show()) - invisible(capture.output(expect_error(summary(x4), NA))) - expect_output(summary(x4)$show()) - x4CodeBased <- eval(parse(text = getObjectRCode(x4, stringWrapParagraphWidth = NULL))) - expect_equal(x4CodeBased$conditionalRejectionProbabilities, x4$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x4CodeBased$conditionalPower, x4$conditionalPower, tolerance = 1e-07) - expect_equal(x4CodeBased$repeatedConfidenceIntervalLowerBounds, x4$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x4CodeBased$repeatedConfidenceIntervalUpperBounds, x4$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x4CodeBased$repeatedPValues, x4$repeatedPValues, tolerance = 1e-07) - expect_type(names(x4), "character") - df <- as.data.frame(x4) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x4) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - + .skipTestIfDisabled() + + # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} + # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichment} + # @refFS[Formula]{fs:computeRCIsEnrichment} + # @refFS[Formula]{fs:conditionalPowerEnrichment} + # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} + # @refFS[Formula]{fs:stratifiedtTestEnrichment} + design1 <- getDesignInverseNormal( + kMax = 3, alpha = 0.02, futilityBounds = c(-0.5, 0), + bindingFutility = TRUE, typeOfDesign = "OF", informationRates = c(0.5, 0.7, 1) + ) + + S1N <- getDataset( + sampleSize1 = c(39, 34, NA), + sampleSize2 = c(33, 45, NA), + stDev1 = c(156.5026, 120.084, NA), + stDev2 = c(134.0254, 126.502, NA), + mean1 = c(131.146, 114.4, NA), + mean2 = c(93.191, 85.7, NA) + ) + + S2N <- getDataset( + sampleSize1 = c(32, NA, NA), + sampleSize2 = c(35, NA, NA), + stDev1 = c(163.645, NA, NA), + stDev2 = c(131.888, NA, NA), + mean1 = c(123.594, NA, NA), + mean2 = c(78.26, NA, NA) + ) + + F <- getDataset( + sampleSize1 = c(69, NA, NA), + sampleSize2 = c(80, NA, NA), + stDev1 = c(165.4682, NA, NA), + stDev2 = c(143.9796, NA, NA), + mean1 = c(129.2957, NA, NA), + mean2 = c(82.1875, NA, NA) + ) + + dataInput2 <- getDataset(S1 = S1N, S2 = S2N, F = F) + + ## Comparison of the results of DatasetMeans object 'dataInput2' with expected results + expect_equal(dataInput2$overallSampleSizes, c(39, 32, 69, 33, 35, 80, 73, NA_real_, NA_real_, 78, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), label = paste0(dataInput2$overallSampleSizes)) + expect_equal(dataInput2$overallMeans, c(131.146, 123.594, 129.2957, 93.191, 78.26, 82.1875, 123.34649, NA_real_, NA_real_, 88.869269, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(dataInput2$overallMeans)) + expect_equal(dataInput2$overallStDevs, c(156.5026, 163.645, 165.4682, 134.0254, 131.888, 143.9796, 140.02459, NA_real_, NA_real_, 128.93165, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(dataInput2$overallStDevs)) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(dataInput2), NA))) + expect_output(print(dataInput2)$show()) + invisible(capture.output(expect_error(summary(dataInput2), NA))) + expect_output(summary(dataInput2)$show()) + dataInput2CodeBased <- eval(parse(text = getObjectRCode(dataInput2, stringWrapParagraphWidth = NULL))) + expect_equal(dataInput2CodeBased$overallSampleSizes, dataInput2$overallSampleSizes, tolerance = 1e-07) + expect_equal(dataInput2CodeBased$overallMeans, dataInput2$overallMeans, tolerance = 1e-07) + expect_equal(dataInput2CodeBased$overallStDevs, dataInput2$overallStDevs, tolerance = 1e-07) + expect_type(names(dataInput2), "character") + df <- as.data.frame(dataInput2) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(dataInput2) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + x1 <- getAnalysisResults( + design = design1, dataInput = dataInput2, + directionUpper = TRUE, + normalApproximation = FALSE, + varianceOption = "pooled", + intersectionTest = "Sidak", + stratifiedAnalysis = FALSE, + stage = 2, + nPlanned = c(80), + allocationRatioPlanned = 2 + ) + + ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x1' with expected results + expect_equal(x1$thetaH1[1, ], 34.477224, tolerance = 1e-07, label = paste0(x1$thetaH1[1, ])) + expect_equal(x1$thetaH1[2, ], NA_real_, label = paste0(x1$thetaH1[2, ])) + expect_equal(x1$thetaH1[3, ], NA_real_, label = paste0(x1$thetaH1[3, ])) + expect_equal(x1$assumedStDevs[1, ], 134.40636, tolerance = 1e-07, label = paste0(x1$assumedStDevs[1, ])) + expect_equal(x1$assumedStDevs[2, ], NA_real_, label = paste0(x1$assumedStDevs[2, ])) + expect_equal(x1$assumedStDevs[3, ], NA_real_, label = paste0(x1$assumedStDevs[3, ])) + expect_equal(x1$conditionalRejectionProbabilities[1, ], c(0.016142454, 0.02613542, NA_real_), tolerance = 1e-07, label = paste0(x1$conditionalRejectionProbabilities[1, ])) + expect_equal(x1$conditionalRejectionProbabilities[2, ], c(0.016142454, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x1$conditionalRejectionProbabilities[2, ])) + expect_equal(x1$conditionalRejectionProbabilities[3, ], c(0.050007377, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x1$conditionalRejectionProbabilities[3, ])) + expect_equal(x1$conditionalPower[1, ], c(NA_real_, NA_real_, 0.19507788), tolerance = 1e-07, label = paste0(x1$conditionalPower[1, ])) + expect_equal(x1$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x1$conditionalPower[2, ])) + expect_equal(x1$conditionalPower[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x1$conditionalPower[3, ])) + expect_equal(x1$repeatedConfidenceIntervalLowerBounds[1, ], c(-81.45856, -34.885408, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedConfidenceIntervalLowerBounds[1, ])) + expect_equal(x1$repeatedConfidenceIntervalLowerBounds[2, ], c(-79.606691, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedConfidenceIntervalLowerBounds[2, ])) + expect_equal(x1$repeatedConfidenceIntervalLowerBounds[3, ], c(-38.192738, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedConfidenceIntervalLowerBounds[3, ])) + expect_equal(x1$repeatedConfidenceIntervalUpperBounds[1, ], c(157.36856, 103.57092, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedConfidenceIntervalUpperBounds[1, ])) + expect_equal(x1$repeatedConfidenceIntervalUpperBounds[2, ], c(170.27469, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedConfidenceIntervalUpperBounds[2, ])) + expect_equal(x1$repeatedConfidenceIntervalUpperBounds[3, ], c(132.40914, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedConfidenceIntervalUpperBounds[3, ])) + expect_equal(x1$repeatedPValues[1, ], c(0.34605439, 0.18712011, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedPValues[1, ])) + expect_equal(x1$repeatedPValues[2, ], c(0.34605439, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedPValues[2, ])) + expect_equal(x1$repeatedPValues[3, ], c(0.22233542, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedPValues[3, ])) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x1), NA))) + expect_output(print(x1)$show()) + invisible(capture.output(expect_error(summary(x1), NA))) + expect_output(summary(x1)$show()) + x1CodeBased <- eval(parse(text = getObjectRCode(x1, stringWrapParagraphWidth = NULL))) + expect_equal(x1CodeBased$thetaH1, x1$thetaH1, tolerance = 1e-07) + expect_equal(x1CodeBased$assumedStDevs, x1$assumedStDevs, tolerance = 1e-07) + expect_equal(x1CodeBased$conditionalRejectionProbabilities, x1$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x1CodeBased$conditionalPower, x1$conditionalPower, tolerance = 1e-07) + expect_equal(x1CodeBased$repeatedConfidenceIntervalLowerBounds, x1$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x1CodeBased$repeatedConfidenceIntervalUpperBounds, x1$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x1CodeBased$repeatedPValues, x1$repeatedPValues, tolerance = 1e-07) + expect_type(names(x1), "character") + df <- as.data.frame(x1) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x1) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + design3 <- getDesignInverseNormal( + kMax = 3, alpha = 0.02, futilityBounds = c(-0.5, 0), + bindingFutility = TRUE, typeOfDesign = "OF", informationRates = c(0.5, 0.7, 1) + ) + + design2 <- getDesignFisher( + kMax = 3, alpha = 0.02, alpha0Vec = c(0.7, 0.5), method = "equalAlpha", + bindingFutility = TRUE, informationRates = c(0.3, 0.7, 1) + ) + + x2 <- getAnalysisResults( + design = design3, dataInput = dataInput2, + directionUpper = TRUE, + normalApproximation = FALSE, + varianceOption = "notPooled", + intersectionTest = "Simes", + stratifiedAnalysis = FALSE, + stage = 2, + thetaH1 = c(50, 30, NA), + assumedStDevs = c(122, 88, NA), + nPlanned = 80, + allocationRatioPlanned = 0.5 + ) + + ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x2' with expected results + expect_equal(x2$conditionalRejectionProbabilities[1, ], c(0.03098783, 0.056162964, NA_real_), tolerance = 1e-07, label = paste0(x2$conditionalRejectionProbabilities[1, ])) + expect_equal(x2$conditionalRejectionProbabilities[2, ], c(0.03098783, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x2$conditionalRejectionProbabilities[2, ])) + expect_equal(x2$conditionalRejectionProbabilities[3, ], c(0.045486533, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x2$conditionalRejectionProbabilities[3, ])) + expect_equal(x2$conditionalPower[1, ], c(NA_real_, NA_real_, 0.55574729), tolerance = 1e-07, label = paste0(x2$conditionalPower[1, ])) + expect_equal(x2$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x2$conditionalPower[2, ])) + expect_equal(x2$conditionalPower[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x2$conditionalPower[3, ])) + expect_equal(x2$repeatedConfidenceIntervalLowerBounds[1, ], c(-79.922689, -34.33441, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedConfidenceIntervalLowerBounds[1, ])) + expect_equal(x2$repeatedConfidenceIntervalLowerBounds[2, ], c(-81.369964, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedConfidenceIntervalLowerBounds[2, ])) + expect_equal(x2$repeatedConfidenceIntervalLowerBounds[3, ], c(-39.221831, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedConfidenceIntervalLowerBounds[3, ])) + expect_equal(x2$repeatedConfidenceIntervalUpperBounds[1, ], c(155.83269, 103.18642, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedConfidenceIntervalUpperBounds[1, ])) + expect_equal(x2$repeatedConfidenceIntervalUpperBounds[2, ], c(172.03796, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedConfidenceIntervalUpperBounds[2, ])) + expect_equal(x2$repeatedConfidenceIntervalUpperBounds[3, ], c(133.43823, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedConfidenceIntervalUpperBounds[3, ])) + expect_equal(x2$repeatedPValues[1, ], c(0.27466247, 0.13478543, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedPValues[1, ])) + expect_equal(x2$repeatedPValues[2, ], c(0.27466247, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedPValues[2, ])) + expect_equal(x2$repeatedPValues[3, ], c(0.23257404, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedPValues[3, ])) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x2), NA))) + expect_output(print(x2)$show()) + invisible(capture.output(expect_error(summary(x2), NA))) + expect_output(summary(x2)$show()) + x2CodeBased <- eval(parse(text = getObjectRCode(x2, stringWrapParagraphWidth = NULL))) + expect_equal(x2CodeBased$conditionalRejectionProbabilities, x2$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x2CodeBased$conditionalPower, x2$conditionalPower, tolerance = 1e-07) + expect_equal(x2CodeBased$repeatedConfidenceIntervalLowerBounds, x2$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x2CodeBased$repeatedConfidenceIntervalUpperBounds, x2$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x2CodeBased$repeatedPValues, x2$repeatedPValues, tolerance = 1e-07) + expect_type(names(x2), "character") + df <- as.data.frame(x2) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x2) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + x3 <- getAnalysisResults( + design = design2, dataInput = dataInput2, + directionUpper = TRUE, + normalApproximation = FALSE, + varianceOption = "pooled", + intersectionTest = "Sidak", + stratifiedAnalysis = FALSE, + stage = 2, + nPlanned = 80, + allocationRatioPlanned = 0.5 + ) + + ## Comparison of the results of AnalysisResultsEnrichmentFisher object 'x3' with expected results + expect_equal(x3$thetaH1[1, ], 34.477224, tolerance = 1e-07, label = paste0(x3$thetaH1[1, ])) + expect_equal(x3$thetaH1[2, ], NA_real_, label = paste0(x3$thetaH1[2, ])) + expect_equal(x3$thetaH1[3, ], NA_real_, label = paste0(x3$thetaH1[3, ])) + expect_equal(x3$assumedStDevs[1, ], 134.40636, tolerance = 1e-07, label = paste0(x3$assumedStDevs[1, ])) + expect_equal(x3$assumedStDevs[2, ], NA_real_, label = paste0(x3$assumedStDevs[2, ])) + expect_equal(x3$assumedStDevs[3, ], NA_real_, label = paste0(x3$assumedStDevs[3, ])) + expect_equal(x3$conditionalRejectionProbabilities[1, ], c(0.01300837, 0.0063168592, NA_real_), tolerance = 1e-07, label = paste0(x3$conditionalRejectionProbabilities[1, ])) + expect_equal(x3$conditionalRejectionProbabilities[2, ], c(0.01300837, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x3$conditionalRejectionProbabilities[2, ])) + expect_equal(x3$conditionalRejectionProbabilities[3, ], c(0.024114983, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x3$conditionalRejectionProbabilities[3, ])) + expect_equal(x3$conditionalPower[1, ], c(NA_real_, NA_real_, 0.078920631), tolerance = 1e-07, label = paste0(x3$conditionalPower[1, ])) + expect_equal(x3$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x3$conditionalPower[2, ])) + expect_equal(x3$conditionalPower[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x3$conditionalPower[3, ])) + expect_equal(x3$repeatedConfidenceIntervalLowerBounds[1, ], c(-58.494162, -30.46834, NA_real_), tolerance = 1e-07, label = paste0(x3$repeatedConfidenceIntervalLowerBounds[1, ])) + expect_equal(x3$repeatedConfidenceIntervalLowerBounds[2, ], c(-55.474155, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x3$repeatedConfidenceIntervalLowerBounds[2, ])) + expect_equal(x3$repeatedConfidenceIntervalLowerBounds[3, ], c(-22.271868, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x3$repeatedConfidenceIntervalLowerBounds[3, ])) + expect_equal(x3$repeatedConfidenceIntervalUpperBounds[1, ], c(134.40416, 94.713072, NA_real_), tolerance = 1e-07, label = paste0(x3$repeatedConfidenceIntervalUpperBounds[1, ])) + expect_equal(x3$repeatedConfidenceIntervalUpperBounds[2, ], c(146.14216, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x3$repeatedConfidenceIntervalUpperBounds[2, ])) + expect_equal(x3$repeatedConfidenceIntervalUpperBounds[3, ], c(116.48827, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x3$repeatedConfidenceIntervalUpperBounds[3, ])) + expect_equal(x3$repeatedPValues[1, ], c(0.29239601, 0.21229229, NA_real_), tolerance = 1e-07, label = paste0(x3$repeatedPValues[1, ])) + expect_equal(x3$repeatedPValues[2, ], c(0.29239601, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x3$repeatedPValues[2, ])) + expect_equal(x3$repeatedPValues[3, ], c(0.15217469, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x3$repeatedPValues[3, ])) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x3), NA))) + expect_output(print(x3)$show()) + invisible(capture.output(expect_error(summary(x3), NA))) + expect_output(summary(x3)$show()) + x3CodeBased <- eval(parse(text = getObjectRCode(x3, stringWrapParagraphWidth = NULL))) + expect_equal(x3CodeBased$thetaH1, x3$thetaH1, tolerance = 1e-07) + expect_equal(x3CodeBased$assumedStDevs, x3$assumedStDevs, tolerance = 1e-07) + expect_equal(x3CodeBased$conditionalRejectionProbabilities, x3$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x3CodeBased$conditionalPower, x3$conditionalPower, tolerance = 1e-07) + expect_equal(x3CodeBased$repeatedConfidenceIntervalLowerBounds, x3$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x3CodeBased$repeatedConfidenceIntervalUpperBounds, x3$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x3CodeBased$repeatedPValues, x3$repeatedPValues, tolerance = 1e-07) + expect_type(names(x3), "character") + df <- as.data.frame(x3) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x3) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + x4 <- getAnalysisResults( + design = design2, dataInput = dataInput2, + directionUpper = TRUE, + normalApproximation = FALSE, + varianceOption = "notPooled", + intersectionTest = "Simes", + stratifiedAnalysis = FALSE, + stage = 2, + thetaH1 = c(50, NA, NA), + assumedStDevs = c(122, NA, NA), + nPlanned = 80, + allocationRatioPlanned = 0.5 + ) + + ## Comparison of the results of AnalysisResultsEnrichmentFisher object 'x4' with expected results + expect_equal(x4$conditionalRejectionProbabilities[1, ], c(0.018024059, 0.0095704388, NA_real_), tolerance = 1e-07, label = paste0(x4$conditionalRejectionProbabilities[1, ])) + expect_equal(x4$conditionalRejectionProbabilities[2, ], c(0.018024059, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x4$conditionalRejectionProbabilities[2, ])) + expect_equal(x4$conditionalRejectionProbabilities[3, ], c(0.022674244, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x4$conditionalRejectionProbabilities[3, ])) + expect_equal(x4$conditionalPower[1, ], c(NA_real_, NA_real_, 0.26935817), tolerance = 1e-07, label = paste0(x4$conditionalPower[1, ])) + expect_equal(x4$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x4$conditionalPower[2, ])) + expect_equal(x4$conditionalPower[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x4$conditionalPower[3, ])) + expect_equal(x4$repeatedConfidenceIntervalLowerBounds[1, ], c(-57.292213, -30.050759, NA_real_), tolerance = 1e-07, label = paste0(x4$repeatedConfidenceIntervalLowerBounds[1, ])) + expect_equal(x4$repeatedConfidenceIntervalLowerBounds[2, ], c(-56.802775, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x4$repeatedConfidenceIntervalLowerBounds[2, ])) + expect_equal(x4$repeatedConfidenceIntervalLowerBounds[3, ], c(-23.100932, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x4$repeatedConfidenceIntervalLowerBounds[3, ])) + expect_equal(x4$repeatedConfidenceIntervalUpperBounds[1, ], c(133.20221, 94.521132, NA_real_), tolerance = 1e-07, label = paste0(x4$repeatedConfidenceIntervalUpperBounds[1, ])) + expect_equal(x4$repeatedConfidenceIntervalUpperBounds[2, ], c(147.47078, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x4$repeatedConfidenceIntervalUpperBounds[2, ])) + expect_equal(x4$repeatedConfidenceIntervalUpperBounds[3, ], c(117.31733, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x4$repeatedConfidenceIntervalUpperBounds[3, ])) + expect_equal(x4$repeatedPValues[1, ], c(0.20840036, 0.16345568, NA_real_), tolerance = 1e-07, label = paste0(x4$repeatedPValues[1, ])) + expect_equal(x4$repeatedPValues[2, ], c(0.20840036, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x4$repeatedPValues[2, ])) + expect_equal(x4$repeatedPValues[3, ], c(0.16277762, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x4$repeatedPValues[3, ])) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x4), NA))) + expect_output(print(x4)$show()) + invisible(capture.output(expect_error(summary(x4), NA))) + expect_output(summary(x4)$show()) + x4CodeBased <- eval(parse(text = getObjectRCode(x4, stringWrapParagraphWidth = NULL))) + expect_equal(x4CodeBased$conditionalRejectionProbabilities, x4$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x4CodeBased$conditionalPower, x4$conditionalPower, tolerance = 1e-07) + expect_equal(x4CodeBased$repeatedConfidenceIntervalLowerBounds, x4$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x4CodeBased$repeatedConfidenceIntervalUpperBounds, x4$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x4CodeBased$repeatedPValues, x4$repeatedPValues, tolerance = 1e-07) + expect_type(names(x4), "character") + df <- as.data.frame(x4) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x4) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } }) test_plan_section("Testing Analysis Enrichment Means Function (more sub-populations)") test_that("'getAnalysisResults': select S1 and S3 at first IA, select S1 at second, gMax = 4", { - .skipTestIfDisabled() - - # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} - # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichment} - # @refFS[Formula]{fs:computeRCIsEnrichment} - # @refFS[Formula]{fs:conditionalPowerEnrichment} - # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} - # @refFS[Formula]{fs:stratifiedtTestEnrichment} - S1 <- getDataset( - sampleSize1 = c(14, 22, 24), - sampleSize2 = c(11, 18, 21), - mean1 = c(68.3, 107.4, 101.2), - mean2 = c(100.1, 140.9, 133.8), - stDev1 = c(124.0, 134.7, 124.2), - stDev2 = c(116.8, 133.7, 131.2) - ) - - S2 <- getDataset( - sampleSize1 = c(12, NA, NA), - sampleSize2 = c(18, NA, NA), - mean1 = c(107.7, NA, NA), - mean2 = c(125.6, NA, NA), - stDev1 = c(128.5, NA, NA), - stDev2 = c(120.1, NA, NA) - ) - - S3 <- getDataset( - sampleSize1 = c(17, 24, NA), - sampleSize2 = c(14, 19, NA), - mean1 = c(64.3, 101.4, NA), - mean2 = c(103.1, 170.4, NA), - stDev1 = c(128.0, 125.3, NA), - stDev2 = c(111.8, 143.6, NA) - ) - - F <- getDataset( - sampleSize1 = c(83, NA, NA), - sampleSize2 = c(79, NA, NA), - mean1 = c(77.1, NA, NA), - mean2 = c(142.4, NA, NA), - stDev1 = c(163.5, NA, NA), - stDev2 = c(120.6, NA, NA) - ) - - dataInput3 <- getDataset(S1 = S1, S2 = S2, S3 = S3, F = F) - - ## Comparison of the results of DatasetMeans object 'dataInput3' with expected results - expect_equal(dataInput3$overallSampleSizes, c(14, 12, 17, 83, 11, 18, 14, 79, 36, NA_real_, 41, NA_real_, 29, NA_real_, 33, NA_real_, 60, NA_real_, NA_real_, NA_real_, 50, NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(dataInput3$overallSampleSizes, collapse = ", "), ")")) - expect_equal(dataInput3$overallMeans, c(68.3, 107.7, 64.3, 77.1, 100.1, 125.6, 103.1, 142.4, 92.194444, NA_real_, 86.017073, NA_real_, 125.42414, NA_real_, 141.84848, NA_real_, 95.796667, NA_real_, NA_real_, NA_real_, 128.942, NA_real_, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput3$overallMeans, collapse = ", "), ")")) - expect_equal(dataInput3$overallStDevs, c(124, 128.5, 128, 163.5, 116.8, 120.1, 111.8, 120.6, 130.27375, NA_real_, 126.18865, NA_real_, 127.0088, NA_real_, 133.48411, NA_real_, 126.8892, NA_real_, NA_real_, NA_real_, 127.51934, NA_real_, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput3$overallStDevs, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(dataInput3), NA))) - expect_output(print(dataInput3)$show()) - invisible(capture.output(expect_error(summary(dataInput3), NA))) - expect_output(summary(dataInput3)$show()) - dataInput3CodeBased <- eval(parse(text = getObjectRCode(dataInput3, stringWrapParagraphWidth = NULL))) - expect_equal(dataInput3CodeBased$overallSampleSizes, dataInput3$overallSampleSizes, tolerance = 1e-07) - expect_equal(dataInput3CodeBased$overallMeans, dataInput3$overallMeans, tolerance = 1e-07) - expect_equal(dataInput3CodeBased$overallStDevs, dataInput3$overallStDevs, tolerance = 1e-07) - expect_type(names(dataInput3), "character") - df <- as.data.frame(dataInput3) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(dataInput3) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - design1 <- getDesignInverseNormal( - kMax = 3, alpha = 0.025, typeOfDesign = "WT", - deltaWT = 0.28, informationRates = c(0.5, 0.7, 1) - ) - - x1 <- getAnalysisResults( - design = design1, dataInput = dataInput3, - directionUpper = FALSE, - normalApproximation = FALSE, - varianceOption = "notPooled", - intersectionTest = "Simes", - stratifiedAnalysis = FALSE - ) - - ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x1' with expected results - expect_equal(x1$thetaH1[1, ], -33.145333, tolerance = 1e-07, label = paste0("c(", paste0(x1$thetaH1[1, ], collapse = ", "), ")")) - expect_equal(x1$thetaH1[2, ], NA_real_, label = paste0("c(", paste0(x1$thetaH1[2, ], collapse = ", "), ")")) - expect_equal(x1$thetaH1[3, ], NA_real_, label = paste0("c(", paste0(x1$thetaH1[3, ], collapse = ", "), ")")) - expect_equal(x1$thetaH1[4, ], NA_real_, label = paste0("c(", paste0(x1$thetaH1[4, ], collapse = ", "), ")")) - expect_equal(x1$assumedStDevs[1, ], 127.17548, tolerance = 1e-07, label = paste0("c(", paste0(x1$assumedStDevs[1, ], collapse = ", "), ")")) - expect_equal(x1$assumedStDevs[2, ], NA_real_, label = paste0("c(", paste0(x1$assumedStDevs[2, ], collapse = ", "), ")")) - expect_equal(x1$assumedStDevs[3, ], NA_real_, label = paste0("c(", paste0(x1$assumedStDevs[3, ], collapse = ", "), ")")) - expect_equal(x1$assumedStDevs[4, ], NA_real_, label = paste0("c(", paste0(x1$assumedStDevs[4, ], collapse = ", "), ")")) - expect_equal(x1$conditionalRejectionProbabilities[1, ], c(0.0046188669, 0.003141658, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x1$conditionalRejectionProbabilities[2, ], c(0.0046188669, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x1$conditionalRejectionProbabilities[3, ], c(0.0046188669, 0.0093523023, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalRejectionProbabilities[3, ], collapse = ", "), ")")) - expect_equal(x1$conditionalRejectionProbabilities[4, ], c(0.41158519, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalRejectionProbabilities[4, ], collapse = ", "), ")")) - expect_equal(x1$conditionalPower[1, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x1$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x1$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x1$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x1$conditionalPower[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x1$conditionalPower[3, ], collapse = ", "), ")")) - expect_equal(x1$conditionalPower[4, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x1$conditionalPower[4, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalLowerBounds[1, ], c(-189.95235, -137.25075, -108.04127), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalLowerBounds[2, ], c(-170.18127, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalLowerBounds[3, ], c(-175.96326, -146.15913, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalLowerBounds[3, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalLowerBounds[4, ], c(-132.10549, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalLowerBounds[4, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalUpperBounds[1, ], c(126.35235, 72.344345, 43.127962), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalUpperBounds[2, ], c(134.38127, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalUpperBounds[3, ], c(98.363257, 46.507217, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalUpperBounds[3, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalUpperBounds[4, ], c(1.5054896, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalUpperBounds[4, ], collapse = ", "), ")")) - expect_equal(x1$repeatedPValues[1, ], c(0.5, 0.35403281, 0.20618784), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x1$repeatedPValues[2, ], c(0.5, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedPValues[2, ], collapse = ", "), ")")) - expect_equal(x1$repeatedPValues[3, ], c(0.5, 0.26324129, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedPValues[3, ], collapse = ", "), ")")) - expect_equal(x1$repeatedPValues[4, ], c(0.029329288, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedPValues[4, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x1), NA))) - expect_output(print(x1)$show()) - invisible(capture.output(expect_error(summary(x1), NA))) - expect_output(summary(x1)$show()) - x1CodeBased <- eval(parse(text = getObjectRCode(x1, stringWrapParagraphWidth = NULL))) - expect_equal(x1CodeBased$thetaH1, x1$thetaH1, tolerance = 1e-07) - expect_equal(x1CodeBased$assumedStDevs, x1$assumedStDevs, tolerance = 1e-07) - expect_equal(x1CodeBased$conditionalRejectionProbabilities, x1$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x1CodeBased$conditionalPower, x1$conditionalPower, tolerance = 1e-07) - expect_equal(x1CodeBased$repeatedConfidenceIntervalLowerBounds, x1$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x1CodeBased$repeatedConfidenceIntervalUpperBounds, x1$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x1CodeBased$repeatedPValues, x1$repeatedPValues, tolerance = 1e-07) - expect_type(names(x1), "character") - df <- as.data.frame(x1) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x1) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - + .skipTestIfDisabled() + + # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} + # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichment} + # @refFS[Formula]{fs:computeRCIsEnrichment} + # @refFS[Formula]{fs:conditionalPowerEnrichment} + # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} + # @refFS[Formula]{fs:stratifiedtTestEnrichment} + S1 <- getDataset( + sampleSize1 = c(14, 22, 24), + sampleSize2 = c(11, 18, 21), + mean1 = c(68.3, 107.4, 101.2), + mean2 = c(100.1, 140.9, 133.8), + stDev1 = c(124.0, 134.7, 124.2), + stDev2 = c(116.8, 133.7, 131.2) + ) + + S2 <- getDataset( + sampleSize1 = c(12, NA, NA), + sampleSize2 = c(18, NA, NA), + mean1 = c(107.7, NA, NA), + mean2 = c(125.6, NA, NA), + stDev1 = c(128.5, NA, NA), + stDev2 = c(120.1, NA, NA) + ) + + S3 <- getDataset( + sampleSize1 = c(17, 24, NA), + sampleSize2 = c(14, 19, NA), + mean1 = c(64.3, 101.4, NA), + mean2 = c(103.1, 170.4, NA), + stDev1 = c(128.0, 125.3, NA), + stDev2 = c(111.8, 143.6, NA) + ) + + F <- getDataset( + sampleSize1 = c(83, NA, NA), + sampleSize2 = c(79, NA, NA), + mean1 = c(77.1, NA, NA), + mean2 = c(142.4, NA, NA), + stDev1 = c(163.5, NA, NA), + stDev2 = c(120.6, NA, NA) + ) + + dataInput3 <- getDataset(S1 = S1, S2 = S2, S3 = S3, F = F) + + ## Comparison of the results of DatasetMeans object 'dataInput3' with expected results + expect_equal(dataInput3$overallSampleSizes, c(14, 12, 17, 83, 11, 18, 14, 79, 36, NA_real_, 41, NA_real_, 29, NA_real_, 33, NA_real_, 60, NA_real_, NA_real_, NA_real_, 50, NA_real_, NA_real_, NA_real_), label = paste0(dataInput3$overallSampleSizes)) + expect_equal(dataInput3$overallMeans, c(68.3, 107.7, 64.3, 77.1, 100.1, 125.6, 103.1, 142.4, 92.194444, NA_real_, 86.017073, NA_real_, 125.42414, NA_real_, 141.84848, NA_real_, 95.796667, NA_real_, NA_real_, NA_real_, 128.942, NA_real_, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(dataInput3$overallMeans)) + expect_equal(dataInput3$overallStDevs, c(124, 128.5, 128, 163.5, 116.8, 120.1, 111.8, 120.6, 130.27375, NA_real_, 126.18865, NA_real_, 127.0088, NA_real_, 133.48411, NA_real_, 126.8892, NA_real_, NA_real_, NA_real_, 127.51934, NA_real_, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(dataInput3$overallStDevs)) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(dataInput3), NA))) + expect_output(print(dataInput3)$show()) + invisible(capture.output(expect_error(summary(dataInput3), NA))) + expect_output(summary(dataInput3)$show()) + dataInput3CodeBased <- eval(parse(text = getObjectRCode(dataInput3, stringWrapParagraphWidth = NULL))) + expect_equal(dataInput3CodeBased$overallSampleSizes, dataInput3$overallSampleSizes, tolerance = 1e-07) + expect_equal(dataInput3CodeBased$overallMeans, dataInput3$overallMeans, tolerance = 1e-07) + expect_equal(dataInput3CodeBased$overallStDevs, dataInput3$overallStDevs, tolerance = 1e-07) + expect_type(names(dataInput3), "character") + df <- as.data.frame(dataInput3) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(dataInput3) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + design1 <- getDesignInverseNormal( + kMax = 3, alpha = 0.025, typeOfDesign = "WT", + deltaWT = 0.28, informationRates = c(0.5, 0.7, 1) + ) + + x1 <- getAnalysisResults( + design = design1, dataInput = dataInput3, + directionUpper = FALSE, + normalApproximation = FALSE, + varianceOption = "notPooled", + intersectionTest = "Simes", + stratifiedAnalysis = FALSE + ) + + ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x1' with expected results + expect_equal(x1$thetaH1[1, ], -33.145333, tolerance = 1e-07, label = paste0(x1$thetaH1[1, ])) + expect_equal(x1$thetaH1[2, ], NA_real_, label = paste0(x1$thetaH1[2, ])) + expect_equal(x1$thetaH1[3, ], NA_real_, label = paste0(x1$thetaH1[3, ])) + expect_equal(x1$thetaH1[4, ], NA_real_, label = paste0(x1$thetaH1[4, ])) + expect_equal(x1$assumedStDevs[1, ], 127.17548, tolerance = 1e-07, label = paste0(x1$assumedStDevs[1, ])) + expect_equal(x1$assumedStDevs[2, ], NA_real_, label = paste0(x1$assumedStDevs[2, ])) + expect_equal(x1$assumedStDevs[3, ], NA_real_, label = paste0(x1$assumedStDevs[3, ])) + expect_equal(x1$assumedStDevs[4, ], NA_real_, label = paste0(x1$assumedStDevs[4, ])) + expect_equal(x1$conditionalRejectionProbabilities[1, ], c(0.0046188669, 0.003141658, NA_real_), tolerance = 1e-07, label = paste0(x1$conditionalRejectionProbabilities[1, ])) + expect_equal(x1$conditionalRejectionProbabilities[2, ], c(0.0046188669, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x1$conditionalRejectionProbabilities[2, ])) + expect_equal(x1$conditionalRejectionProbabilities[3, ], c(0.0046188669, 0.0093523023, NA_real_), tolerance = 1e-07, label = paste0(x1$conditionalRejectionProbabilities[3, ])) + expect_equal(x1$conditionalRejectionProbabilities[4, ], c(0.41158519, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x1$conditionalRejectionProbabilities[4, ])) + expect_equal(x1$conditionalPower[1, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x1$conditionalPower[1, ])) + expect_equal(x1$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x1$conditionalPower[2, ])) + expect_equal(x1$conditionalPower[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x1$conditionalPower[3, ])) + expect_equal(x1$conditionalPower[4, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x1$conditionalPower[4, ])) + expect_equal(x1$repeatedConfidenceIntervalLowerBounds[1, ], c(-189.95235, -137.25075, -108.04127), tolerance = 1e-07, label = paste0(x1$repeatedConfidenceIntervalLowerBounds[1, ])) + expect_equal(x1$repeatedConfidenceIntervalLowerBounds[2, ], c(-170.18127, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedConfidenceIntervalLowerBounds[2, ])) + expect_equal(x1$repeatedConfidenceIntervalLowerBounds[3, ], c(-175.96326, -146.15913, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedConfidenceIntervalLowerBounds[3, ])) + expect_equal(x1$repeatedConfidenceIntervalLowerBounds[4, ], c(-132.10549, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedConfidenceIntervalLowerBounds[4, ])) + expect_equal(x1$repeatedConfidenceIntervalUpperBounds[1, ], c(126.35235, 72.344345, 43.127962), tolerance = 1e-07, label = paste0(x1$repeatedConfidenceIntervalUpperBounds[1, ])) + expect_equal(x1$repeatedConfidenceIntervalUpperBounds[2, ], c(134.38127, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedConfidenceIntervalUpperBounds[2, ])) + expect_equal(x1$repeatedConfidenceIntervalUpperBounds[3, ], c(98.363257, 46.507217, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedConfidenceIntervalUpperBounds[3, ])) + expect_equal(x1$repeatedConfidenceIntervalUpperBounds[4, ], c(1.5054896, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedConfidenceIntervalUpperBounds[4, ])) + expect_equal(x1$repeatedPValues[1, ], c(0.5, 0.35403281, 0.20618784), tolerance = 1e-07, label = paste0(x1$repeatedPValues[1, ])) + expect_equal(x1$repeatedPValues[2, ], c(0.5, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedPValues[2, ])) + expect_equal(x1$repeatedPValues[3, ], c(0.5, 0.26324129, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedPValues[3, ])) + expect_equal(x1$repeatedPValues[4, ], c(0.029329288, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x1$repeatedPValues[4, ])) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x1), NA))) + expect_output(print(x1)$show()) + invisible(capture.output(expect_error(summary(x1), NA))) + expect_output(summary(x1)$show()) + x1CodeBased <- eval(parse(text = getObjectRCode(x1, stringWrapParagraphWidth = NULL))) + expect_equal(x1CodeBased$thetaH1, x1$thetaH1, tolerance = 1e-07) + expect_equal(x1CodeBased$assumedStDevs, x1$assumedStDevs, tolerance = 1e-07) + expect_equal(x1CodeBased$conditionalRejectionProbabilities, x1$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x1CodeBased$conditionalPower, x1$conditionalPower, tolerance = 1e-07) + expect_equal(x1CodeBased$repeatedConfidenceIntervalLowerBounds, x1$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x1CodeBased$repeatedConfidenceIntervalUpperBounds, x1$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x1CodeBased$repeatedPValues, x1$repeatedPValues, tolerance = 1e-07) + expect_type(names(x1), "character") + df <- as.data.frame(x1) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x1) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } }) test_that("'getAnalysisResults': stratified analysis, gMax = 4", { - - .skipTestIfDisabled() - - # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} - # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichment} - # @refFS[Formula]{fs:computeRCIsEnrichment} - # @refFS[Formula]{fs:conditionalPowerEnrichment} - # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} - # @refFS[Formula]{fs:stratifiedtTestEnrichment} - S1 <- getDataset( - sampleSize1 = c(14, 22, NA), - sampleSize2 = c(11, 18, NA), - mean1 = c(68.3, 107.4, NA), - mean2 = c(100.1, 140.9, NA), - stDev1 = c(124.0, 134.7, NA), - stDev2 = c(116.8, 133.7, NA) - ) - - S2 <- getDataset( - sampleSize1 = c(12, NA, NA), - sampleSize2 = c(18, NA, NA), - mean1 = c(107.7, NA, NA), - mean2 = c(125.6, NA, NA), - stDev1 = c(128.5, NA, NA), - stDev2 = c(120.1, NA, NA) - ) - - S3 <- getDataset( - sampleSize1 = c(17, 24, NA), - sampleSize2 = c(14, 19, NA), - mean1 = c(64.3, 101.4, NA), - mean2 = c(103.1, 170.4, NA), - stDev1 = c(128.0, 125.3, NA), - stDev2 = c(111.8, 143.6, NA) - ) - - S12 <- getDataset( - sampleSize1 = c(21, 12, 33), - sampleSize2 = c(21, 17, 31), - mean1 = c(84.9, 107.7, 77.7), - mean2 = c(135.9, 117.7, 97.7), - stDev1 = c(139.5, 107.7, 77.7), - stDev2 = c(185.0, 92.3, 87.3) - ) - - S13 <- getDataset( - sampleSize1 = c(21, 12, 33), - sampleSize2 = c(21, 17, 31), - mean1 = c(84.9, 107.7, 77.7), - mean2 = c(135.9, 117.7, 97.7), - stDev1 = c(139.5, 107.7, 77.7), - stDev2 = c(185.0, 92.3, 87.3) - ) - - S23 <- getDataset( - sampleSize1 = c(21, 12, 33), - sampleSize2 = c(21, 17, 31), - mean1 = c(84.9, 107.7, 77.7), - mean2 = c(135.9, 117.7, 97.7), - stDev1 = c(139.5, 107.7, 77.7), - stDev2 = c(185.0, 92.3, 87.3) - ) - - S123 <- getDataset( - sampleSize1 = c(21, 12, 33), - sampleSize2 = c(21, 17, 31), - mean1 = c(84.9, 107.7, 77.7), - mean2 = c(135.9, 117.7, 97.7), - stDev1 = c(139.5, 107.7, 77.7), - stDev2 = c(185.0, 92.3, 87.3) - ) - - R <- getDataset( - sampleSize1 = c(33, NA, NA), - sampleSize2 = c(19, NA, NA), - mean1 = c(77.1, NA, NA), - mean2 = c(142.4, NA, NA), - stDev1 = c(163.5, NA, NA), - stDev2 = c(120.6, NA, NA) - ) - - dataInput4 <- getDataset(S1 = S1, S2 = S2, S3 = S3, S12 = S12, S23 = S23, S13 = S13, S123 = S123, R = R) - - ## Comparison of the results of DatasetMeans object 'dataInput4' with expected results - expect_equal(dataInput4$overallSampleSizes, c(14, 12, 17, 21, 21, 21, 21, 33, 11, 18, 14, 21, 21, 21, 21, 19, 36, NA_real_, 41, 33, 33, 33, 33, NA_real_, 29, NA_real_, 33, 38, 38, 38, 38, NA_real_, NA_real_, NA_real_, NA_real_, 66, 66, 66, 66, NA_real_, NA_real_, NA_real_, NA_real_, 69, 69, 69, 69, NA_real_), label = paste0("c(", paste0(dataInput4$overallSampleSizes, collapse = ", "), ")")) - expect_equal(dataInput4$overallMeans, c(68.3, 107.7, 64.3, 84.9, 84.9, 84.9, 84.9, 77.1, 100.1, 125.6, 103.1, 135.9, 135.9, 135.9, 135.9, 142.4, 92.194444, NA_real_, 86.017073, 93.190909, 93.190909, 93.190909, 93.190909, NA_real_, 125.42414, NA_real_, 141.84848, 127.75789, 127.75789, 127.75789, 127.75789, NA_real_, NA_real_, NA_real_, NA_real_, 85.445455, 85.445455, 85.445455, 85.445455, NA_real_, NA_real_, NA_real_, NA_real_, 114.25362, 114.25362, 114.25362, 114.25362, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput4$overallMeans, collapse = ", "), ")")) - expect_equal(dataInput4$overallStDevs, c(124, 128.5, 128, 139.5, 139.5, 139.5, 139.5, 163.5, 116.8, 120.1, 111.8, 185, 185, 185, 185, 120.6, 130.27375, NA_real_, 126.18865, 127.56945, 127.56945, 127.56945, 127.56945, NA_real_, 127.0088, NA_real_, 133.48411, 149.22508, 149.22508, 149.22508, 149.22508, NA_real_, NA_real_, NA_real_, NA_real_, 105.0948, 105.0948, 105.0948, 105.0948, NA_real_, NA_real_, NA_real_, NA_real_, 125.32216, 125.32216, 125.32216, 125.32216, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput4$overallStDevs, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(dataInput4), NA))) - expect_output(print(dataInput4)$show()) - invisible(capture.output(expect_error(summary(dataInput4), NA))) - expect_output(summary(dataInput4)$show()) - dataInput4CodeBased <- eval(parse(text = getObjectRCode(dataInput4, stringWrapParagraphWidth = NULL))) - expect_equal(dataInput4CodeBased$overallSampleSizes, dataInput4$overallSampleSizes, tolerance = 1e-07) - expect_equal(dataInput4CodeBased$overallMeans, dataInput4$overallMeans, tolerance = 1e-07) - expect_equal(dataInput4CodeBased$overallStDevs, dataInput4$overallStDevs, tolerance = 1e-07) - expect_type(names(dataInput4), "character") - df <- as.data.frame(dataInput4) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(dataInput4) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - design1 <- getDesignInverseNormal( - kMax = 3, alpha = 0.025, typeOfDesign = "WT", - deltaWT = 0.28, informationRates = c(0.5, 0.7, 1) - ) - - x2 <- getAnalysisResults( - design = design1, dataInput = dataInput4, - directionUpper = FALSE, - normalApproximation = FALSE, - varianceOption = "notPooled", - intersectionTest = "Simes", - stratifiedAnalysis = TRUE, - stage = 2 - ) - - ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x2' with expected results - expect_equal(x2$thetaH1[1, ], -34.35943, tolerance = 1e-07, label = paste0("c(", paste0(x2$thetaH1[1, ], collapse = ", "), ")")) - expect_equal(x2$thetaH1[2, ], NA_real_, label = paste0("c(", paste0(x2$thetaH1[2, ], collapse = ", "), ")")) - expect_equal(x2$thetaH1[3, ], -39.831088, tolerance = 1e-07, label = paste0("c(", paste0(x2$thetaH1[3, ], collapse = ", "), ")")) - expect_equal(x2$thetaH1[4, ], NA_real_, label = paste0("c(", paste0(x2$thetaH1[4, ], collapse = ", "), ")")) - expect_equal(x2$assumedStDevs[1, ], 135.6664, tolerance = 1e-07, label = paste0("c(", paste0(x2$assumedStDevs[1, ], collapse = ", "), ")")) - expect_equal(x2$assumedStDevs[2, ], NA_real_, label = paste0("c(", paste0(x2$assumedStDevs[2, ], collapse = ", "), ")")) - expect_equal(x2$assumedStDevs[3, ], 135.69515, tolerance = 1e-07, label = paste0("c(", paste0(x2$assumedStDevs[3, ], collapse = ", "), ")")) - expect_equal(x2$assumedStDevs[4, ], NA_real_, label = paste0("c(", paste0(x2$assumedStDevs[4, ], collapse = ", "), ")")) - expect_equal(x2$conditionalRejectionProbabilities[1, ], c(0.14436944, 0.18888867, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x2$conditionalRejectionProbabilities[2, ], c(0.14436944, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x2$conditionalRejectionProbabilities[3, ], c(0.14436944, 0.23567728, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalRejectionProbabilities[3, ], collapse = ", "), ")")) - expect_equal(x2$conditionalRejectionProbabilities[4, ], c(0.33356756, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalRejectionProbabilities[4, ], collapse = ", "), ")")) - expect_equal(x2$conditionalPower[1, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x2$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x2$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x2$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x2$conditionalPower[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x2$conditionalPower[3, ], collapse = ", "), ")")) - expect_equal(x2$conditionalPower[4, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x2$conditionalPower[4, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalLowerBounds[1, ], c(-124.13667, -87.790806, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalLowerBounds[2, ], c(-119.97906, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalLowerBounds[3, ], c(-122.68924, -91.731817, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalLowerBounds[3, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalLowerBounds[4, ], c(-97.969856, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalLowerBounds[4, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalUpperBounds[1, ], c(28.41771, 15.834301, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalUpperBounds[2, ], c(30.295343, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalUpperBounds[3, ], c(25.470801, 9.1408918, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalUpperBounds[3, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalUpperBounds[4, ], c(3.369313, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalUpperBounds[4, ], collapse = ", "), ")")) - expect_equal(x2$repeatedPValues[1, ], c(0.096549841, 0.052699984, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x2$repeatedPValues[2, ], c(0.096549841, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedPValues[2, ], collapse = ", "), ")")) - expect_equal(x2$repeatedPValues[3, ], c(0.096549841, 0.042135201, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedPValues[3, ], collapse = ", "), ")")) - expect_equal(x2$repeatedPValues[4, ], c(0.039953198, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedPValues[4, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x2), NA))) - expect_output(print(x2)$show()) - invisible(capture.output(expect_error(summary(x2), NA))) - expect_output(summary(x2)$show()) - x2CodeBased <- eval(parse(text = getObjectRCode(x2, stringWrapParagraphWidth = NULL))) - expect_equal(x2CodeBased$thetaH1, x2$thetaH1, tolerance = 1e-07) - expect_equal(x2CodeBased$assumedStDevs, x2$assumedStDevs, tolerance = 1e-07) - expect_equal(x2CodeBased$conditionalRejectionProbabilities, x2$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x2CodeBased$conditionalPower, x2$conditionalPower, tolerance = 1e-07) - expect_equal(x2CodeBased$repeatedConfidenceIntervalLowerBounds, x2$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x2CodeBased$repeatedConfidenceIntervalUpperBounds, x2$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x2CodeBased$repeatedPValues, x2$repeatedPValues, tolerance = 1e-07) - expect_type(names(x2), "character") - df <- as.data.frame(x2) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x2) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - + .skipTestIfDisabled() + + # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} + # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichment} + # @refFS[Formula]{fs:computeRCIsEnrichment} + # @refFS[Formula]{fs:conditionalPowerEnrichment} + # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} + # @refFS[Formula]{fs:stratifiedtTestEnrichment} + S1 <- getDataset( + sampleSize1 = c(14, 22, NA), + sampleSize2 = c(11, 18, NA), + mean1 = c(68.3, 107.4, NA), + mean2 = c(100.1, 140.9, NA), + stDev1 = c(124.0, 134.7, NA), + stDev2 = c(116.8, 133.7, NA) + ) + + S2 <- getDataset( + sampleSize1 = c(12, NA, NA), + sampleSize2 = c(18, NA, NA), + mean1 = c(107.7, NA, NA), + mean2 = c(125.6, NA, NA), + stDev1 = c(128.5, NA, NA), + stDev2 = c(120.1, NA, NA) + ) + + S3 <- getDataset( + sampleSize1 = c(17, 24, NA), + sampleSize2 = c(14, 19, NA), + mean1 = c(64.3, 101.4, NA), + mean2 = c(103.1, 170.4, NA), + stDev1 = c(128.0, 125.3, NA), + stDev2 = c(111.8, 143.6, NA) + ) + + S12 <- getDataset( + sampleSize1 = c(21, 12, 33), + sampleSize2 = c(21, 17, 31), + mean1 = c(84.9, 107.7, 77.7), + mean2 = c(135.9, 117.7, 97.7), + stDev1 = c(139.5, 107.7, 77.7), + stDev2 = c(185.0, 92.3, 87.3) + ) + + S13 <- getDataset( + sampleSize1 = c(21, 12, 33), + sampleSize2 = c(21, 17, 31), + mean1 = c(84.9, 107.7, 77.7), + mean2 = c(135.9, 117.7, 97.7), + stDev1 = c(139.5, 107.7, 77.7), + stDev2 = c(185.0, 92.3, 87.3) + ) + + S23 <- getDataset( + sampleSize1 = c(21, 12, 33), + sampleSize2 = c(21, 17, 31), + mean1 = c(84.9, 107.7, 77.7), + mean2 = c(135.9, 117.7, 97.7), + stDev1 = c(139.5, 107.7, 77.7), + stDev2 = c(185.0, 92.3, 87.3) + ) + + S123 <- getDataset( + sampleSize1 = c(21, 12, 33), + sampleSize2 = c(21, 17, 31), + mean1 = c(84.9, 107.7, 77.7), + mean2 = c(135.9, 117.7, 97.7), + stDev1 = c(139.5, 107.7, 77.7), + stDev2 = c(185.0, 92.3, 87.3) + ) + + R <- getDataset( + sampleSize1 = c(33, NA, NA), + sampleSize2 = c(19, NA, NA), + mean1 = c(77.1, NA, NA), + mean2 = c(142.4, NA, NA), + stDev1 = c(163.5, NA, NA), + stDev2 = c(120.6, NA, NA) + ) + + dataInput4 <- getDataset(S1 = S1, S2 = S2, S3 = S3, S12 = S12, S23 = S23, S13 = S13, S123 = S123, R = R) + + ## Comparison of the results of DatasetMeans object 'dataInput4' with expected results + expect_equal(dataInput4$overallSampleSizes, c(14, 12, 17, 21, 21, 21, 21, 33, 11, 18, 14, 21, 21, 21, 21, 19, 36, NA_real_, 41, 33, 33, 33, 33, NA_real_, 29, NA_real_, 33, 38, 38, 38, 38, NA_real_, NA_real_, NA_real_, NA_real_, 66, 66, 66, 66, NA_real_, NA_real_, NA_real_, NA_real_, 69, 69, 69, 69, NA_real_), label = paste0(dataInput4$overallSampleSizes)) + expect_equal(dataInput4$overallMeans, c(68.3, 107.7, 64.3, 84.9, 84.9, 84.9, 84.9, 77.1, 100.1, 125.6, 103.1, 135.9, 135.9, 135.9, 135.9, 142.4, 92.194444, NA_real_, 86.017073, 93.190909, 93.190909, 93.190909, 93.190909, NA_real_, 125.42414, NA_real_, 141.84848, 127.75789, 127.75789, 127.75789, 127.75789, NA_real_, NA_real_, NA_real_, NA_real_, 85.445455, 85.445455, 85.445455, 85.445455, NA_real_, NA_real_, NA_real_, NA_real_, 114.25362, 114.25362, 114.25362, 114.25362, NA_real_), tolerance = 1e-07, label = paste0(dataInput4$overallMeans)) + expect_equal(dataInput4$overallStDevs, c(124, 128.5, 128, 139.5, 139.5, 139.5, 139.5, 163.5, 116.8, 120.1, 111.8, 185, 185, 185, 185, 120.6, 130.27375, NA_real_, 126.18865, 127.56945, 127.56945, 127.56945, 127.56945, NA_real_, 127.0088, NA_real_, 133.48411, 149.22508, 149.22508, 149.22508, 149.22508, NA_real_, NA_real_, NA_real_, NA_real_, 105.0948, 105.0948, 105.0948, 105.0948, NA_real_, NA_real_, NA_real_, NA_real_, 125.32216, 125.32216, 125.32216, 125.32216, NA_real_), tolerance = 1e-07, label = paste0(dataInput4$overallStDevs)) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(dataInput4), NA))) + expect_output(print(dataInput4)$show()) + invisible(capture.output(expect_error(summary(dataInput4), NA))) + expect_output(summary(dataInput4)$show()) + dataInput4CodeBased <- eval(parse(text = getObjectRCode(dataInput4, stringWrapParagraphWidth = NULL))) + expect_equal(dataInput4CodeBased$overallSampleSizes, dataInput4$overallSampleSizes, tolerance = 1e-07) + expect_equal(dataInput4CodeBased$overallMeans, dataInput4$overallMeans, tolerance = 1e-07) + expect_equal(dataInput4CodeBased$overallStDevs, dataInput4$overallStDevs, tolerance = 1e-07) + expect_type(names(dataInput4), "character") + df <- as.data.frame(dataInput4) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(dataInput4) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + design1 <- getDesignInverseNormal( + kMax = 3, alpha = 0.025, typeOfDesign = "WT", + deltaWT = 0.28, informationRates = c(0.5, 0.7, 1) + ) + + x2 <- getAnalysisResults( + design = design1, dataInput = dataInput4, + directionUpper = FALSE, + normalApproximation = FALSE, + varianceOption = "notPooled", + intersectionTest = "Simes", + stratifiedAnalysis = TRUE, + stage = 2 + ) + + ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x2' with expected results + expect_equal(x2$thetaH1[1, ], -34.35943, tolerance = 1e-07, label = paste0(x2$thetaH1[1, ])) + expect_equal(x2$thetaH1[2, ], NA_real_, label = paste0(x2$thetaH1[2, ])) + expect_equal(x2$thetaH1[3, ], -39.831088, tolerance = 1e-07, label = paste0(x2$thetaH1[3, ])) + expect_equal(x2$thetaH1[4, ], NA_real_, label = paste0(x2$thetaH1[4, ])) + expect_equal(x2$assumedStDevs[1, ], 135.6664, tolerance = 1e-07, label = paste0(x2$assumedStDevs[1, ])) + expect_equal(x2$assumedStDevs[2, ], NA_real_, label = paste0(x2$assumedStDevs[2, ])) + expect_equal(x2$assumedStDevs[3, ], 135.69515, tolerance = 1e-07, label = paste0(x2$assumedStDevs[3, ])) + expect_equal(x2$assumedStDevs[4, ], NA_real_, label = paste0(x2$assumedStDevs[4, ])) + expect_equal(x2$conditionalRejectionProbabilities[1, ], c(0.14436944, 0.18888867, NA_real_), tolerance = 1e-07, label = paste0(x2$conditionalRejectionProbabilities[1, ])) + expect_equal(x2$conditionalRejectionProbabilities[2, ], c(0.14436944, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x2$conditionalRejectionProbabilities[2, ])) + expect_equal(x2$conditionalRejectionProbabilities[3, ], c(0.14436944, 0.23567728, NA_real_), tolerance = 1e-07, label = paste0(x2$conditionalRejectionProbabilities[3, ])) + expect_equal(x2$conditionalRejectionProbabilities[4, ], c(0.33356756, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x2$conditionalRejectionProbabilities[4, ])) + expect_equal(x2$conditionalPower[1, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x2$conditionalPower[1, ])) + expect_equal(x2$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x2$conditionalPower[2, ])) + expect_equal(x2$conditionalPower[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x2$conditionalPower[3, ])) + expect_equal(x2$conditionalPower[4, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x2$conditionalPower[4, ])) + expect_equal(x2$repeatedConfidenceIntervalLowerBounds[1, ], c(-124.13667, -87.790806, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedConfidenceIntervalLowerBounds[1, ])) + expect_equal(x2$repeatedConfidenceIntervalLowerBounds[2, ], c(-119.97906, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedConfidenceIntervalLowerBounds[2, ])) + expect_equal(x2$repeatedConfidenceIntervalLowerBounds[3, ], c(-122.68924, -91.731817, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedConfidenceIntervalLowerBounds[3, ])) + expect_equal(x2$repeatedConfidenceIntervalLowerBounds[4, ], c(-97.969856, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedConfidenceIntervalLowerBounds[4, ])) + expect_equal(x2$repeatedConfidenceIntervalUpperBounds[1, ], c(28.41771, 15.834301, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedConfidenceIntervalUpperBounds[1, ])) + expect_equal(x2$repeatedConfidenceIntervalUpperBounds[2, ], c(30.295343, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedConfidenceIntervalUpperBounds[2, ])) + expect_equal(x2$repeatedConfidenceIntervalUpperBounds[3, ], c(25.470801, 9.1408918, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedConfidenceIntervalUpperBounds[3, ])) + expect_equal(x2$repeatedConfidenceIntervalUpperBounds[4, ], c(3.369313, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedConfidenceIntervalUpperBounds[4, ])) + expect_equal(x2$repeatedPValues[1, ], c(0.096549841, 0.052699984, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedPValues[1, ])) + expect_equal(x2$repeatedPValues[2, ], c(0.096549841, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedPValues[2, ])) + expect_equal(x2$repeatedPValues[3, ], c(0.096549841, 0.042135201, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedPValues[3, ])) + expect_equal(x2$repeatedPValues[4, ], c(0.039953198, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x2$repeatedPValues[4, ])) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x2), NA))) + expect_output(print(x2)$show()) + invisible(capture.output(expect_error(summary(x2), NA))) + expect_output(summary(x2)$show()) + x2CodeBased <- eval(parse(text = getObjectRCode(x2, stringWrapParagraphWidth = NULL))) + expect_equal(x2CodeBased$thetaH1, x2$thetaH1, tolerance = 1e-07) + expect_equal(x2CodeBased$assumedStDevs, x2$assumedStDevs, tolerance = 1e-07) + expect_equal(x2CodeBased$conditionalRejectionProbabilities, x2$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x2CodeBased$conditionalPower, x2$conditionalPower, tolerance = 1e-07) + expect_equal(x2CodeBased$repeatedConfidenceIntervalLowerBounds, x2$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x2CodeBased$repeatedConfidenceIntervalUpperBounds, x2$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x2CodeBased$repeatedPValues, x2$repeatedPValues, tolerance = 1e-07) + expect_type(names(x2), "character") + df <- as.data.frame(x2) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x2) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } }) test_plan_section("Testing Analysis Enrichment Means Function (more sub-populations)") test_that("'getAnalysisResults': select S1 at first IA, gMax = 3, no early efficacy stop", { - .skipTestIfDisabled() - - # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} - # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichment} - # @refFS[Formula]{fs:computeRCIsEnrichment} - # @refFS[Formula]{fs:conditionalPowerEnrichment} - # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} - # @refFS[Formula]{fs:stratifiedtTestEnrichment} - S1 <- getDataset( - sampleSize1 = c(14, 22, 24), - sampleSize2 = c(11, 18, 21), - mean1 = c(68.3, 107.4, 101.2), - mean2 = c(100.1, 140.9, 133.8), - stDev1 = c(124.0, 134.7, 124.2), - stDev2 = c(116.8, 133.7, 131.2) - ) - - S2 <- getDataset( - sampleSize1 = c(12, NA, NA), - sampleSize2 = c(18, NA, NA), - mean1 = c(107.7, NA, NA), - mean2 = c(125.6, NA, NA), - stDev1 = c(128.5, NA, NA), - stDev2 = c(120.1, NA, NA) - ) - - F <- getDataset( - sampleSize1 = c(83, NA, NA), - sampleSize2 = c(79, NA, NA), - mean1 = c(77.1, NA, NA), - mean2 = c(142.4, NA, NA), - stDev1 = c(163.5, NA, NA), - stDev2 = c(120.6, NA, NA) - ) - - dataInput3 <- getDataset(S1 = S1, S2 = S2, F = F) - - ## Comparison of the results of DatasetMeans object 'dataInput3' with expected results - expect_equal(dataInput3$overallSampleSizes, c(14, 12, 83, 11, 18, 79, 36, NA_real_, NA_real_, 29, NA_real_, NA_real_, 60, NA_real_, NA_real_, 50, NA_real_, NA_real_), label = paste0("c(", paste0(dataInput3$overallSampleSizes, collapse = ", "), ")")) - expect_equal(dataInput3$overallMeans, c(68.3, 107.7, 77.1, 100.1, 125.6, 142.4, 92.194444, NA_real_, NA_real_, 125.42414, NA_real_, NA_real_, 95.796667, NA_real_, NA_real_, 128.942, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput3$overallMeans, collapse = ", "), ")")) - expect_equal(dataInput3$overallStDevs, c(124, 128.5, 163.5, 116.8, 120.1, 120.6, 130.27375, NA_real_, NA_real_, 127.0088, NA_real_, NA_real_, 126.8892, NA_real_, NA_real_, 127.51934, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput3$overallStDevs, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(dataInput3), NA))) - expect_output(print(dataInput3)$show()) - invisible(capture.output(expect_error(summary(dataInput3), NA))) - expect_output(summary(dataInput3)$show()) - dataInput3CodeBased <- eval(parse(text = getObjectRCode(dataInput3, stringWrapParagraphWidth = NULL))) - expect_equal(dataInput3CodeBased$overallSampleSizes, dataInput3$overallSampleSizes, tolerance = 1e-07) - expect_equal(dataInput3CodeBased$overallMeans, dataInput3$overallMeans, tolerance = 1e-07) - expect_equal(dataInput3CodeBased$overallStDevs, dataInput3$overallStDevs, tolerance = 1e-07) - expect_type(names(dataInput3), "character") - df <- as.data.frame(dataInput3) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(dataInput3) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - design3 <- getDesignInverseNormal( - kMax = 3, alpha = 0.025, typeOfDesign = "noEarlyEfficacy", - informationRates = c(0.4, 0.7, 1) - ) - - x3 <- getAnalysisResults( - design = design3, dataInput = dataInput3, - thetaH0 = 30, - directionUpper = FALSE, - normalApproximation = FALSE, - varianceOption = "notPooled", - intersectionTest = "Simes", - stratifiedAnalysis = FALSE - ) - - ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x3' with expected results - expect_equal(x3$thetaH1[1, ], -33.145333, tolerance = 1e-07, label = paste0("c(", paste0(x3$thetaH1[1, ], collapse = ", "), ")")) - expect_equal(x3$thetaH1[2, ], NA_real_, label = paste0("c(", paste0(x3$thetaH1[2, ], collapse = ", "), ")")) - expect_equal(x3$thetaH1[3, ], NA_real_, label = paste0("c(", paste0(x3$thetaH1[3, ], collapse = ", "), ")")) - expect_equal(x3$assumedStDevs[1, ], 127.17548, tolerance = 1e-07, label = paste0("c(", paste0(x3$assumedStDevs[1, ], collapse = ", "), ")")) - expect_equal(x3$assumedStDevs[2, ], NA_real_, label = paste0("c(", paste0(x3$assumedStDevs[2, ], collapse = ", "), ")")) - expect_equal(x3$assumedStDevs[3, ], NA_real_, label = paste0("c(", paste0(x3$assumedStDevs[3, ], collapse = ", "), ")")) - expect_equal(x3$conditionalRejectionProbabilities[1, ], c(0.043562209, 0.16805804, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x3$conditionalRejectionProbabilities[2, ], c(0.043562209, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x3$conditionalRejectionProbabilities[3, ], c(0.72997271, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$conditionalRejectionProbabilities[3, ], collapse = ", "), ")")) - expect_equal(x3$conditionalPower[1, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x3$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x3$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x3$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x3$conditionalPower[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x3$conditionalPower[3, ], collapse = ", "), ")")) - expect_equal(x3$repeatedConfidenceIntervalLowerBounds[1, ], c(NA_real_, NA_real_, -94.8291), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x3$repeatedConfidenceIntervalLowerBounds[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x3$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x3$repeatedConfidenceIntervalLowerBounds[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x3$repeatedConfidenceIntervalLowerBounds[3, ], collapse = ", "), ")")) - expect_equal(x3$repeatedConfidenceIntervalUpperBounds[1, ], c(NA_real_, NA_real_, 29.811159), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x3$repeatedConfidenceIntervalUpperBounds[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x3$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x3$repeatedConfidenceIntervalUpperBounds[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x3$repeatedConfidenceIntervalUpperBounds[3, ], collapse = ", "), ")")) - expect_equal(x3$repeatedPValues[1, ], c(NA_real_, NA_real_, 0.010432269), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x3$repeatedPValues[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x3$repeatedPValues[2, ], collapse = ", "), ")")) - expect_equal(x3$repeatedPValues[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x3$repeatedPValues[3, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x3), NA))) - expect_output(print(x3)$show()) - invisible(capture.output(expect_error(summary(x3), NA))) - expect_output(summary(x3)$show()) - x3CodeBased <- eval(parse(text = getObjectRCode(x3, stringWrapParagraphWidth = NULL))) - expect_equal(x3CodeBased$thetaH1, x3$thetaH1, tolerance = 1e-07) - expect_equal(x3CodeBased$assumedStDevs, x3$assumedStDevs, tolerance = 1e-07) - expect_equal(x3CodeBased$conditionalRejectionProbabilities, x3$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x3CodeBased$conditionalPower, x3$conditionalPower, tolerance = 1e-07) - expect_equal(x3CodeBased$repeatedConfidenceIntervalLowerBounds, x3$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x3CodeBased$repeatedConfidenceIntervalUpperBounds, x3$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x3CodeBased$repeatedPValues, x3$repeatedPValues, tolerance = 1e-07) - expect_type(names(x3), "character") - df <- as.data.frame(x3) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x3) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } + .skipTestIfDisabled() + + # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} + # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichment} + # @refFS[Formula]{fs:computeRCIsEnrichment} + # @refFS[Formula]{fs:conditionalPowerEnrichment} + # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} + # @refFS[Formula]{fs:stratifiedtTestEnrichment} + S1 <- getDataset( + sampleSize1 = c(14, 22, 24), + sampleSize2 = c(11, 18, 21), + mean1 = c(68.3, 107.4, 101.2), + mean2 = c(100.1, 140.9, 133.8), + stDev1 = c(124.0, 134.7, 124.2), + stDev2 = c(116.8, 133.7, 131.2) + ) + + S2 <- getDataset( + sampleSize1 = c(12, NA, NA), + sampleSize2 = c(18, NA, NA), + mean1 = c(107.7, NA, NA), + mean2 = c(125.6, NA, NA), + stDev1 = c(128.5, NA, NA), + stDev2 = c(120.1, NA, NA) + ) + + F <- getDataset( + sampleSize1 = c(83, NA, NA), + sampleSize2 = c(79, NA, NA), + mean1 = c(77.1, NA, NA), + mean2 = c(142.4, NA, NA), + stDev1 = c(163.5, NA, NA), + stDev2 = c(120.6, NA, NA) + ) + + dataInput3 <- getDataset(S1 = S1, S2 = S2, F = F) + + ## Comparison of the results of DatasetMeans object 'dataInput3' with expected results + expect_equal(dataInput3$overallSampleSizes, c(14, 12, 83, 11, 18, 79, 36, NA_real_, NA_real_, 29, NA_real_, NA_real_, 60, NA_real_, NA_real_, 50, NA_real_, NA_real_), label = paste0(dataInput3$overallSampleSizes)) + expect_equal(dataInput3$overallMeans, c(68.3, 107.7, 77.1, 100.1, 125.6, 142.4, 92.194444, NA_real_, NA_real_, 125.42414, NA_real_, NA_real_, 95.796667, NA_real_, NA_real_, 128.942, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(dataInput3$overallMeans)) + expect_equal(dataInput3$overallStDevs, c(124, 128.5, 163.5, 116.8, 120.1, 120.6, 130.27375, NA_real_, NA_real_, 127.0088, NA_real_, NA_real_, 126.8892, NA_real_, NA_real_, 127.51934, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(dataInput3$overallStDevs)) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(dataInput3), NA))) + expect_output(print(dataInput3)$show()) + invisible(capture.output(expect_error(summary(dataInput3), NA))) + expect_output(summary(dataInput3)$show()) + dataInput3CodeBased <- eval(parse(text = getObjectRCode(dataInput3, stringWrapParagraphWidth = NULL))) + expect_equal(dataInput3CodeBased$overallSampleSizes, dataInput3$overallSampleSizes, tolerance = 1e-07) + expect_equal(dataInput3CodeBased$overallMeans, dataInput3$overallMeans, tolerance = 1e-07) + expect_equal(dataInput3CodeBased$overallStDevs, dataInput3$overallStDevs, tolerance = 1e-07) + expect_type(names(dataInput3), "character") + df <- as.data.frame(dataInput3) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(dataInput3) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + design3 <- getDesignInverseNormal( + kMax = 3, alpha = 0.025, typeOfDesign = "noEarlyEfficacy", + informationRates = c(0.4, 0.7, 1) + ) + + x3 <- getAnalysisResults( + design = design3, dataInput = dataInput3, + thetaH0 = 30, + directionUpper = FALSE, + normalApproximation = FALSE, + varianceOption = "notPooled", + intersectionTest = "Simes", + stratifiedAnalysis = FALSE + ) + + ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x3' with expected results + expect_equal(x3$thetaH1[1, ], -33.145333, tolerance = 1e-07, label = paste0(x3$thetaH1[1, ])) + expect_equal(x3$thetaH1[2, ], NA_real_, label = paste0(x3$thetaH1[2, ])) + expect_equal(x3$thetaH1[3, ], NA_real_, label = paste0(x3$thetaH1[3, ])) + expect_equal(x3$assumedStDevs[1, ], 127.17548, tolerance = 1e-07, label = paste0(x3$assumedStDevs[1, ])) + expect_equal(x3$assumedStDevs[2, ], NA_real_, label = paste0(x3$assumedStDevs[2, ])) + expect_equal(x3$assumedStDevs[3, ], NA_real_, label = paste0(x3$assumedStDevs[3, ])) + expect_equal(x3$conditionalRejectionProbabilities[1, ], c(0.043562209, 0.16805804, NA_real_), tolerance = 1e-07, label = paste0(x3$conditionalRejectionProbabilities[1, ])) + expect_equal(x3$conditionalRejectionProbabilities[2, ], c(0.043562209, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x3$conditionalRejectionProbabilities[2, ])) + expect_equal(x3$conditionalRejectionProbabilities[3, ], c(0.72997271, NA_real_, NA_real_), tolerance = 1e-07, label = paste0(x3$conditionalRejectionProbabilities[3, ])) + expect_equal(x3$conditionalPower[1, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x3$conditionalPower[1, ])) + expect_equal(x3$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x3$conditionalPower[2, ])) + expect_equal(x3$conditionalPower[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x3$conditionalPower[3, ])) + expect_equal(x3$repeatedConfidenceIntervalLowerBounds[1, ], c(NA_real_, NA_real_, -94.8291), tolerance = 1e-07, label = paste0(x3$repeatedConfidenceIntervalLowerBounds[1, ])) + expect_equal(x3$repeatedConfidenceIntervalLowerBounds[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x3$repeatedConfidenceIntervalLowerBounds[2, ])) + expect_equal(x3$repeatedConfidenceIntervalLowerBounds[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x3$repeatedConfidenceIntervalLowerBounds[3, ])) + expect_equal(x3$repeatedConfidenceIntervalUpperBounds[1, ], c(NA_real_, NA_real_, 29.811159), tolerance = 1e-07, label = paste0(x3$repeatedConfidenceIntervalUpperBounds[1, ])) + expect_equal(x3$repeatedConfidenceIntervalUpperBounds[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x3$repeatedConfidenceIntervalUpperBounds[2, ])) + expect_equal(x3$repeatedConfidenceIntervalUpperBounds[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x3$repeatedConfidenceIntervalUpperBounds[3, ])) + expect_equal(x3$repeatedPValues[1, ], c(NA_real_, NA_real_, 0.010432269), tolerance = 1e-07, label = paste0(x3$repeatedPValues[1, ])) + expect_equal(x3$repeatedPValues[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x3$repeatedPValues[2, ])) + expect_equal(x3$repeatedPValues[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0(x3$repeatedPValues[3, ])) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x3), NA))) + expect_output(print(x3)$show()) + invisible(capture.output(expect_error(summary(x3), NA))) + expect_output(summary(x3)$show()) + x3CodeBased <- eval(parse(text = getObjectRCode(x3, stringWrapParagraphWidth = NULL))) + expect_equal(x3CodeBased$thetaH1, x3$thetaH1, tolerance = 1e-07) + expect_equal(x3CodeBased$assumedStDevs, x3$assumedStDevs, tolerance = 1e-07) + expect_equal(x3CodeBased$conditionalRejectionProbabilities, x3$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x3CodeBased$conditionalPower, x3$conditionalPower, tolerance = 1e-07) + expect_equal(x3CodeBased$repeatedConfidenceIntervalLowerBounds, x3$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x3CodeBased$repeatedConfidenceIntervalUpperBounds, x3$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x3CodeBased$repeatedPValues, x3$repeatedPValues, tolerance = 1e-07) + expect_type(names(x3), "character") + df <- as.data.frame(x3) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x3) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } }) - diff --git a/tests/testthat/test-f_analysis_enrichment_survival.R b/tests/testthat/test-f_analysis_enrichment_survival.R index 3a91c15f..1af2e4d4 100644 --- a/tests/testthat/test-f_analysis_enrichment_survival.R +++ b/tests/testthat/test-f_analysis_enrichment_survival.R @@ -1,556 +1,561 @@ -## | +## | ## | *Unit tests* -## | +## | ## | This file is part of the R package rpact: ## | Confirmatory Adaptive Clinical Trial Design and Analysis -## | +## | ## | Author: Gernot Wassmer, PhD, and Friedrich Pahlke, PhD ## | Licensed under "GNU Lesser General Public License" version 3 ## | License text can be found here: https://www.r-project.org/Licenses/LGPL-3 -## | +## | ## | RPACT company website: https://www.rpact.com ## | RPACT package website: https://www.rpact.org -## | +## | ## | Contact us for information about our services: info@rpact.com -## | +## | ## | File name: test-f_analysis_enrichment_survival.R ## | Creation date: 08 November 2023, 08:55:32 -## | File version: $Revision: 7682 $ -## | Last changed: $Date: 2024-03-05 07:53:40 +0100 (Di, 05 Mrz 2024) $ +## | File version: $Revision: 7920 $ +## | Last changed: $Date: 2024-05-23 13:56:24 +0200 (Do, 23 Mai 2024) $ ## | Last changed by: $Author: pahlke $ -## | +## | test_plan_section("Testing Analysis Enrichment Survival Function") test_that("'getAnalysisResults': enrichment survival, one sub-population, non-stratified analysis, select S1 at second, gMax = 2", { - .skipTestIfDisabled() - - # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} - # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichmentSurvival} - # @refFS[Formula]{fs:computeRCIsEnrichment} - # @refFS[Formula]{fs:conditionalPowerEnrichment} - # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} - # @refFS[Formula]{fs:stratifiedTestEnrichmentSurvival} - # @refFS[Formula]{fs:testStatisticEnrichmentSurvival} - S1 <- getDataset( - events = c(37, 35, 22), - logRanks = c(1.66, 1.38, 1.22), - allocationRatios = c(1, 1, 1) - ) - - F <- getDataset( - events = c(66, 55, NA), - logRanks = c(1.98, 1.57, NA), - allocationRatios = c(1, 1, NA) - ) - - dataInput1 <- getDataset(S1 = S1, F = F) - - ## Comparison of the results of DatasetSurvival object 'dataInput1' with expected results - expect_equal(dataInput1$events, c(37, 66, 35, 55, 22, NA_real_), label = paste0("c(", paste0(dataInput1$events, collapse = ", "), ")")) - expect_equal(dataInput1$allocationRatios, c(1, 1, 1, 1, 1, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput1$allocationRatios, collapse = ", "), ")")) - expect_equal(dataInput1$logRanks, c(1.66, 1.98, 1.38, 1.57, 1.22, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput1$logRanks, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(dataInput1), NA))) - expect_output(print(dataInput1)$show()) - invisible(capture.output(expect_error(summary(dataInput1), NA))) - expect_output(summary(dataInput1)$show()) - dataInput1CodeBased <- eval(parse(text = getObjectRCode(dataInput1, stringWrapParagraphWidth = NULL))) - expect_equal(dataInput1CodeBased$events, dataInput1$events, tolerance = 1e-07) - expect_equal(dataInput1CodeBased$allocationRatios, dataInput1$allocationRatios, tolerance = 1e-07) - expect_equal(dataInput1CodeBased$logRanks, dataInput1$logRanks, tolerance = 1e-07) - expect_type(names(dataInput1), "character") - df <- as.data.frame(dataInput1) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(dataInput1) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - design1 <- getDesignInverseNormal( - kMax = 3, typeOfDesign = "asP", typeBetaSpending = "bsKD", gammaB = 1.3, alpha = 0.025, - informationRates = c(0.4, 0.7, 1), bindingFutility = FALSE, beta = 0.1 - ) - - x1 <- getAnalysisResults( - design = design1, - dataInput = dataInput1, - directionUpper = TRUE, - stage = 3, - allocationRatioPlanned = 1, - intersectionTest = "SpiessensDebois" - ) - - ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x1' with expected results - expect_equal(x1$thetaH1[1, ], 1.6657832, tolerance = 1e-07, label = paste0("c(", paste0(x1$thetaH1[1, ], collapse = ", "), ")")) - expect_equal(x1$thetaH1[2, ], NA_real_, label = paste0("c(", paste0(x1$thetaH1[2, ], collapse = ", "), ")")) - expect_equal(x1$conditionalRejectionProbabilities[1, ], c(0.082268614, 0.17873234, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x1$conditionalRejectionProbabilities[2, ], c(0.10062355, 0.20651301, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x1$conditionalPower[1, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x1$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x1$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x1$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalLowerBounds[1, ], c(0.77807561, 0.90042934, 0.98057987), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalLowerBounds[2, ], c(0.89663851, 0.98596182, NA_real_), tolerance = 1e-06, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalUpperBounds[1, ], c(3.8287578, 3.0779077, 2.841847), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalUpperBounds[2, ], c(2.9564444, 2.541245, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x1$repeatedPValues[1, ], c(0.09262834, 0.035310721, 0.016798032), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x1$repeatedPValues[2, ], c(0.074049848, 0.03027247, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedPValues[2, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x1), NA))) - expect_output(print(x1)$show()) - invisible(capture.output(expect_error(summary(x1), NA))) - expect_output(summary(x1)$show()) - x1CodeBased <- eval(parse(text = getObjectRCode(x1, stringWrapParagraphWidth = NULL))) - expect_equal(x1CodeBased$thetaH1, x1$thetaH1, tolerance = 1e-07) - expect_equal(x1CodeBased$conditionalRejectionProbabilities, x1$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x1CodeBased$conditionalPower, x1$conditionalPower, tolerance = 1e-07) - expect_equal(x1CodeBased$repeatedConfidenceIntervalLowerBounds, x1$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x1CodeBased$repeatedConfidenceIntervalUpperBounds, x1$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x1CodeBased$repeatedPValues, x1$repeatedPValues, tolerance = 1e-07) - expect_type(names(x1), "character") - df <- as.data.frame(x1) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x1) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - .skipTestIfDisabled() - - x2 <- getAnalysisResults( - design = design1, - dataInput = dataInput1, - directionUpper = TRUE, - stage = 3, - allocationRatioPlanned = 1, - intersectionTest = "Sidak" - ) - - ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x2' with expected results - expect_equal(x2$thetaH1[1, ], 1.6657832, tolerance = 1e-07, label = paste0("c(", paste0(x2$thetaH1[1, ], collapse = ", "), ")")) - expect_equal(x2$thetaH1[2, ], NA_real_, label = paste0("c(", paste0(x2$thetaH1[2, ], collapse = ", "), ")")) - expect_equal(x2$conditionalRejectionProbabilities[1, ], c(0.082268614, 0.14135111, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x2$conditionalRejectionProbabilities[2, ], c(0.08442718, 0.14135111, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x2$conditionalPower[1, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x2$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x2$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x2$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalLowerBounds[1, ], c(0.76355966, 0.87078132, 0.95099133), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalLowerBounds[2, ], c(0.88408373, 0.96064864, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalUpperBounds[1, ], c(3.9015478, 3.1815164, 2.9283489), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalUpperBounds[2, ], c(2.9984281, 2.606883, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x2$repeatedPValues[1, ], c(0.09262834, 0.044241863, 0.02067471), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x2$repeatedPValues[2, ], c(0.090100155, 0.044241863, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedPValues[2, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x2), NA))) - expect_output(print(x2)$show()) - invisible(capture.output(expect_error(summary(x2), NA))) - expect_output(summary(x2)$show()) - x2CodeBased <- eval(parse(text = getObjectRCode(x2, stringWrapParagraphWidth = NULL))) - expect_equal(x2CodeBased$thetaH1, x2$thetaH1, tolerance = 1e-07) - expect_equal(x2CodeBased$conditionalRejectionProbabilities, x2$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x2CodeBased$conditionalPower, x2$conditionalPower, tolerance = 1e-07) - expect_equal(x2CodeBased$repeatedConfidenceIntervalLowerBounds, x2$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x2CodeBased$repeatedConfidenceIntervalUpperBounds, x2$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x2CodeBased$repeatedPValues, x2$repeatedPValues, tolerance = 1e-07) - expect_type(names(x2), "character") - df <- as.data.frame(x2) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x2) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - design2 <- getDesignFisher(kMax = 3, method = "equalAlpha", alpha = 0.025, informationRates = c(0.4, 0.7, 1)) - - x3 <- getAnalysisResults( - design = design2, - dataInput = dataInput1, - stratifiedAnalysis = TRUE, - directionUpper = TRUE, - stage = 2, - nPlanned = 30, - allocationRatioPlanned = 1, - intersectionTest = "SpiessensDebois" - ) - - ## Comparison of the results of AnalysisResultsEnrichmentFisher object 'x3' with expected results - expect_equal(x3$thetaH1[1, ], 1.6607445, tolerance = 1e-07, label = paste0("c(", paste0(x3$thetaH1[1, ], collapse = ", "), ")")) - expect_equal(x3$thetaH1[2, ], 1.5814324, tolerance = 1e-07, label = paste0("c(", paste0(x3$thetaH1[2, ], collapse = ", "), ")")) - expect_equal(x3$conditionalRejectionProbabilities[1, ], c(0.058300881, 0.080849353, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x3$conditionalRejectionProbabilities[2, ], c(0.073230444, 0.10089716, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x3$conditionalPower[1, ], c(NA_real_, NA_real_, 0.49594042), tolerance = 1e-07, label = paste0("c(", paste0(x3$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x3$conditionalPower[2, ], c(NA_real_, NA_real_, 0.49151717), tolerance = 1e-07, label = paste0("c(", paste0(x3$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x3$repeatedConfidenceIntervalLowerBounds[1, ], c(0.77887293, 0.87495539, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x3$repeatedConfidenceIntervalLowerBounds[2, ], c(0.89732572, 0.9655589, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x3$repeatedConfidenceIntervalUpperBounds[1, ], c(3.8248388, 3.1694642, NA_real_), tolerance = 1e-06, label = paste0("c(", paste0(x3$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x3$repeatedConfidenceIntervalUpperBounds[2, ], c(2.9541783, 2.6004037, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x3$repeatedPValues[1, ], c(0.086600177, 0.047636937, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x3$repeatedPValues[2, ], c(0.070085432, 0.040357555, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedPValues[2, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x3), NA))) - expect_output(print(x3)$show()) - invisible(capture.output(expect_error(summary(x3), NA))) - expect_output(summary(x3)$show()) - x3CodeBased <- eval(parse(text = getObjectRCode(x3, stringWrapParagraphWidth = NULL))) - expect_equal(x3CodeBased$thetaH1, x3$thetaH1, tolerance = 1e-07) - expect_equal(x3CodeBased$conditionalRejectionProbabilities, x3$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x3CodeBased$conditionalPower, x3$conditionalPower, tolerance = 1e-07) - expect_equal(x3CodeBased$repeatedConfidenceIntervalLowerBounds, x3$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x3CodeBased$repeatedConfidenceIntervalUpperBounds, x3$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x3CodeBased$repeatedPValues, x3$repeatedPValues, tolerance = 1e-07) - expect_type(names(x3), "character") - df <- as.data.frame(x3) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x3) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } + .skipTestIfDisabled() + + # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} + # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichmentSurvival} + # @refFS[Formula]{fs:computeRCIsEnrichment} + # @refFS[Formula]{fs:conditionalPowerEnrichment} + # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} + # @refFS[Formula]{fs:stratifiedTestEnrichmentSurvival} + # @refFS[Formula]{fs:testStatisticEnrichmentSurvival} + S1 <- getDataset( + events = c(37, 35, 22), + logRanks = c(1.66, 1.38, 1.22), + allocationRatios = c(1, 1, 1) + ) + + F <- getDataset( + events = c(66, 55, NA), + logRanks = c(1.98, 1.57, NA), + allocationRatios = c(1, 1, NA) + ) + + dataInput1 <- getDataset(S1 = S1, F = F) + + ## Comparison of the results of DatasetSurvival object 'dataInput1' with expected results + expect_equal(dataInput1$events, c(37, 66, 35, 55, 22, NA_real_), label = paste0("c(", paste0(dataInput1$events, collapse = ", "), ")")) + expect_equal(dataInput1$allocationRatios, c(1, 1, 1, 1, 1, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput1$allocationRatios, collapse = ", "), ")")) + expect_equal(dataInput1$logRanks, c(1.66, 1.98, 1.38, 1.57, 1.22, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput1$logRanks, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(dataInput1), NA))) + expect_output(print(dataInput1)$show()) + invisible(capture.output(expect_error(summary(dataInput1), NA))) + expect_output(summary(dataInput1)$show()) + dataInput1CodeBased <- eval(parse(text = getObjectRCode(dataInput1, stringWrapParagraphWidth = NULL))) + expect_equal(dataInput1CodeBased$events, dataInput1$events, tolerance = 1e-07) + expect_equal(dataInput1CodeBased$allocationRatios, dataInput1$allocationRatios, tolerance = 1e-07) + expect_equal(dataInput1CodeBased$logRanks, dataInput1$logRanks, tolerance = 1e-07) + expect_type(names(dataInput1), "character") + df <- as.data.frame(dataInput1) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(dataInput1) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + design1 <- getDesignInverseNormal( + kMax = 3, typeOfDesign = "asP", typeBetaSpending = "bsKD", gammaB = 1.3, alpha = 0.025, + informationRates = c(0.4, 0.7, 1), bindingFutility = FALSE, beta = 0.1 + ) + + x1 <- getAnalysisResults( + design = design1, + dataInput = dataInput1, + directionUpper = TRUE, + stage = 3, + allocationRatioPlanned = 1, + intersectionTest = "SpiessensDebois" + ) + + ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x1' with expected results + expect_equal(x1$thetaH1[1, ], 1.6657832, tolerance = 1e-07, label = paste0("c(", paste0(x1$thetaH1[1, ], collapse = ", "), ")")) + expect_equal(x1$thetaH1[2, ], NA_real_, label = paste0("c(", paste0(x1$thetaH1[2, ], collapse = ", "), ")")) + expect_equal(x1$conditionalRejectionProbabilities[1, ], c(0.082268614, 0.17873234, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) + expect_equal(x1$conditionalRejectionProbabilities[2, ], c(0.10062355, 0.20651301, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) + expect_equal(x1$conditionalPower[1, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x1$conditionalPower[1, ], collapse = ", "), ")")) + expect_equal(x1$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x1$conditionalPower[2, ], collapse = ", "), ")")) + expect_equal(x1$repeatedConfidenceIntervalLowerBounds[1, ], c(0.77807561, 0.90042934, 0.98057987), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) + expect_equal(x1$repeatedConfidenceIntervalLowerBounds[2, ], c(0.89663851, 0.98596182, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) + expect_equal(x1$repeatedConfidenceIntervalUpperBounds[1, ], c(3.8287578, 3.0779077, 2.841847), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) + expect_equal(x1$repeatedConfidenceIntervalUpperBounds[2, ], c(2.9564444, 2.541245, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) + expect_equal(x1$repeatedPValues[1, ], c(0.09262834, 0.035310721, 0.016798032), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedPValues[1, ], collapse = ", "), ")")) + expect_equal(x1$repeatedPValues[2, ], c(0.074049848, 0.03027247, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedPValues[2, ], collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x1), NA))) + expect_output(print(x1)$show()) + invisible(capture.output(expect_error(summary(x1), NA))) + expect_output(summary(x1)$show()) + x1CodeBased <- eval(parse(text = getObjectRCode(x1, stringWrapParagraphWidth = NULL))) + expect_equal(x1CodeBased$thetaH1, x1$thetaH1, tolerance = 1e-07) + expect_equal(x1CodeBased$conditionalRejectionProbabilities, x1$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x1CodeBased$conditionalPower, x1$conditionalPower, tolerance = 1e-07) + expect_equal(x1CodeBased$repeatedConfidenceIntervalLowerBounds, x1$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x1CodeBased$repeatedConfidenceIntervalUpperBounds, x1$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x1CodeBased$repeatedPValues, x1$repeatedPValues, tolerance = 1e-07) + expect_type(names(x1), "character") + df <- as.data.frame(x1) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x1) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + .skipTestIfDisabled() + + x2 <- getAnalysisResults( + design = design1, + dataInput = dataInput1, + directionUpper = TRUE, + stage = 3, + allocationRatioPlanned = 1, + intersectionTest = "Sidak" + ) + + ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x2' with expected results + expect_equal(x2$thetaH1[1, ], 1.6657832, tolerance = 1e-07, label = paste0("c(", paste0(x2$thetaH1[1, ], collapse = ", "), ")")) + expect_equal(x2$thetaH1[2, ], NA_real_, label = paste0("c(", paste0(x2$thetaH1[2, ], collapse = ", "), ")")) + expect_equal(x2$conditionalRejectionProbabilities[1, ], c(0.082268614, 0.14135111, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) + expect_equal(x2$conditionalRejectionProbabilities[2, ], c(0.08442718, 0.14135111, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) + expect_equal(x2$conditionalPower[1, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x2$conditionalPower[1, ], collapse = ", "), ")")) + expect_equal(x2$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x2$conditionalPower[2, ], collapse = ", "), ")")) + expect_equal(x2$repeatedConfidenceIntervalLowerBounds[1, ], c(0.76355966, 0.87078132, 0.95099133), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) + expect_equal(x2$repeatedConfidenceIntervalLowerBounds[2, ], c(0.88408373, 0.96064864, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) + expect_equal(x2$repeatedConfidenceIntervalUpperBounds[1, ], c(3.9015478, 3.1815164, 2.9283489), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) + expect_equal(x2$repeatedConfidenceIntervalUpperBounds[2, ], c(2.9984281, 2.606883, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) + expect_equal(x2$repeatedPValues[1, ], c(0.09262834, 0.044241863, 0.02067471), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedPValues[1, ], collapse = ", "), ")")) + expect_equal(x2$repeatedPValues[2, ], c(0.090100155, 0.044241863, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedPValues[2, ], collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x2), NA))) + expect_output(print(x2)$show()) + invisible(capture.output(expect_error(summary(x2), NA))) + expect_output(summary(x2)$show()) + x2CodeBased <- eval(parse(text = getObjectRCode(x2, stringWrapParagraphWidth = NULL))) + expect_equal(x2CodeBased$thetaH1, x2$thetaH1, tolerance = 1e-07) + expect_equal(x2CodeBased$conditionalRejectionProbabilities, x2$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x2CodeBased$conditionalPower, x2$conditionalPower, tolerance = 1e-07) + expect_equal(x2CodeBased$repeatedConfidenceIntervalLowerBounds, x2$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x2CodeBased$repeatedConfidenceIntervalUpperBounds, x2$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x2CodeBased$repeatedPValues, x2$repeatedPValues, tolerance = 1e-07) + expect_type(names(x2), "character") + df <- as.data.frame(x2) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x2) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + design2 <- getDesignFisher(kMax = 3, method = "equalAlpha", alpha = 0.025, informationRates = c(0.4, 0.7, 1)) + + x3 <- getAnalysisResults( + design = design2, + dataInput = dataInput1, + stratifiedAnalysis = TRUE, + directionUpper = TRUE, + stage = 2, + nPlanned = 30, + allocationRatioPlanned = 1, + intersectionTest = "SpiessensDebois" + ) + + ## Comparison of the results of AnalysisResultsEnrichmentFisher object 'x3' with expected results + expect_equal(x3$thetaH1[1, ], 1.6607445, tolerance = 1e-07, label = paste0("c(", paste0(x3$thetaH1[1, ], collapse = ", "), ")")) + expect_equal(x3$thetaH1[2, ], 1.5814324, tolerance = 1e-07, label = paste0("c(", paste0(x3$thetaH1[2, ], collapse = ", "), ")")) + expect_equal(x3$conditionalRejectionProbabilities[1, ], c(0.058300881, 0.080849353, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) + expect_equal(x3$conditionalRejectionProbabilities[2, ], c(0.073230444, 0.10089716, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) + expect_equal(x3$conditionalPower[1, ], c(NA_real_, NA_real_, 0.49594042), tolerance = 1e-07, label = paste0("c(", paste0(x3$conditionalPower[1, ], collapse = ", "), ")")) + expect_equal(x3$conditionalPower[2, ], c(NA_real_, NA_real_, 0.49151717), tolerance = 1e-07, label = paste0("c(", paste0(x3$conditionalPower[2, ], collapse = ", "), ")")) + expect_equal(x3$repeatedConfidenceIntervalLowerBounds[1, ], c(0.77887293, 0.87495539, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) + expect_equal(x3$repeatedConfidenceIntervalLowerBounds[2, ], c(0.89732572, 0.9655589, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) + expect_equal(x3$repeatedConfidenceIntervalUpperBounds[1, ], c(3.8248388, 3.1694642, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) + expect_equal(x3$repeatedConfidenceIntervalUpperBounds[2, ], c(2.9541783, 2.6004037, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) + expect_equal(x3$repeatedPValues[1, ], c(0.086600177, 0.047636937, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedPValues[1, ], collapse = ", "), ")")) + expect_equal(x3$repeatedPValues[2, ], c(0.070085432, 0.040357555, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x3$repeatedPValues[2, ], collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x3), NA))) + expect_output(print(x3)$show()) + invisible(capture.output(expect_error(summary(x3), NA))) + expect_output(summary(x3)$show()) + x3CodeBased <- eval(parse(text = getObjectRCode(x3, stringWrapParagraphWidth = NULL))) + expect_equal(x3CodeBased$thetaH1, x3$thetaH1, tolerance = 1e-07) + expect_equal(x3CodeBased$conditionalRejectionProbabilities, x3$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x3CodeBased$conditionalPower, x3$conditionalPower, tolerance = 1e-07) + expect_equal(x3CodeBased$repeatedConfidenceIntervalLowerBounds, x3$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x3CodeBased$repeatedConfidenceIntervalUpperBounds, x3$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x3CodeBased$repeatedPValues, x3$repeatedPValues, tolerance = 1e-07) + expect_type(names(x3), "character") + df <- as.data.frame(x3) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x3) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + }) test_that("'getAnalysisResults': enrichment survival, one sub-population, stratified data input, select S1 at first, gMax = 2", { - .skipTestIfDisabled() - - # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} - # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichmentSurvival} - # @refFS[Formula]{fs:computeRCIsEnrichment} - # @refFS[Formula]{fs:conditionalPowerEnrichment} - # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} - # @refFS[Formula]{fs:stratifiedTestEnrichmentSurvival} - # @refFS[Formula]{fs:testStatisticEnrichmentSurvival} - S1 <- getDataset( - overallExpectedEvents = c(13.4, 35.4, 43.7), - overallEvents = c(16, 38, 47), - overallVarianceEvents = c(2.8, 4.7, 3.4), - overallAllocationRatios = c(1, 1, 1) - ) - - R <- getDataset( - overallExpectedEvents = c(23.3, NA, NA), - overallEvents = c(27, NA, NA), - overallVarianceEvents = c(3.9, NA, NA), - overallAllocationRatios = c(1, NA, NA) - ) - - dataInput2 <- getDataset(S1 = S1, R = R) - - ## Comparison of the results of DatasetEnrichmentSurvival object 'dataInput2' with expected results - expect_equal(dataInput2$events, c(16, 27, 22, NA_real_, 9, NA_real_), label = paste0("c(", paste0(dataInput2$events, collapse = ", "), ")")) - expect_equal(dataInput2$allocationRatios, c(1, 1, 1, NA_real_, 1, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput2$allocationRatios, collapse = ", "), ")")) - expect_equal(dataInput2$expectedEvents, c(13.4, 23.3, 22, NA_real_, 8.3, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput2$expectedEvents, collapse = ", "), ")")) - expect_equal(dataInput2$varianceEvents, c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(dataInput2$varianceEvents, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(dataInput2), NA))) - expect_output(print(dataInput2)$show()) - invisible(capture.output(expect_error(summary(dataInput2), NA))) - expect_output(summary(dataInput2)$show()) - dataInput2CodeBased <- eval(parse(text = getObjectRCode(dataInput2, stringWrapParagraphWidth = NULL))) - expect_equal(dataInput2CodeBased$events, dataInput2$events, tolerance = 1e-07) - expect_equal(dataInput2CodeBased$allocationRatios, dataInput2$allocationRatios, tolerance = 1e-07) - expect_equal(dataInput2CodeBased$expectedEvents, dataInput2$expectedEvents, tolerance = 1e-07) - expect_equal(dataInput2CodeBased$varianceEvents, dataInput2$varianceEvents, tolerance = 1e-07) - expect_type(names(dataInput2), "character") - df <- as.data.frame(dataInput2) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(dataInput2) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - design1 <- getDesignInverseNormal( - kMax = 3, typeOfDesign = "asP", - typeBetaSpending = "bsKD", gammaB = 1.3, alpha = 0.025, - informationRates = c(0.4, 0.7, 1), bindingFutility = FALSE, beta = 0.1 - ) - - x4 <- getAnalysisResults( - design = design1, - dataInput = dataInput2, - stratifiedAnalysis = TRUE, - directionUpper = TRUE, - stage = 2, - nPlanned = 30, - thetaH1 = 2.5, - allocationRatioPlanned = 1, - intersectionTest = "SpiessensDebois" - ) - - - ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x4' with expected results - expect_equal(x4$conditionalRejectionProbabilities[1, ], c(0.066531397, 0.014937437, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x4$conditionalRejectionProbabilities[2, ], c(0.21112053, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x4$conditionalPower[1, ], c(NA_real_, NA_real_, 0.63217527), tolerance = 1e-07, label = paste0("c(", paste0(x4$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x4$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x4$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x4$repeatedConfidenceIntervalLowerBounds[1, ], c(0.63930031, 0.68758378, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x4$repeatedConfidenceIntervalLowerBounds[2, ], c(0.99553933, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x4$repeatedConfidenceIntervalUpperBounds[1, ], c(7.3977709, 3.5674239, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x4$repeatedConfidenceIntervalUpperBounds[2, ], c(4.4332679, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x4$repeatedPValues[1, ], c(0.11491566, 0.11491566, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x4$repeatedPValues[2, ], c(0.026005739, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedPValues[2, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x4), NA))) - expect_output(print(x4)$show()) - invisible(capture.output(expect_error(summary(x4), NA))) - expect_output(summary(x4)$show()) - x4CodeBased <- eval(parse(text = getObjectRCode(x4, stringWrapParagraphWidth = NULL))) - expect_equal(x4CodeBased$conditionalRejectionProbabilities, x4$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x4CodeBased$conditionalPower, x4$conditionalPower, tolerance = 1e-07) - expect_equal(x4CodeBased$repeatedConfidenceIntervalLowerBounds, x4$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x4CodeBased$repeatedConfidenceIntervalUpperBounds, x4$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x4CodeBased$repeatedPValues, x4$repeatedPValues, tolerance = 1e-07) - expect_type(names(x4), "character") - df <- as.data.frame(x4) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x4) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } + + .skipTestIfDisabled() + + # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} + # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichmentSurvival} + # @refFS[Formula]{fs:computeRCIsEnrichment} + # @refFS[Formula]{fs:conditionalPowerEnrichment} + # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} + # @refFS[Formula]{fs:stratifiedTestEnrichmentSurvival} + # @refFS[Formula]{fs:testStatisticEnrichmentSurvival} + S1 <- getDataset( + overallExpectedEvents = c(13.4, 35.4, 43.7), + overallEvents = c(16, 38, 47), + overallVarianceEvents = c(2.8, 4.7, 3.4), + overallAllocationRatios = c(1, 1, 1) + ) + + R <- getDataset( + overallExpectedEvents = c(23.3, NA, NA), + overallEvents = c(27, NA, NA), + overallVarianceEvents = c(3.9, NA, NA), + overallAllocationRatios = c(1, NA, NA) + ) + + dataInput2 <- getDataset(S1 = S1, R = R) + + ## Comparison of the results of DatasetEnrichmentSurvival object 'dataInput2' with expected results + expect_equal(dataInput2$events, c(16, 27, 22, NA_real_, 9, NA_real_), label = paste0("c(", paste0(dataInput2$events, collapse = ", "), ")")) + expect_equal(dataInput2$allocationRatios, c(1, 1, 1, NA_real_, 1, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput2$allocationRatios, collapse = ", "), ")")) + expect_equal(dataInput2$expectedEvents, c(13.4, 23.3, 22, NA_real_, 8.3, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput2$expectedEvents, collapse = ", "), ")")) + expect_equal(dataInput2$varianceEvents, c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(dataInput2$varianceEvents, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(dataInput2), NA))) + expect_output(print(dataInput2)$show()) + invisible(capture.output(expect_error(summary(dataInput2), NA))) + expect_output(summary(dataInput2)$show()) + dataInput2CodeBased <- eval(parse(text = getObjectRCode(dataInput2, stringWrapParagraphWidth = NULL))) + expect_equal(dataInput2CodeBased$events, dataInput2$events, tolerance = 1e-07) + expect_equal(dataInput2CodeBased$allocationRatios, dataInput2$allocationRatios, tolerance = 1e-07) + expect_equal(dataInput2CodeBased$expectedEvents, dataInput2$expectedEvents, tolerance = 1e-07) + expect_equal(dataInput2CodeBased$varianceEvents, dataInput2$varianceEvents, tolerance = 1e-07) + expect_type(names(dataInput2), "character") + df <- as.data.frame(dataInput2) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(dataInput2) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + design1 <- getDesignInverseNormal( + kMax = 3, typeOfDesign = "asP", + typeBetaSpending = "bsKD", gammaB = 1.3, alpha = 0.025, + informationRates = c(0.4, 0.7, 1), bindingFutility = FALSE, beta = 0.1 + ) + + x4 <- getAnalysisResults( + design = design1, + dataInput = dataInput2, + stratifiedAnalysis = TRUE, + directionUpper = TRUE, + stage = 2, + nPlanned = 30, + thetaH1 = 2.5, + allocationRatioPlanned = 1, + intersectionTest = "SpiessensDebois" + ) + + + ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x4' with expected results + expect_equal(x4$conditionalRejectionProbabilities[1, ], c(0.066531397, 0.014937437, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) + expect_equal(x4$conditionalRejectionProbabilities[2, ], c(0.21112053, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) + expect_equal(x4$conditionalPower[1, ], c(NA_real_, NA_real_, 0.63217527), tolerance = 1e-07, label = paste0("c(", paste0(x4$conditionalPower[1, ], collapse = ", "), ")")) + expect_equal(x4$conditionalPower[2, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x4$conditionalPower[2, ], collapse = ", "), ")")) + expect_equal(x4$repeatedConfidenceIntervalLowerBounds[1, ], c(0.63930031, 0.68758378, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) + expect_equal(x4$repeatedConfidenceIntervalLowerBounds[2, ], c(0.99553933, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) + expect_equal(x4$repeatedConfidenceIntervalUpperBounds[1, ], c(7.3977709, 3.5674239, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) + expect_equal(x4$repeatedConfidenceIntervalUpperBounds[2, ], c(4.4332679, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) + expect_equal(x4$repeatedPValues[1, ], c(0.11491566, 0.11491566, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedPValues[1, ], collapse = ", "), ")")) + expect_equal(x4$repeatedPValues[2, ], c(0.026005739, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x4$repeatedPValues[2, ], collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x4), NA))) + expect_output(print(x4)$show()) + invisible(capture.output(expect_error(summary(x4), NA))) + expect_output(summary(x4)$show()) + x4CodeBased <- eval(parse(text = getObjectRCode(x4, stringWrapParagraphWidth = NULL))) + expect_equal(x4CodeBased$conditionalRejectionProbabilities, x4$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x4CodeBased$conditionalPower, x4$conditionalPower, tolerance = 1e-07) + expect_equal(x4CodeBased$repeatedConfidenceIntervalLowerBounds, x4$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x4CodeBased$repeatedConfidenceIntervalUpperBounds, x4$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x4CodeBased$repeatedPValues, x4$repeatedPValues, tolerance = 1e-07) + expect_type(names(x4), "character") + df <- as.data.frame(x4) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x4) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } }) test_that("'getAnalysisResults': enrichment survival, two sub-populations, non-stratified analysis, select S1 and S2 at first IA, select S1 at second, gMax = 3", { - .skipTestIfDisabled() - - # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} - # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichmentRates} - # @refFS[Formula]{fs:computeRCIsEnrichment} - # @refFS[Formula]{fs:conditionalPowerEnrichment} - # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} - # @refFS[Formula]{fs:stratifiedTestEnrichmentRates} - # @refFS[Formula]{fs:testStatisticEnrichmentRates} - design1 <- getDesignInverseNormal( - kMax = 3, typeOfDesign = "asP", typeBetaSpending = "bsKD", gammaB = 1.3, alpha = 0.02, - informationRates = c(0.4, 0.7, 1), bindingFutility = FALSE, beta = 0.1 - ) - - F <- getDataset( - events = c(66, NA, NA), - logRanks = -c(2.18, NA, NA) - ) - - S1 <- getDataset( - events = c(37, 13, 26), - logRanks = -c(1.66, 1.239, 0.785) - ) - - S2 <- getDataset( - events = c(31, 18, NA), - logRanks = -c(1.98, 1.064, NA) - ) - - dataInput3 <- getDataset(S1 = S1, S2 = S2, F = F) - - ## Comparison of the results of DatasetSurvival object 'dataInput3' with expected results - expect_equal(dataInput3$events, c(37, 31, 66, 13, 18, NA_real_, 26, NA_real_, NA_real_), label = paste0("c(", paste0(dataInput3$events, collapse = ", "), ")")) - expect_equal(dataInput3$allocationRatios, c(1, 1, 1, 1, 1, NA_real_, 1, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput3$allocationRatios, collapse = ", "), ")")) - expect_equal(dataInput3$logRanks, c(-1.66, -1.98, -2.18, -1.239, -1.064, NA_real_, -0.785, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput3$logRanks, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(dataInput3), NA))) - expect_output(print(dataInput3)$show()) - invisible(capture.output(expect_error(summary(dataInput3), NA))) - expect_output(summary(dataInput3)$show()) - dataInput3CodeBased <- eval(parse(text = getObjectRCode(dataInput3, stringWrapParagraphWidth = NULL))) - expect_equal(dataInput3CodeBased$events, dataInput3$events, tolerance = 1e-07) - expect_equal(dataInput3CodeBased$allocationRatios, dataInput3$allocationRatios, tolerance = 1e-07) - expect_equal(dataInput3CodeBased$logRanks, dataInput3$logRanks, tolerance = 1e-07) - expect_type(names(dataInput3), "character") - df <- as.data.frame(dataInput3) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(dataInput3) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - x1 <- getAnalysisResults( - design = design1, - dataInput = dataInput3, - directionUpper = FALSE, - stage = 2, - nPlanned = 30, - allocationRatioPlanned = 1, - intersectionTest = "Sidak" - ) - - - ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x1' with expected results - expect_equal(x1$thetaH1[1, ], 0.55845203, tolerance = 1e-07, label = paste0("c(", paste0(x1$thetaH1[1, ], collapse = ", "), ")")) - expect_equal(x1$thetaH1[2, ], 0.53035001, tolerance = 1e-07, label = paste0("c(", paste0(x1$thetaH1[2, ], collapse = ", "), ")")) - expect_equal(x1$thetaH1[3, ], NA_real_, label = paste0("c(", paste0(x1$thetaH1[3, ], collapse = ", "), ")")) - expect_equal(x1$conditionalRejectionProbabilities[1, ], c(0.063444981, 0.051842822, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x1$conditionalRejectionProbabilities[2, ], c(0.065210901, 0.051842822, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x1$conditionalRejectionProbabilities[3, ], c(0.070888966, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalRejectionProbabilities[3, ], collapse = ", "), ")")) - expect_equal(x1$conditionalPower[1, ], c(NA_real_, NA_real_, 0.48733039), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x1$conditionalPower[2, ], c(NA_real_, NA_real_, 0.54365075), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x1$conditionalPower[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x1$conditionalPower[3, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalLowerBounds[1, ], c(0.23870487, 0.2370187, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalLowerBounds[2, ], c(0.1863782, 0.22932092, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalLowerBounds[3, ], c(0.30101352, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalLowerBounds[3, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalUpperBounds[1, ], c(1.406238, 1.2861572, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalUpperBounds[2, ], c(1.2936975, 1.2386982, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x1$repeatedConfidenceIntervalUpperBounds[3, ], c(1.1356925, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalUpperBounds[3, ], collapse = ", "), ")")) - expect_equal(x1$repeatedPValues[1, ], c(0.09262834, 0.074349301, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x1$repeatedPValues[2, ], c(0.090100155, 0.074349301, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedPValues[2, ], collapse = ", "), ")")) - expect_equal(x1$repeatedPValues[3, ], c(0.082670093, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedPValues[3, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x1), NA))) - expect_output(print(x1)$show()) - invisible(capture.output(expect_error(summary(x1), NA))) - expect_output(summary(x1)$show()) - x1CodeBased <- eval(parse(text = getObjectRCode(x1, stringWrapParagraphWidth = NULL))) - expect_equal(x1CodeBased$thetaH1, x1$thetaH1, tolerance = 1e-07) - expect_equal(x1CodeBased$conditionalRejectionProbabilities, x1$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x1CodeBased$conditionalPower, x1$conditionalPower, tolerance = 1e-07) - expect_equal(x1CodeBased$repeatedConfidenceIntervalLowerBounds, x1$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x1CodeBased$repeatedConfidenceIntervalUpperBounds, x1$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x1CodeBased$repeatedPValues, x1$repeatedPValues, tolerance = 1e-07) - expect_type(names(x1), "character") - df <- as.data.frame(x1) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x1) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } + + .skipTestIfDisabled() + + # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} + # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichmentRates} + # @refFS[Formula]{fs:computeRCIsEnrichment} + # @refFS[Formula]{fs:conditionalPowerEnrichment} + # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} + # @refFS[Formula]{fs:stratifiedTestEnrichmentRates} + # @refFS[Formula]{fs:testStatisticEnrichmentRates} + design1 <- getDesignInverseNormal( + kMax = 3, typeOfDesign = "asP", typeBetaSpending = "bsKD", gammaB = 1.3, alpha = 0.02, + informationRates = c(0.4, 0.7, 1), bindingFutility = FALSE, beta = 0.1 + ) + + F <- getDataset( + events = c(66, NA, NA), + logRanks = -c(2.18, NA, NA) + ) + + S1 <- getDataset( + events = c(37, 13, 26), + logRanks = -c(1.66, 1.239, 0.785) + ) + + S2 <- getDataset( + events = c(31, 18, NA), + logRanks = -c(1.98, 1.064, NA) + ) + + dataInput3 <- getDataset(S1 = S1, S2 = S2, F = F) + + ## Comparison of the results of DatasetSurvival object 'dataInput3' with expected results + expect_equal(dataInput3$events, c(37, 31, 66, 13, 18, NA_real_, 26, NA_real_, NA_real_), label = paste0("c(", paste0(dataInput3$events, collapse = ", "), ")")) + expect_equal(dataInput3$allocationRatios, c(1, 1, 1, 1, 1, NA_real_, 1, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput3$allocationRatios, collapse = ", "), ")")) + expect_equal(dataInput3$logRanks, c(-1.66, -1.98, -2.18, -1.239, -1.064, NA_real_, -0.785, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput3$logRanks, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(dataInput3), NA))) + expect_output(print(dataInput3)$show()) + invisible(capture.output(expect_error(summary(dataInput3), NA))) + expect_output(summary(dataInput3)$show()) + dataInput3CodeBased <- eval(parse(text = getObjectRCode(dataInput3, stringWrapParagraphWidth = NULL))) + expect_equal(dataInput3CodeBased$events, dataInput3$events, tolerance = 1e-07) + expect_equal(dataInput3CodeBased$allocationRatios, dataInput3$allocationRatios, tolerance = 1e-07) + expect_equal(dataInput3CodeBased$logRanks, dataInput3$logRanks, tolerance = 1e-07) + expect_type(names(dataInput3), "character") + df <- as.data.frame(dataInput3) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(dataInput3) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + x1 <- getAnalysisResults( + design = design1, + dataInput = dataInput3, + directionUpper = FALSE, + stage = 2, + nPlanned = 30, + allocationRatioPlanned = 1, + intersectionTest = "Sidak" + ) + + + ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x1' with expected results + expect_equal(x1$thetaH1[1, ], 0.55845203, tolerance = 1e-07, label = paste0("c(", paste0(x1$thetaH1[1, ], collapse = ", "), ")")) + expect_equal(x1$thetaH1[2, ], 0.53035001, tolerance = 1e-07, label = paste0("c(", paste0(x1$thetaH1[2, ], collapse = ", "), ")")) + expect_equal(x1$thetaH1[3, ], NA_real_, label = paste0("c(", paste0(x1$thetaH1[3, ], collapse = ", "), ")")) + expect_equal(x1$conditionalRejectionProbabilities[1, ], c(0.063444981, 0.051842822, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) + expect_equal(x1$conditionalRejectionProbabilities[2, ], c(0.065210901, 0.051842822, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) + expect_equal(x1$conditionalRejectionProbabilities[3, ], c(0.070888966, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalRejectionProbabilities[3, ], collapse = ", "), ")")) + expect_equal(x1$conditionalPower[1, ], c(NA_real_, NA_real_, 0.48733039), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalPower[1, ], collapse = ", "), ")")) + expect_equal(x1$conditionalPower[2, ], c(NA_real_, NA_real_, 0.54365075), tolerance = 1e-07, label = paste0("c(", paste0(x1$conditionalPower[2, ], collapse = ", "), ")")) + expect_equal(x1$conditionalPower[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x1$conditionalPower[3, ], collapse = ", "), ")")) + expect_equal(x1$repeatedConfidenceIntervalLowerBounds[1, ], c(0.23870487, 0.2370187, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) + expect_equal(x1$repeatedConfidenceIntervalLowerBounds[2, ], c(0.1863782, 0.22932092, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) + expect_equal(x1$repeatedConfidenceIntervalLowerBounds[3, ], c(0.30101352, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalLowerBounds[3, ], collapse = ", "), ")")) + expect_equal(x1$repeatedConfidenceIntervalUpperBounds[1, ], c(1.406238, 1.2861572, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) + expect_equal(x1$repeatedConfidenceIntervalUpperBounds[2, ], c(1.2936975, 1.2386982, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) + expect_equal(x1$repeatedConfidenceIntervalUpperBounds[3, ], c(1.1356925, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedConfidenceIntervalUpperBounds[3, ], collapse = ", "), ")")) + expect_equal(x1$repeatedPValues[1, ], c(0.09262834, 0.074349301, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedPValues[1, ], collapse = ", "), ")")) + expect_equal(x1$repeatedPValues[2, ], c(0.090100155, 0.074349301, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedPValues[2, ], collapse = ", "), ")")) + expect_equal(x1$repeatedPValues[3, ], c(0.082670093, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x1$repeatedPValues[3, ], collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x1), NA))) + expect_output(print(x1)$show()) + invisible(capture.output(expect_error(summary(x1), NA))) + expect_output(summary(x1)$show()) + x1CodeBased <- eval(parse(text = getObjectRCode(x1, stringWrapParagraphWidth = NULL))) + expect_equal(x1CodeBased$thetaH1, x1$thetaH1, tolerance = 1e-07) + expect_equal(x1CodeBased$conditionalRejectionProbabilities, x1$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x1CodeBased$conditionalPower, x1$conditionalPower, tolerance = 1e-07) + expect_equal(x1CodeBased$repeatedConfidenceIntervalLowerBounds, x1$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x1CodeBased$repeatedConfidenceIntervalUpperBounds, x1$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x1CodeBased$repeatedPValues, x1$repeatedPValues, tolerance = 1e-07) + expect_type(names(x1), "character") + df <- as.data.frame(x1) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x1) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } }) test_that("'getAnalysisResults': enrichment survival, two sub-populations, stratified analysis, select S1 and S2 at first IA, select S1 at second, gMax = 3", { - .skipTestIfDisabled() - - # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} - # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} - # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} - # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichmentRates} - # @refFS[Formula]{fs:computeRCIsEnrichment} - # @refFS[Formula]{fs:conditionalPowerEnrichment} - # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} - # @refFS[Formula]{fs:stratifiedTestEnrichmentRates} - # @refFS[Formula]{fs:testStatisticEnrichmentRates} - S1 <- getDataset( - overallExpectedEvents = c(13.4, 35.4, 43.7), - overallEvents = c(16, 37, 47), - overallVarianceEvents = c(2.8, 4.7, 3.4), - overallAllocationRatios = c(1, 1, 1) - ) - - S2 <- getDataset( - overallExpectedEvents = c(11.5, 31.1, NA), - overallEvents = c(15, 33, NA), - overallVarianceEvents = c(2.2, 4.4, NA), - overallAllocationRatios = c(1, 1, NA) - ) - - S12 <- getDataset( - overallExpectedEvents = c(10.1, 29.6, 39.1), - overallEvents = c(11, 31, 42), - overallVarianceEvents = c(2.8, 4.7, 3.4), - overallAllocationRatios = c(1, 1, 1) - ) - - R <- getDataset( - overallExpectedEvents = c(23.3, NA, NA), - overallEvents = c(25, NA, NA), - overallVarianceEvents = c(3.9, NA, NA), - overallAllocationRatios = c(1, NA, NA) - ) - - dataInput4 <- getDataset(S1 = S1, S2 = S2, S12 = S12, R = R) - - ## Comparison of the results of DatasetEnrichmentSurvival object 'dataInput4' with expected results - expect_equal(dataInput4$events, c(16, 15, 11, 25, 21, 18, 20, NA_real_, 10, NA_real_, 11, NA_real_), label = paste0("c(", paste0(dataInput4$events, collapse = ", "), ")")) - expect_equal(dataInput4$allocationRatios, c(1, 1, 1, 1, 1, 1, 1, NA_real_, 1, NA_real_, 1, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput4$allocationRatios, collapse = ", "), ")")) - expect_equal(dataInput4$expectedEvents, c(13.4, 11.5, 10.1, 23.3, 22, 19.6, 19.5, NA_real_, 8.3, NA_real_, 9.5, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput4$expectedEvents, collapse = ", "), ")")) - expect_equal(dataInput4$varianceEvents, c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(dataInput4$varianceEvents, collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(dataInput4), NA))) - expect_output(print(dataInput4)$show()) - invisible(capture.output(expect_error(summary(dataInput4), NA))) - expect_output(summary(dataInput4)$show()) - dataInput4CodeBased <- eval(parse(text = getObjectRCode(dataInput4, stringWrapParagraphWidth = NULL))) - expect_equal(dataInput4CodeBased$events, dataInput4$events, tolerance = 1e-07) - expect_equal(dataInput4CodeBased$allocationRatios, dataInput4$allocationRatios, tolerance = 1e-07) - expect_equal(dataInput4CodeBased$expectedEvents, dataInput4$expectedEvents, tolerance = 1e-07) - expect_equal(dataInput4CodeBased$varianceEvents, dataInput4$varianceEvents, tolerance = 1e-07) - expect_type(names(dataInput4), "character") - df <- as.data.frame(dataInput4) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(dataInput4) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } - - design1 <- getDesignInverseNormal( - kMax = 3, typeOfDesign = "asP", typeBetaSpending = "bsKD", gammaB = 1.3, alpha = 0.02, - informationRates = c(0.4, 0.7, 1), bindingFutility = FALSE, beta = 0.1 - ) - - x2 <- getAnalysisResults( - design = design1, - dataInput = dataInput4, - stratifiedAnalysis = TRUE, - directionUpper = TRUE, - stage = 2, - nPlanned = 30, - thetaH1 = 2, - allocationRatioPlanned = 1, - intersectionTest = "Sidak" - ) - - ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x2' with expected results - expect_equal(x2$conditionalRejectionProbabilities[1, ], c(0.043010929, 0.0010677592, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) - expect_equal(x2$conditionalRejectionProbabilities[2, ], c(0.063395248, 0.0010677592, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) - expect_equal(x2$conditionalRejectionProbabilities[3, ], c(0.15397803, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalRejectionProbabilities[3, ], collapse = ", "), ")")) - expect_equal(x2$conditionalPower[1, ], c(NA_real_, NA_real_, 0.12050895), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalPower[1, ], collapse = ", "), ")")) - expect_equal(x2$conditionalPower[2, ], c(NA_real_, NA_real_, 0.12050895), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalPower[2, ], collapse = ", "), ")")) - expect_equal(x2$conditionalPower[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x2$conditionalPower[3, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalLowerBounds[1, ], c(0.62578554, 0.64439022, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalLowerBounds[2, ], c(0.75127376, 0.66639106, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalLowerBounds[3, ], c(0.96321381, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalLowerBounds[3, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalUpperBounds[1, ], c(4.9893102, 2.8192192, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalUpperBounds[2, ], c(6.2314391, 3.0969281, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) - expect_equal(x2$repeatedConfidenceIntervalUpperBounds[3, ], c(3.5981376, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalUpperBounds[3, ], collapse = ", "), ")")) - expect_equal(x2$repeatedPValues[1, ], c(0.13298203, 0.13298203, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedPValues[1, ], collapse = ", "), ")")) - expect_equal(x2$repeatedPValues[2, ], c(0.092701773, 0.092701773, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedPValues[2, ], collapse = ", "), ")")) - expect_equal(x2$repeatedPValues[3, ], c(0.031299575, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedPValues[3, ], collapse = ", "), ")")) - if (isTRUE(.isCompleteUnitTestSetEnabled())) { - invisible(capture.output(expect_error(print(x2), NA))) - expect_output(print(x2)$show()) - invisible(capture.output(expect_error(summary(x2), NA))) - expect_output(summary(x2)$show()) - x2CodeBased <- eval(parse(text = getObjectRCode(x2, stringWrapParagraphWidth = NULL))) - expect_equal(x2CodeBased$conditionalRejectionProbabilities, x2$conditionalRejectionProbabilities, tolerance = 1e-07) - expect_equal(x2CodeBased$conditionalPower, x2$conditionalPower, tolerance = 1e-07) - expect_equal(x2CodeBased$repeatedConfidenceIntervalLowerBounds, x2$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) - expect_equal(x2CodeBased$repeatedConfidenceIntervalUpperBounds, x2$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) - expect_equal(x2CodeBased$repeatedPValues, x2$repeatedPValues, tolerance = 1e-07) - expect_type(names(x2), "character") - df <- as.data.frame(x2) - expect_s3_class(df, "data.frame") - expect_true(nrow(df) > 0 && ncol(df) > 0) - mtx <- as.matrix(x2) - expect_true(is.matrix(mtx)) - expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) - } + + .skipTestIfDisabled() + + # @refFS[Formula]{fs:adjustedPValueBonferroniEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCIBonferroniSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueForRCISpiessensEnrichment} + # @refFS[Formula]{fs:adjustedPValueSidakEnrichment} + # @refFS[Formula]{fs:adjustedPValueSimesEnrichment} + # @refFS[Formula]{fs:adjustedPValueSpiessensDeboisEnrichmentRates} + # @refFS[Formula]{fs:computeRCIsEnrichment} + # @refFS[Formula]{fs:conditionalPowerEnrichment} + # @refFS[Formula]{fs:conditionalRejectionProbabilityEnrichment} + # @refFS[Formula]{fs:stratifiedTestEnrichmentRates} + # @refFS[Formula]{fs:testStatisticEnrichmentRates} + S1 <- getDataset( + overallExpectedEvents = c(13.4, 35.4, 43.7), + overallEvents = c(16, 37, 47), + overallVarianceEvents = c(2.8, 4.7, 3.4), + overallAllocationRatios = c(1, 1, 1) + ) + + S2 <- getDataset( + overallExpectedEvents = c(11.5, 31.1, NA), + overallEvents = c(15, 33, NA), + overallVarianceEvents = c(2.2, 4.4, NA), + overallAllocationRatios = c(1, 1, NA) + ) + + S12 <- getDataset( + overallExpectedEvents = c(10.1, 29.6, 39.1), + overallEvents = c(11, 31, 42), + overallVarianceEvents = c(2.8, 4.7, 3.4), + overallAllocationRatios = c(1, 1, 1) + ) + + R <- getDataset( + overallExpectedEvents = c(23.3, NA, NA), + overallEvents = c(25, NA, NA), + overallVarianceEvents = c(3.9, NA, NA), + overallAllocationRatios = c(1, NA, NA) + ) + + dataInput4 <- getDataset(S1 = S1, S2 = S2, S12 = S12, R = R) + + ## Comparison of the results of DatasetEnrichmentSurvival object 'dataInput4' with expected results + expect_equal(dataInput4$events, c(16, 15, 11, 25, 21, 18, 20, NA_real_, 10, NA_real_, 11, NA_real_), label = paste0("c(", paste0(dataInput4$events, collapse = ", "), ")")) + expect_equal(dataInput4$allocationRatios, c(1, 1, 1, 1, 1, 1, 1, NA_real_, 1, NA_real_, 1, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput4$allocationRatios, collapse = ", "), ")")) + expect_equal(dataInput4$expectedEvents, c(13.4, 11.5, 10.1, 23.3, 22, 19.6, 19.5, NA_real_, 8.3, NA_real_, 9.5, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(dataInput4$expectedEvents, collapse = ", "), ")")) + expect_equal(dataInput4$varianceEvents, c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(dataInput4$varianceEvents, collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(dataInput4), NA))) + expect_output(print(dataInput4)$show()) + invisible(capture.output(expect_error(summary(dataInput4), NA))) + expect_output(summary(dataInput4)$show()) + dataInput4CodeBased <- eval(parse(text = getObjectRCode(dataInput4, stringWrapParagraphWidth = NULL))) + expect_equal(dataInput4CodeBased$events, dataInput4$events, tolerance = 1e-07) + expect_equal(dataInput4CodeBased$allocationRatios, dataInput4$allocationRatios, tolerance = 1e-07) + expect_equal(dataInput4CodeBased$expectedEvents, dataInput4$expectedEvents, tolerance = 1e-07) + expect_equal(dataInput4CodeBased$varianceEvents, dataInput4$varianceEvents, tolerance = 1e-07) + expect_type(names(dataInput4), "character") + df <- as.data.frame(dataInput4) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(dataInput4) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } + + design1 <- getDesignInverseNormal( + kMax = 3, typeOfDesign = "asP", typeBetaSpending = "bsKD", gammaB = 1.3, alpha = 0.02, + informationRates = c(0.4, 0.7, 1), bindingFutility = FALSE, beta = 0.1 + ) + + x2 <- getAnalysisResults( + design = design1, + dataInput = dataInput4, + stratifiedAnalysis = TRUE, + directionUpper = TRUE, + stage = 2, + nPlanned = 30, + thetaH1 = 2, + allocationRatioPlanned = 1, + intersectionTest = "Sidak" + ) + + ## Comparison of the results of AnalysisResultsEnrichmentInverseNormal object 'x2' with expected results + expect_equal(x2$conditionalRejectionProbabilities[1, ], c(0.043010929, 0.0010677592, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) + expect_equal(x2$conditionalRejectionProbabilities[2, ], c(0.063395248, 0.0010677592, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) + expect_equal(x2$conditionalRejectionProbabilities[3, ], c(0.15397803, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalRejectionProbabilities[3, ], collapse = ", "), ")")) + expect_equal(x2$conditionalPower[1, ], c(NA_real_, NA_real_, 0.12050895), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalPower[1, ], collapse = ", "), ")")) + expect_equal(x2$conditionalPower[2, ], c(NA_real_, NA_real_, 0.12050895), tolerance = 1e-07, label = paste0("c(", paste0(x2$conditionalPower[2, ], collapse = ", "), ")")) + expect_equal(x2$conditionalPower[3, ], c(NA_real_, NA_real_, NA_real_), label = paste0("c(", paste0(x2$conditionalPower[3, ], collapse = ", "), ")")) + expect_equal(x2$repeatedConfidenceIntervalLowerBounds[1, ], c(0.62578554, 0.64439022, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalLowerBounds[1, ], collapse = ", "), ")")) + expect_equal(x2$repeatedConfidenceIntervalLowerBounds[2, ], c(0.75127376, 0.66639106, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalLowerBounds[2, ], collapse = ", "), ")")) + expect_equal(x2$repeatedConfidenceIntervalLowerBounds[3, ], c(0.96321381, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalLowerBounds[3, ], collapse = ", "), ")")) + expect_equal(x2$repeatedConfidenceIntervalUpperBounds[1, ], c(4.9893102, 2.8192192, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalUpperBounds[1, ], collapse = ", "), ")")) + expect_equal(x2$repeatedConfidenceIntervalUpperBounds[2, ], c(6.2314391, 3.0969281, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalUpperBounds[2, ], collapse = ", "), ")")) + expect_equal(x2$repeatedConfidenceIntervalUpperBounds[3, ], c(3.5981376, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedConfidenceIntervalUpperBounds[3, ], collapse = ", "), ")")) + expect_equal(x2$repeatedPValues[1, ], c(0.13298203, 0.13298203, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedPValues[1, ], collapse = ", "), ")")) + expect_equal(x2$repeatedPValues[2, ], c(0.092701773, 0.092701773, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedPValues[2, ], collapse = ", "), ")")) + expect_equal(x2$repeatedPValues[3, ], c(0.031299575, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(x2$repeatedPValues[3, ], collapse = ", "), ")")) + if (isTRUE(.isCompleteUnitTestSetEnabled())) { + invisible(capture.output(expect_error(print(x2), NA))) + expect_output(print(x2)$show()) + invisible(capture.output(expect_error(summary(x2), NA))) + expect_output(summary(x2)$show()) + x2CodeBased <- eval(parse(text = getObjectRCode(x2, stringWrapParagraphWidth = NULL))) + expect_equal(x2CodeBased$conditionalRejectionProbabilities, x2$conditionalRejectionProbabilities, tolerance = 1e-07) + expect_equal(x2CodeBased$conditionalPower, x2$conditionalPower, tolerance = 1e-07) + expect_equal(x2CodeBased$repeatedConfidenceIntervalLowerBounds, x2$repeatedConfidenceIntervalLowerBounds, tolerance = 1e-07) + expect_equal(x2CodeBased$repeatedConfidenceIntervalUpperBounds, x2$repeatedConfidenceIntervalUpperBounds, tolerance = 1e-07) + expect_equal(x2CodeBased$repeatedPValues, x2$repeatedPValues, tolerance = 1e-07) + expect_type(names(x2), "character") + df <- as.data.frame(x2) + expect_s3_class(df, "data.frame") + expect_true(nrow(df) > 0 && ncol(df) > 0) + mtx <- as.matrix(x2) + expect_true(is.matrix(mtx)) + expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) + } }) + diff --git a/tests/testthat/test-f_analysis_input_validation.R b/tests/testthat/test-f_analysis_input_validation.R index 4d4f30cd..6bbb507f 100644 --- a/tests/testthat/test-f_analysis_input_validation.R +++ b/tests/testthat/test-f_analysis_input_validation.R @@ -15,8 +15,8 @@ ## | ## | File name: test-f_analysis_input_validation.R ## | Creation date: 08 November 2023, 08:56:03 -## | File version: $Revision: 7742 $ -## | Last changed: $Date: 2024-03-22 13:46:29 +0100 (Fr, 22 Mrz 2024) $ +## | File version: $Revision: 7928 $ +## | Last changed: $Date: 2024-05-23 16:35:16 +0200 (Do, 23 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -79,7 +79,7 @@ test_that("Errors and warnings for calculation of analysis results with dataset design = design1, dataInput = dataExample4, intersectionTest = "Simes", varianceOption = "notPooled", nPlanned = 20 )) - expect_warning(getAnalysisResults( + expect_warning(getAnalysisResults( design = design1, dataInput = dataExample4, intersectionTest = "Simes", varianceOption = "notPooled", nPlanned = c() )) diff --git a/tests/testthat/test-f_analysis_multiarm_means.R b/tests/testthat/test-f_analysis_multiarm_means.R index 38557ee7..682a9c84 100644 --- a/tests/testthat/test-f_analysis_multiarm_means.R +++ b/tests/testthat/test-f_analysis_multiarm_means.R @@ -15,8 +15,8 @@ ## | ## | File name: test-f_analysis_multiarm_means.R ## | Creation date: 08 November 2023, 08:56:03 -## | File version: $Revision: 7682 $ -## | Last changed: $Date: 2024-03-05 07:53:40 +0100 (Di, 05 Mrz 2024) $ +## | File version: $Revision: 7928 $ +## | Last changed: $Date: 2024-05-23 16:35:16 +0200 (Do, 23 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -2821,7 +2821,7 @@ test_that("'getAnalysisResultsMultiArm' with dataset of means", { expect_equal(results41$assumedStDevs[1, ], 22.357668, tolerance = 1e-06, label = paste0("c(", paste0(results41$assumedStDevs[1, ], collapse = ", "), ")")) expect_equal(results41$assumedStDevs[2, ], NA_real_, label = paste0("c(", paste0(results41$assumedStDevs[2, ], collapse = ", "), ")")) expect_equal(results41$assumedStDevs[3, ], 22.943518, tolerance = 1e-06, label = paste0("c(", paste0(results41$assumedStDevs[3, ], collapse = ", "), ")")) - expect_equal(results41$conditionalRejectionProbabilities[1, ], c(NA_real_, 0.061352937), tolerance = 1e-05, label = paste0("c(", paste0(results41$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) + expect_equal(results41$conditionalRejectionProbabilities[1, ], c(NA_real_, 0.061352937), tolerance = 1e-06, label = paste0("c(", paste0(results41$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) expect_equal(results41$conditionalRejectionProbabilities[2, ], c(NA_real_, 0.03744742), tolerance = 1e-06, label = paste0("c(", paste0(results41$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) expect_equal(results41$conditionalRejectionProbabilities[3, ], c(NA_real_, 0.086511764), tolerance = 1e-06, label = paste0("c(", paste0(results41$conditionalRejectionProbabilities[3, ], collapse = ", "), ")")) expect_equal(results41$conditionalPower[1, ], c(NA_real_, NA_real_), label = paste0("c(", paste0(results41$conditionalPower[1, ], collapse = ", "), ")")) @@ -5609,7 +5609,7 @@ test_that("'getAnalysisResultsMultiArm' with dataset of means", { expect_equal(results82$assumedStDevs[1, ], 22.357668, tolerance = 1e-06, label = paste0("c(", paste0(results82$assumedStDevs[1, ], collapse = ", "), ")")) expect_equal(results82$assumedStDevs[2, ], NA_real_, label = paste0("c(", paste0(results82$assumedStDevs[2, ], collapse = ", "), ")")) expect_equal(results82$assumedStDevs[3, ], 22.943518, tolerance = 1e-06, label = paste0("c(", paste0(results82$assumedStDevs[3, ], collapse = ", "), ")")) - expect_equal(results82$conditionalRejectionProbabilities[1, ], c(NA_real_, 0.061352937), tolerance = 1e-05, label = paste0("c(", paste0(results82$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) + expect_equal(results82$conditionalRejectionProbabilities[1, ], c(NA_real_, 0.061352937), tolerance = 1e-06, label = paste0("c(", paste0(results82$conditionalRejectionProbabilities[1, ], collapse = ", "), ")")) expect_equal(results82$conditionalRejectionProbabilities[2, ], c(NA_real_, 0.03744742), tolerance = 1e-06, label = paste0("c(", paste0(results82$conditionalRejectionProbabilities[2, ], collapse = ", "), ")")) expect_equal(results82$conditionalRejectionProbabilities[3, ], c(NA_real_, 0.086511764), tolerance = 1e-06, label = paste0("c(", paste0(results82$conditionalRejectionProbabilities[3, ], collapse = ", "), ")")) expect_equal(results82$conditionalPower[1, ], c(NA_real_, NA_real_), label = paste0("c(", paste0(results82$conditionalPower[1, ], collapse = ", "), ")")) diff --git a/tests/testthat/test-f_analysis_multiarm_rates.R b/tests/testthat/test-f_analysis_multiarm_rates.R index fad075e2..2055526b 100644 --- a/tests/testthat/test-f_analysis_multiarm_rates.R +++ b/tests/testthat/test-f_analysis_multiarm_rates.R @@ -15,9 +15,9 @@ ## | ## | File name: test-f_analysis_multiarm_rates.R ## | Creation date: 08 November 2023, 09:07:05 -## | File version: $Revision: 7662 $ -## | Last changed: $Date: 2024-02-23 12:42:26 +0100 (Fr, 23 Feb 2024) $ -## | Last changed by: $Author: pahlke $ +## | File version: $Revision$ +## | Last changed: $Date$ +## | Last changed by: $Author$ ## | test_plan_section("Testing the Analysis Rates Functionality for Three or More Treatments") diff --git a/tests/testthat/test-f_analysis_multiarm_survival.R b/tests/testthat/test-f_analysis_multiarm_survival.R index 427ccf2b..11e15ac4 100644 --- a/tests/testthat/test-f_analysis_multiarm_survival.R +++ b/tests/testthat/test-f_analysis_multiarm_survival.R @@ -15,9 +15,9 @@ ## | ## | File name: test-f_analysis_multiarm_survival.R ## | Creation date: 08 November 2023, 09:08:43 -## | File version: $Revision: 7662 $ -## | Last changed: $Date: 2024-02-23 12:42:26 +0100 (Fr, 23 Feb 2024) $ -## | Last changed by: $Author: pahlke $ +## | File version: $Revision$ +## | Last changed: $Date$ +## | Last changed by: $Author$ ## | test_plan_section("Testing the Analysis Survival Functionality for Three or More Treatments") diff --git a/tests/testthat/test-f_analysis_utilities.R b/tests/testthat/test-f_analysis_utilities.R index 963e8a25..3b96ed8c 100644 --- a/tests/testthat/test-f_analysis_utilities.R +++ b/tests/testthat/test-f_analysis_utilities.R @@ -15,8 +15,8 @@ ## | ## | File name: test-f_analysis_utilities.R ## | Creation date: 08 November 2023, 09:09:34 -## | File version: $Revision: 7665 $ -## | Last changed: $Date: 2024-02-23 17:33:46 +0100 (Fr, 23 Feb 2024) $ +## | File version: $Revision: 7920 $ +## | Last changed: $Date: 2024-05-23 13:56:24 +0200 (Do, 23 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -99,4 +99,11 @@ test_that("'getObservedInformationRates': under-running with relative informatio }) +test_that(".sigmaToBPD works correctly", { + + bpd <- c(0.3, 0.4, 0.5) + sigma <- bpd %*% t(bpd) + diag(sigma) <- 1 + +}) diff --git a/tests/testthat/test-f_as251.R b/tests/testthat/test-f_as251.R index 5576d0da..bab9f346 100644 --- a/tests/testthat/test-f_as251.R +++ b/tests/testthat/test-f_as251.R @@ -15,9 +15,9 @@ ## | ## | File name: test-f_as251.R ## | Creation date: 16 January 2024, 07:16:35 -## | File version: $Revision: 7662 $ -## | Last changed: $Date: 2024-02-23 12:42:26 +0100 (Fr, 23 Feb 2024) $ -## | Last changed by: $Author: pahlke $ +## | File version: $Revision$ +## | Last changed: $Date$ +## | Last changed by: $Author$ ## | test_plan_section("Testing Dunnett AS 251 Functions") diff --git a/tests/testthat/test-f_core_output_formats.R b/tests/testthat/test-f_core_output_formats.R index 78431f5e..2791473a 100644 --- a/tests/testthat/test-f_core_output_formats.R +++ b/tests/testthat/test-f_core_output_formats.R @@ -15,9 +15,9 @@ ## | ## | File name: test-f_core_output_formats.R ## | Creation date: 08 November 2023, 09:09:35 -## | File version: $Revision: 7665 $ -## | Last changed: $Date: 2024-02-23 17:33:46 +0100 (Fr, 23 Feb 2024) $ -## | Last changed by: $Author: pahlke $ +## | File version: $Revision$ +## | Last changed: $Date$ +## | Last changed by: $Author$ ## | test_plan_section("Testing the Output Format Functions") diff --git a/tests/testthat/test-f_core_plot.R b/tests/testthat/test-f_core_plot.R index 216e7702..63c6d980 100644 --- a/tests/testthat/test-f_core_plot.R +++ b/tests/testthat/test-f_core_plot.R @@ -15,9 +15,9 @@ ## | ## | File name: test-f_core_plot.R ## | Creation date: 08 November 2023, 09:09:36 -## | File version: $Revision: 7662 $ -## | Last changed: $Date: 2024-02-23 12:42:26 +0100 (Fr, 23 Feb 2024) $ -## | Last changed by: $Author: pahlke $ +## | File version: $Revision$ +## | Last changed: $Date$ +## | Last changed by: $Author$ ## | test_plan_section("Testing .reconstructSequenceCommand") diff --git a/tests/testthat/test-f_design_plan_count_data.R b/tests/testthat/test-f_design_plan_count_data.R index adc4c786..5f8ad6f9 100644 --- a/tests/testthat/test-f_design_plan_count_data.R +++ b/tests/testthat/test-f_design_plan_count_data.R @@ -14,10 +14,10 @@ ## | Contact us for information about our services: info@rpact.com ## | ## | File name: test-f_design_plan_count_data.R -## | Creation date: 16 January 2024, 11:26:11 -## | File version: $Revision$ -## | Last changed: $Date$ -## | Last changed by: $Author$ +## | Creation date: 28 May 2024, 09:45:32 +## | File version: $Revision: 7946 $ +## | Last changed: $Date: 2024-05-28 12:08:57 +0200 (Di, 28 Mai 2024) $ +## | Last changed by: $Author: pahlke $ ## | test_plan_section("Testing the Sample Size Calculation of Count Data Designs for Different Designs and Arguments") @@ -28,7 +28,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data # @refFS[Formula]{fs:FisherInfCounts} # @refFS[Formula]{fs:sampleSizeCountsFixedExposureSingleStage} - # @refFS[Formula]{fs:sampleSizePerStageFixedExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeFixedExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} result1 <- getSampleSizeCounts( alpha = 0.01, beta = 0.05, lambda = 0.234, theta = 0.7, @@ -74,7 +74,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data } # @refFS[Formula]{fs:FisherInfCounts} - # @refFS[Formula]{fs:sampleSizePerStageVariableExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeVariableExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} result2 <- getSampleSizeCounts( alpha = 0.01, beta = 0.05, lambda = 0.234, theta = 0.7, @@ -121,7 +121,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data # @refFS[Formula]{fs:FisherInfCounts} # @refFS[Formula]{fs:sampleSizeCountsFixedExposureSingleStage} - # @refFS[Formula]{fs:sampleSizePerStageFixedExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeFixedExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} result3 <- getSampleSizeCounts( alpha = 0.01, beta = 0.05, lambda2 = 0.02, theta = c(0.7, 0.8), @@ -165,7 +165,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data } # @refFS[Formula]{fs:FisherInfCounts} - # @refFS[Formula]{fs:sampleSizePerStageVariableExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeVariableExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} result4 <- getSampleSizeCounts( alpha = 0.01, beta = 0.05, lambda1 = seq(1.05, 1.35, 0.15), @@ -207,7 +207,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data expect_true(nrow(mtx) > 0 && ncol(mtx) > 0) } # @refFS[Formula]{fs:FisherInfCounts} - # @refFS[Formula]{fs:sampleSizePerStageVariableExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeVariableExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} expect_error(getSampleSizeCounts( alpha = 0.01, beta = 0.05, lambda1 = seq(1.35, 1.35, 0.15), @@ -215,7 +215,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data )) # @refFS[Formula]{fs:FisherInfCounts} - # @refFS[Formula]{fs:sampleSizePerStageVariableExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeVariableExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} result5 <- getSampleSizeCounts( alpha = 0.01, beta = 0.05, thetaH0 = 0.9, lambda1 = seq(1.1, 1.15, 0.05), @@ -257,7 +257,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data } # @refFS[Formula]{fs:FisherInfCounts} - # @refFS[Formula]{fs:sampleSizePerStageVariableExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeVariableExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} result6 <- getSampleSizeCounts( alpha = 0.01, beta = 0.05, theta = seq(1.05, 1.35, 0.15), @@ -302,7 +302,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data # @refFS[Formula]{fs:FisherInfCounts} # @refFS[Formula]{fs:sampleSizeCountsFixedExposureSingleStage} - # @refFS[Formula]{fs:sampleSizePerStageFixedExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeFixedExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} # @refFS[Formula]{fs:sampleSizeCountsFixedExposureOptimumAllocationRatio} result7 <- getSampleSizeCounts( @@ -349,7 +349,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data } # @refFS[Formula]{fs:FisherInfCounts} - # @refFS[Formula]{fs:sampleSizePerStageVariableExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeVariableExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} # @refFS[Formula]{fs:sampleSizeCountsVariableExposureOptimumAllocationRatio} result8 <- getSampleSizeCounts( @@ -406,7 +406,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data # @refFS[Formula]{fs:FisherInfCounts} # @refFS[Formula]{fs:sampleSizeCountsFixedExposureSingleStage} - # @refFS[Formula]{fs:sampleSizePerStageFixedExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeFixedExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} result1 <- getSampleSizeCounts( design = designGS1, lambda = 0.234, theta = 0.7, @@ -480,7 +480,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data } # @refFS[Formula]{fs:FisherInfCounts} - # @refFS[Formula]{fs:sampleSizePerStageVariableExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeVariableExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} result2 <- getSampleSizeCounts( design = designGS1, lambda = 0.234, theta = 0.7, @@ -555,7 +555,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data # @refFS[Formula]{fs:FisherInfCounts} # @refFS[Formula]{fs:sampleSizeCountsFixedExposureSingleStage} - # @refFS[Formula]{fs:sampleSizePerStageFixedExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeFixedExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} result3 <- getSampleSizeCounts( design = designGS1, lambda2 = 0.02, theta = c(0.7, 0.8), @@ -627,7 +627,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data } # @refFS[Formula]{fs:FisherInfCounts} - # @refFS[Formula]{fs:sampleSizePerStageVariableExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeVariableExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} result4 <- getSampleSizeCounts( design = designGS1, lambda1 = seq(1.05, 1.35, 0.15), @@ -637,6 +637,8 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data ## Comparison of the results of TrialDesignPlanCountData object 'result4' with expected results expect_equal(result4$directionUpper, c(FALSE, FALSE, FALSE), label = paste0(result4$directionUpper)) expect_equal(result4$theta, c(0.75, 0.85714286, 0.96428571), tolerance = 1e-07, label = paste0(result4$theta)) + expect_equal(result4$maxNumberOfSubjects1, c(80, 80, 80), label = paste0(result4$maxNumberOfSubjects1)) + expect_equal(result4$maxNumberOfSubjects2, c(20, 20, 20), label = paste0(result4$maxNumberOfSubjects2)) expect_equal(result4$rejectPerStage[1, ], 0.19514116, tolerance = 1e-07, label = paste0(result4$rejectPerStage[1, ])) expect_equal(result4$rejectPerStage[2, ], 0.37204423, tolerance = 1e-07, label = paste0(result4$rejectPerStage[2, ])) expect_equal(result4$rejectPerStage[3, ], 0.33281461, tolerance = 1e-07, label = paste0(result4$rejectPerStage[3, ])) @@ -669,6 +671,8 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data result4CodeBased <- eval(parse(text = getObjectRCode(result4, stringWrapParagraphWidth = NULL))) expect_equal(result4CodeBased$directionUpper, result4$directionUpper, tolerance = 1e-07) expect_equal(result4CodeBased$theta, result4$theta, tolerance = 1e-07) + expect_equal(result4CodeBased$maxNumberOfSubjects1, result4$maxNumberOfSubjects1, tolerance = 1e-07) + expect_equal(result4CodeBased$maxNumberOfSubjects2, result4$maxNumberOfSubjects2, tolerance = 1e-07) expect_equal(result4CodeBased$rejectPerStage, result4$rejectPerStage, tolerance = 1e-07) expect_equal(result4CodeBased$futilityStop, result4$futilityStop, tolerance = 1e-07) expect_equal(result4CodeBased$futilityPerStage, result4$futilityPerStage, tolerance = 1e-07) @@ -693,7 +697,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data } # @refFS[Formula]{fs:FisherInfCounts} - # @refFS[Formula]{fs:sampleSizePerStageVariableExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeVariableExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} result5 <- getSampleSizeCounts( design = designGS1, lambda1 = seq(1.05, 1.35, 0.15), @@ -765,7 +769,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data } # @refFS[Formula]{fs:FisherInfCounts} - # @refFS[Formula]{fs:sampleSizePerStageVariableExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeVariableExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} result6 <- getSampleSizeCounts( design = designGS1, thetaH0 = 0.9, lambda1 = seq(1.1, 1.15, 0.05), @@ -775,6 +779,8 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data ## Comparison of the results of TrialDesignPlanCountData object 'result6' with expected results expect_equal(result6$directionUpper, c(FALSE, FALSE), label = paste0(result6$directionUpper)) expect_equal(result6$theta, c(0.64705882, 0.67647059), tolerance = 1e-07, label = paste0(result6$theta)) + expect_equal(result6$maxNumberOfSubjects1, c(150, 150), label = paste0(result6$maxNumberOfSubjects1)) + expect_equal(result6$maxNumberOfSubjects2, c(150, 150), label = paste0(result6$maxNumberOfSubjects2)) expect_equal(result6$rejectPerStage[1, ], 0.19514116, tolerance = 1e-07, label = paste0(result6$rejectPerStage[1, ])) expect_equal(result6$rejectPerStage[2, ], 0.37204423, tolerance = 1e-07, label = paste0(result6$rejectPerStage[2, ])) expect_equal(result6$rejectPerStage[3, ], 0.33281461, tolerance = 1e-07, label = paste0(result6$rejectPerStage[3, ])) @@ -807,6 +813,8 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data result6CodeBased <- eval(parse(text = getObjectRCode(result6, stringWrapParagraphWidth = NULL))) expect_equal(result6CodeBased$directionUpper, result6$directionUpper, tolerance = 1e-07) expect_equal(result6CodeBased$theta, result6$theta, tolerance = 1e-07) + expect_equal(result6CodeBased$maxNumberOfSubjects1, result6$maxNumberOfSubjects1, tolerance = 1e-07) + expect_equal(result6CodeBased$maxNumberOfSubjects2, result6$maxNumberOfSubjects2, tolerance = 1e-07) expect_equal(result6CodeBased$rejectPerStage, result6$rejectPerStage, tolerance = 1e-07) expect_equal(result6CodeBased$futilityStop, result6$futilityStop, tolerance = 1e-07) expect_equal(result6CodeBased$futilityPerStage, result6$futilityPerStage, tolerance = 1e-07) @@ -831,7 +839,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data } # @refFS[Formula]{fs:FisherInfCounts} - # @refFS[Formula]{fs:sampleSizePerStageVariableExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeVariableExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} result7 <- getSampleSizeCounts( design = designGS1, lambda1 = seq(1.05, 1.35, 0.15), @@ -904,7 +912,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data # @refFS[Formula]{fs:FisherInfCounts} # @refFS[Formula]{fs:sampleSizeCountsFixedExposureSingleStage} - # @refFS[Formula]{fs:sampleSizePerStageFixedExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeFixedExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} # @refFS[Formula]{fs:sampleSizeCountsFixedExposureOptimumAllocationRatio} result8 <- getSampleSizeCounts( @@ -979,7 +987,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data } # @refFS[Formula]{fs:FisherInfCounts} - # @refFS[Formula]{fs:sampleSizePerStageVariableExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeVariableExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} # @refFS[Formula]{fs:sampleSizeCountsVariableExposureOptimumAllocationRatio} result9 <- getSampleSizeCounts( @@ -1064,7 +1072,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data # @refFS[Formula]{fs:FisherInfCounts} # @refFS[Formula]{fs:sampleSizeCountsFixedExposureSingleStage} - # @refFS[Formula]{fs:sampleSizePerStageFixedExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeFixedExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} result1 <- getSampleSizeCounts( design = designGS2, lambda = 0.234, theta = 0.7, @@ -1130,7 +1138,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data } # @refFS[Formula]{fs:FisherInfCounts} - # @refFS[Formula]{fs:sampleSizePerStageVariableExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeVariableExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} result2 <- getSampleSizeCounts( design = designGS2, lambda = 0.234, theta = 0.7, @@ -1197,7 +1205,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data # @refFS[Formula]{fs:FisherInfCounts} # @refFS[Formula]{fs:sampleSizeCountsFixedExposureSingleStage} - # @refFS[Formula]{fs:sampleSizePerStageFixedExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeFixedExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} result3 <- getSampleSizeCounts( design = designGS2, lambda2 = 0.02, theta = c(0.7, 0.8), @@ -1215,7 +1223,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data expect_equal(result3$rejectPerStage[3, ], 0.49132609, tolerance = 1e-07, label = paste0(result3$rejectPerStage[3, ])) expect_equal(result3$earlyStop, 0.30867391, tolerance = 1e-07, label = paste0(result3$earlyStop)) expect_equal(result3$calendarTime[1, ], c(3.2316907, 3.2313779), tolerance = 1e-07, label = paste0(result3$calendarTime[1, ])) - expect_equal(result3$calendarTime[2, ], c(4.9818015, 4.9813797), tolerance = 1e-07, label = paste0(result3$calendarTime[2, ])) + expect_equal(result3$calendarTime[2, ], c(4.9818015, 4.9813796), tolerance = 1e-07, label = paste0(result3$calendarTime[2, ])) expect_equal(result3$calendarTime[3, ], c(9, 9), label = paste0(result3$calendarTime[3, ])) expect_equal(result3$expectedStudyDurationH1, c(7.7010947, 7.7009681), tolerance = 1e-07, label = paste0(result3$expectedStudyDurationH1)) expect_equal(result3$numberOfSubjects[1, ], c(4348, 10310), label = paste0(result3$numberOfSubjects[1, ])) @@ -1261,7 +1269,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data } # @refFS[Formula]{fs:FisherInfCounts} - # @refFS[Formula]{fs:sampleSizePerStageVariableExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeVariableExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} result4 <- getSampleSizeCounts( design = designGS2, lambda1 = seq(1.05, 1.35, 0.15), @@ -1271,6 +1279,8 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data ## Comparison of the results of TrialDesignPlanCountData object 'result4' with expected results expect_equal(result4$directionUpper, c(FALSE, FALSE, FALSE), label = paste0(result4$directionUpper)) expect_equal(result4$theta, c(0.75, 0.85714286, 0.96428571), tolerance = 1e-07, label = paste0(result4$theta)) + expect_equal(result4$maxNumberOfSubjects1, c(80, 80, 80), label = paste0(result4$maxNumberOfSubjects1)) + expect_equal(result4$maxNumberOfSubjects2, c(20, 20, 20), label = paste0(result4$maxNumberOfSubjects2)) expect_equal(result4$rejectPerStage[1, ], 0.033479189, tolerance = 1e-07, label = paste0(result4$rejectPerStage[1, ])) expect_equal(result4$rejectPerStage[2, ], 0.27519472, tolerance = 1e-07, label = paste0(result4$rejectPerStage[2, ])) expect_equal(result4$rejectPerStage[3, ], 0.49132609, tolerance = 1e-07, label = paste0(result4$rejectPerStage[3, ])) @@ -1298,6 +1308,8 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data result4CodeBased <- eval(parse(text = getObjectRCode(result4, stringWrapParagraphWidth = NULL))) expect_equal(result4CodeBased$directionUpper, result4$directionUpper, tolerance = 1e-07) expect_equal(result4CodeBased$theta, result4$theta, tolerance = 1e-07) + expect_equal(result4CodeBased$maxNumberOfSubjects1, result4$maxNumberOfSubjects1, tolerance = 1e-07) + expect_equal(result4CodeBased$maxNumberOfSubjects2, result4$maxNumberOfSubjects2, tolerance = 1e-07) expect_equal(result4CodeBased$rejectPerStage, result4$rejectPerStage, tolerance = 1e-07) expect_equal(result4CodeBased$earlyStop, result4$earlyStop, tolerance = 1e-07) expect_equal(result4CodeBased$calendarTime, result4$calendarTime, tolerance = 1e-07) @@ -1319,7 +1331,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data } # @refFS[Formula]{fs:FisherInfCounts} - # @refFS[Formula]{fs:sampleSizePerStageVariableExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeVariableExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} result5 <- getSampleSizeCounts( design = designGS2, lambda1 = seq(1.05, 1.35, 0.15), @@ -1383,7 +1395,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data } # @refFS[Formula]{fs:FisherInfCounts} - # @refFS[Formula]{fs:sampleSizePerStageVariableExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeVariableExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} result6 <- getSampleSizeCounts( design = designGS2, lambda1 = seq(1.05, 1.35, 0.15), @@ -1448,7 +1460,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data # @refFS[Formula]{fs:FisherInfCounts} # @refFS[Formula]{fs:sampleSizeCountsFixedExposureSingleStage} - # @refFS[Formula]{fs:sampleSizePerStageFixedExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeFixedExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} # @refFS[Formula]{fs:sampleSizeCountsFixedExposureOptimumAllocationRatio} result7 <- getSampleSizeCounts( @@ -1515,7 +1527,7 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data } # @refFS[Formula]{fs:FisherInfCounts} - # @refFS[Formula]{fs:sampleSizePerStageVariableExposureCounts} + # @refFS[Formula]{fs:maximumSampleSizeVariableExposureCounts} # @refFS[Formula]{fs:observationTimePerStageCounts} # @refFS[Formula]{fs:sampleSizeCountsVariableExposureOptimumAllocationRatio} result8 <- getSampleSizeCounts( @@ -1535,9 +1547,9 @@ test_that("'getSampleSizeCounts': Sample size calculation of testing count data expect_equal(result8$rejectPerStage[3, ], 0.49132609, tolerance = 1e-07, label = paste0(result8$rejectPerStage[3, ])) expect_equal(result8$earlyStop, 0.30867391, tolerance = 1e-07, label = paste0(result8$earlyStop)) expect_equal(result8$calendarTime[1, ], c(4.4478569, 4.4878996), tolerance = 1e-07, label = paste0(result8$calendarTime[1, ])) - expect_equal(result8$calendarTime[2, ], c(5.9668445, 5.9911665), tolerance = 1e-07, label = paste0(result8$calendarTime[2, ])) + expect_equal(result8$calendarTime[2, ], c(5.9668444, 5.9911665), tolerance = 1e-07, label = paste0(result8$calendarTime[2, ])) expect_equal(result8$calendarTime[3, ], c(8, 8), label = paste0(result8$calendarTime[3, ])) - expect_equal(result8$expectedStudyDurationH1, c(7.3215635, 7.3295973), tolerance = 1e-07, label = paste0(result8$expectedStudyDurationH1)) + expect_equal(result8$expectedStudyDurationH1, c(7.3215634, 7.3295973), tolerance = 1e-07, label = paste0(result8$expectedStudyDurationH1)) expect_equal(result8$numberOfSubjects[1, ], c(52, 1032), label = paste0(result8$numberOfSubjects[1, ])) expect_equal(result8$numberOfSubjects[2, ], c(69, 1378), label = paste0(result8$numberOfSubjects[2, ])) expect_equal(result8$numberOfSubjects[3, ], c(82, 1610), label = paste0(result8$numberOfSubjects[3, ])) diff --git a/tests/testthat/test-f_object_r_code.R b/tests/testthat/test-f_object_r_code.R new file mode 100644 index 00000000..68023aa2 --- /dev/null +++ b/tests/testthat/test-f_object_r_code.R @@ -0,0 +1,77 @@ +## | +## | *Unit tests* +## | +## | This file is part of the R package rpact: +## | Confirmatory Adaptive Clinical Trial Design and Analysis +## | +## | Author: Gernot Wassmer, PhD, and Friedrich Pahlke, PhD +## | Licensed under "GNU Lesser General Public License" version 3 +## | License text can be found here: https://www.r-project.org/Licenses/LGPL-3 +## | +## | RPACT company website: https://www.rpact.com +## | RPACT package website: https://www.rpact.org +## | +## | Contact us for information about our services: info@rpact.com +## | +## | File name: test-f_quality_assurance.R +## | Creation date: 23 May 2024, 11:59:52 +## | File version: $Revision: 7928 $ +## | Last changed: $Date: 2024-05-23 16:35:16 +0200 (Do, 23 Mai 2024) $ +## | Last changed by: $Author: pahlke $ +## | + +test_plan_section("Testing the Get Object R Code Function") + + +test_that("'getObjectRCode': varied input arguments", { + .skipTestIfDisabled() + + obj <- getSampleSizeMeans(getDesignGroupSequential()) + + result1 <- getObjectRCode(obj, stringWrapParagraphWidth = 20, stringWrapPrefix = " ", pipeOperator = "R") + + ## Comparison of the results of character object 'result1' with expected results + expect_equal(result1, c("getDesignGroupSequential() |> ", "getSampleSizeMeans()"), label = paste0(result1)) + + result2 <- getObjectRCode(obj, output = "markdown", pipeOperator = "R") + + ## Comparison of the results of character object 'result2' with expected results + expect_equal(result2, "getDesignGroupSequential() |> + getSampleSizeMeans()", label = paste0(result2)) + + result3 <- getObjectRCode(obj, explicitPrint = TRUE, pipeOperator = "R") + + ## Comparison of the results of character object 'result3' with expected results + expect_equal(result3, c("getDesignGroupSequential() |>", "getSampleSizeMeans() |>", "print()"), label = paste0(result3)) + + result4 <- getObjectRCode(obj, postfix = c("|>", "print()"), pipeOperator = "R") + + ## Comparison of the results of character object 'result4' with expected results + expect_equal(result4, c("getDesignGroupSequential() |>", "getSampleSizeMeans()|>", "print()"), label = paste0(result4)) + + result5 <- getObjectRCode(obj, leadingArguments = "", pipeOperator = "R") + + ## Comparison of the results of character object 'result5' with expected results + expect_equal(result5, c("getDesignGroupSequential() |>", "getSampleSizeMeans()"), label = paste0(result5)) + + result6 <- getObjectRCode(summary(obj), pipeOperator = "R") + + ## Comparison of the results of character object 'result6' with expected results + expect_equal(result6, c("getDesignGroupSequential() |>", "getSampleSizeMeans() |>", "summary()"), label = paste0(result6)) + + result7 <- getObjectRCode(obj, pipeOperator = "none") + + ## Comparison of the results of character object 'result7' with expected results + expect_equal(result7, c("design <- getDesignGroupSequential()", "getSampleSizeMeans(design = design)"), label = paste0(result7)) + + result8 <- getObjectRCode(obj, pipeOperator = "magrittr") + + ## Comparison of the results of character object 'result8' with expected results + expect_equal(result8, c("getDesignGroupSequential() %>%", "getSampleSizeMeans()"), label = paste0(result8)) + + expect_output(print(getObjectRCode(obj))) + + expect_output(getObjectRCode(obj, output = "cat", pipeOperator = "R")) + + suppressMessages(expect_output(print(getObjectRCode(obj, output = "test", pipeOperator = "R")))) +}) diff --git a/tests/testthat/test-f_quality_assurance.R b/tests/testthat/test-f_quality_assurance.R deleted file mode 100644 index d1c109a0..00000000 --- a/tests/testthat/test-f_quality_assurance.R +++ /dev/null @@ -1,62 +0,0 @@ -## | -## | *Unit tests* -## | -## | This file is part of the R package rpact: -## | Confirmatory Adaptive Clinical Trial Design and Analysis -## | -## | Author: Gernot Wassmer, PhD, and Friedrich Pahlke, PhD -## | Licensed under "GNU Lesser General Public License" version 3 -## | License text can be found here: https://www.r-project.org/Licenses/LGPL-3 -## | -## | RPACT company website: https://www.rpact.com -## | RPACT package website: https://www.rpact.org -## | -## | Contact us for information about our services: info@rpact.com -## | -## | File name: test-f_quality_assurance.R -## | Creation date: 06 February 2023, 12:13:45 -## | File version: $Revision: 7644 $ -## | Last changed: $Date: 2024-02-16 10:36:28 +0100 (Fr, 16 Feb 2024) $ -## | Last changed by: $Author: pahlke $ -## | - -test_plan_section("Testing Quality Assurance Functions") - -test_that("Quality assurance functions throw errors when arguments are missing or wrong", { - rVersion <- .isMinimumRVersion4() - expect_true(rVersion) - - dummyContent <- "[ OK: 6 ] [FAILED: 3]" - res_1 <- .getTestthatResultLine(dummyContent) - expect_type(res_1, "character") - expect_equal(2 * 2, 4) - - res_2 <- .getTestthatResultNumberOfFailures(dummyContent) - expect_type(res_2, "character") - expect_equal(2 * 2, 4) - - res_3 <- .getTestthatResultNumberOfSkippedTests(dummyContent) - expect_type(res_3, "character") - expect_equal(2 * 2, 4) - - expect_error(.downloadUnitTests( - testFileTargetDirectory = NULL, - token = "token", - secret = "secret", - connectionType = "pkg" - )) - - expect_error(.prepareUnitTestFiles()) - - expect_error(.downloadUnitTestsViaHttp()) - - expect_error(.downloadUnitTestsViaFtp()) - - expect_error(.getConnectionArgument()) - - expect_error(testPackage(NULL)) - - expect_error(.testInstalledPackage(NULL)) - - expect_type(.isCompleteUnitTestSetEnabled(), "logical") -}) diff --git a/tests/testthat/test-f_simulation_base_count_data.R b/tests/testthat/test-f_simulation_base_count_data.R new file mode 100644 index 00000000..a7a0ea5c --- /dev/null +++ b/tests/testthat/test-f_simulation_base_count_data.R @@ -0,0 +1,180 @@ +## | +## | *Unit tests* +## | +## | This file is part of the R package rpact: +## | Confirmatory Adaptive Clinical Trial Design and Analysis +## | +## | Author: Gernot Wassmer, PhD, and Friedrich Pahlke, PhD +## | Licensed under "GNU Lesser General Public License" version 3 +## | License text can be found here: https://www.r-project.org/Licenses/LGPL-3 +## | +## | RPACT company website: https://www.rpact.com +## | RPACT package website: https://www.rpact.org +## | +## | Contact us for information about our services: info@rpact.com +## | +## | File name: test-f_simulation_base_count_data.R +## | Creation date: 23 May 2024, 10:12:16 +## | File version: $Revision$ +## | Last changed: $Date$ +## | Last changed by: $Author$ +## | + +test_plan_section("Testing Simulation Counts Function") + + +test_that("'getSimulationCounts': variable exposure", { + .skipTestIfDisabled() + + design <- getDesignGroupSequential( + informationRates = c(0.3, 0.55, 1), + alpha = 0.025, beta = 0.2, typeOfDesign = "asOF", + typeBetaSpending = "bsOF", bindingFutility = TRUE + ) + + suppressWarnings(result1 <- getSimulationCounts( + design = design, + directionUpper = FALSE, + plannedMaxSubjects = 110, + plannedCalendarTime = c(4.886914, 7.878929, 14), + lambda1 = c(0.7, 0.3), + lambda2 = 0.7, + overdispersion = 2, + maxNumberOfIterations = 100, + accrualTime = 12, + followUpTime = 2, + seed = 4378628 + )) + + ## Comparison of the results of SimulationResultsBaseCountDataSimulationResultsParameterSetFieldSetR6 object 'result1' with expected results + expect_equal(result1$theta, c(1, 0.42857143), tolerance = 1e-07, label = paste0(result1$theta)) + expect_equal(result1$iterations[1, ], c(100, 100), label = paste0(result1$iterations[1, ])) + expect_equal(result1$iterations[2, ], c(74, 95), label = paste0(result1$iterations[2, ])) + expect_equal(result1$iterations[3, ], c(19, 72), label = paste0(result1$iterations[3, ])) + expect_equal(result1$overallReject, c(0.04, 0.78), tolerance = 1e-07, label = paste0(result1$overallReject)) + expect_equal(result1$rejectPerStage[1, ], c(0, 0.01), tolerance = 1e-07, label = paste0(result1$rejectPerStage[1, ])) + expect_equal(result1$rejectPerStage[2, ], c(0, 0.17), tolerance = 1e-07, label = paste0(result1$rejectPerStage[2, ])) + expect_equal(result1$rejectPerStage[3, ], c(0.04, 0.6), tolerance = 1e-07, label = paste0(result1$rejectPerStage[3, ])) + expect_equal(result1$futilityStop, c(0.81, 0.1), tolerance = 1e-07, label = paste0(result1$futilityStop)) + expect_equal(result1$futilityPerStage[1, ], c(0.26, 0.04), tolerance = 1e-07, label = paste0(result1$futilityPerStage[1, ])) + expect_equal(result1$futilityPerStage[2, ], c(0.55, 0.06), tolerance = 1e-07, label = paste0(result1$futilityPerStage[2, ])) + expect_equal(result1$earlyStop[1, ], c(0.81, 0.28), tolerance = 1e-07, label = paste0(result1$earlyStop[1, ])) + + suppressWarnings(result2 <- getSimulationCounts( + getDesignGroupSequential( + alpha = 0.025, + futilityBounds = c(-0.5, 0.5) + ), + lambda1 = seq(1, 1.4, 0.1), + lambda2 = 1.4, + overdispersion = 1.1, + plannedCalendarTime = c(4, 5, 6), + allocationRatioPlanned = 3, + accrualTime = c(4), + accrualIntensity = c(100), + maxNumberOfIterations = 100, + followUpTime = 3, + directionUpper = FALSE, + seed = 4378628 + )) + + + ## Comparison of the results of SimulationResultsBaseCountDataSimulationResultsParameterSetFieldSetR6 object 'result2' with expected results + expect_equal(result2$theta, c(0.71428571, 0.78571429, 0.85714286, 0.92857143, 1), tolerance = 1e-07, label = paste0(result2$theta)) + expect_equal(result2$numberOfSubjects, 400, label = paste0(result2$numberOfSubjects)) + expect_equal(result2$numberOfSubjects1, 300, label = paste0(result2$numberOfSubjects1)) + expect_equal(result2$numberOfSubjects2, 100, label = paste0(result2$numberOfSubjects2)) + expect_equal(result2$iterations[1, ], c(100, 100, 100, 100, 100), label = paste0(result2$iterations[1, ])) + expect_equal(result2$iterations[2, ], c(86, 94, 96, 86, 69), label = paste0(result2$iterations[2, ])) + expect_equal(result2$iterations[3, ], c(40, 53, 72, 50, 25), label = paste0(result2$iterations[3, ])) + expect_equal(result2$overallReject, c(0.77, 0.47, 0.26, 0.08, 0.01), tolerance = 1e-07, label = paste0(result2$overallReject)) + expect_equal(result2$rejectPerStage[1, ], c(0.14, 0.05, 0.02, 0, 0), tolerance = 1e-07, label = paste0(result2$rejectPerStage[1, ])) + expect_equal(result2$rejectPerStage[2, ], c(0.44, 0.28, 0.09, 0.02, 0.01), tolerance = 1e-07, label = paste0(result2$rejectPerStage[2, ])) + expect_equal(result2$rejectPerStage[3, ], c(0.19, 0.14, 0.15, 0.06, 0), tolerance = 1e-07, label = paste0(result2$rejectPerStage[3, ])) + expect_equal(result2$futilityStop, c(0.02, 0.14, 0.17, 0.48, 0.74), tolerance = 1e-07, label = paste0(result2$futilityStop)) + expect_equal(result2$futilityPerStage[1, ], c(0, 0.01, 0.02, 0.14, 0.31), tolerance = 1e-07, label = paste0(result2$futilityPerStage[1, ])) + expect_equal(result2$futilityPerStage[2, ], c(0.02, 0.13, 0.15, 0.34, 0.43), tolerance = 1e-07, label = paste0(result2$futilityPerStage[2, ])) + expect_equal(result2$earlyStop[1, ], c(0.6, 0.47, 0.28, 0.5, 0.75), tolerance = 1e-07, label = paste0(result2$earlyStop[1, ])) +}) + +test_that("'getSimulationCounts': fixed exposure", { + design <- getDesignGroupSequential( + informationRates = c(0.3, 0.55, 1), + alpha = 0.025, beta = 0.2, typeOfDesign = "asOF", + typeBetaSpending = "bsOF", bindingFutility = TRUE + ) + + suppressWarnings(result1 <- getSimulationCounts( + design = design, + directionUpper = FALSE, + plannedMaxSubjects = 110, + plannedCalendarTime = c(4.886914, 7.878929, 14), + lambda1 = c(0.7, 0.3), + lambda2 = 0.7, + overdispersion = 2, + accrualTime = 12, + fixedExposureTime = 1, + maxNumberOfIterations = 100, + seed = 4378628 + )) + + + ## Comparison of the results of SimulationResultsBaseCountDataSimulationResultsParameterSetFieldSetR6 object 'result1' with expected results + expect_equal(result1$theta, c(1, 0.42857143), tolerance = 1e-07, label = paste0(result1$theta)) + expect_equal(result1$iterations[1, ], c(100, 100), label = paste0(result1$iterations[1, ])) + expect_equal(result1$iterations[2, ], c(62, 97), label = paste0(result1$iterations[2, ])) + expect_equal(result1$iterations[3, ], c(27, 69), label = paste0(result1$iterations[3, ])) + expect_equal(result1$overallReject, c(0.02, 0.55), tolerance = 1e-07, label = paste0(result1$overallReject)) + expect_equal(result1$rejectPerStage[1, ], c(0, 0), label = paste0(result1$rejectPerStage[1, ])) + expect_equal(result1$rejectPerStage[2, ], c(0, 0.08), tolerance = 1e-07, label = paste0(result1$rejectPerStage[2, ])) + expect_equal(result1$rejectPerStage[3, ], c(0.02, 0.47), tolerance = 1e-07, label = paste0(result1$rejectPerStage[3, ])) + expect_equal(result1$futilityStop, c(0.73, 0.23), tolerance = 1e-07, label = paste0(result1$futilityStop)) + expect_equal(result1$futilityPerStage[1, ], c(0.38, 0.03), tolerance = 1e-07, label = paste0(result1$futilityPerStage[1, ])) + expect_equal(result1$futilityPerStage[2, ], c(0.35, 0.2), tolerance = 1e-07, label = paste0(result1$futilityPerStage[2, ])) + expect_equal(result1$earlyStop[1, ], c(0.73, 0.31), tolerance = 1e-07, label = paste0(result1$earlyStop[1, ])) + + suppressWarnings(result2 <- getSimulationCounts( + maxNumberOfSubjects = 1000, + plannedMaxSubjects = 110, + plannedCalendarTime = as.matrix(10), + accrualTime = 5, + directionUpper = FALSE, + lambda2 = 1.4, + theta = c(0.75, 1.133333), + overdispersion = 1.5, + fixedExposureTime = 2, + maxNumberOfIterations = 100, + seed = 4378628 + )) + + ## Comparison of the results of SimulationResultsBaseCountDataSimulationResultsParameterSetFieldSetR6 object 'result2' with expected results + expect_equal(result2$lambda1, c(1.05, 1.5866662), tolerance = 1e-07, label = paste0(result2$lambda1)) + expect_equal(result2$iterations[1, ], c(100, 100), label = paste0(result2$iterations[1, ])) + expect_equal(result2$overallReject, c(0.14, 0), tolerance = 1e-07, label = paste0(result2$overallReject)) + + suppressWarnings(result3 <- getSimulationCounts( + getDesignGroupSequential(kMax = 3, futilityBounds = c(0, 0)), + plannedMaxSubjects = 100, + plannedCalendarTime = as.matrix(c(2, 4, 6)), + maxNumberOfIterations = 100, + fixedExposureTime = 1, + accrualTime = 6, + lambda1 = seq(1.05, 1.35, 0.05), + lambda2 = 1.4, + seed = 4378628 + )) + + ## Comparison of the results of SimulationResultsBaseCountDataSimulationResultsParameterSetFieldSetR6 object 'result3' with expected results + expect_equal(result3$theta, c(0.75, 0.78571429, 0.82142857, 0.85714286, 0.89285714, 0.92857143, 0.96428571), tolerance = 1e-07, label = paste0(result3$theta)) + expect_equal(result3$iterations[1, ], c(100, 100, 100, 100, 100, 100, 100), label = paste0(result3$iterations[1, ])) + expect_equal(result3$iterations[2, ], c(25, 32, 34, 38, 34, 47, 56), label = paste0(result3$iterations[2, ])) + expect_equal(result3$iterations[3, ], c(6, 11, 17, 18, 20, 31, 35), label = paste0(result3$iterations[3, ])) + expect_equal(result3$overallReject, c(0, 0, 0.01, 0, 0, 0.01, 0), tolerance = 1e-07, label = paste0(result3$overallReject)) + expect_equal(result3$rejectPerStage[1, ], c(0, 0, 0, 0, 0, 0, 0), label = paste0(result3$rejectPerStage[1, ])) + expect_equal(result3$rejectPerStage[2, ], c(0, 0, 0.01, 0, 0, 0, 0), tolerance = 1e-07, label = paste0(result3$rejectPerStage[2, ])) + expect_equal(result3$rejectPerStage[3, ], c(0, 0, 0, 0, 0, 0.01, 0), tolerance = 1e-07, label = paste0(result3$rejectPerStage[3, ])) + expect_equal(result3$futilityStop, c(0.94, 0.89, 0.82, 0.82, 0.8, 0.69, 0.65), tolerance = 1e-07, label = paste0(result3$futilityStop)) + expect_equal(result3$futilityPerStage[1, ], c(0.75, 0.68, 0.66, 0.62, 0.66, 0.53, 0.44), tolerance = 1e-07, label = paste0(result3$futilityPerStage[1, ])) + expect_equal(result3$futilityPerStage[2, ], c(0.19, 0.21, 0.16, 0.2, 0.14, 0.16, 0.21), tolerance = 1e-07, label = paste0(result3$futilityPerStage[2, ])) + expect_equal(result3$earlyStop[1, ], c(0.94, 0.89, 0.83, 0.82, 0.8, 0.69, 0.65), tolerance = 1e-07, label = paste0(result3$earlyStop[1, ])) +}) diff --git a/tests/testthat/test-f_simulation_base_means.R b/tests/testthat/test-f_simulation_base_means.R index c7ee5ce7..87569b34 100644 --- a/tests/testthat/test-f_simulation_base_means.R +++ b/tests/testthat/test-f_simulation_base_means.R @@ -15,9 +15,9 @@ ## | ## | File name: test-f_simulation_base_means.R ## | Creation date: 07 March 2024, 13:13:26 -## | File version: $Revision: 7702 $ -## | Last changed: $Date: 2024-03-07 13:30:30 +0100 (Do, 07 Mrz 2024) $ -## | Last changed by: $Author: pahlke $ +## | File version: $Revision$ +## | Last changed: $Date$ +## | Last changed by: $Author$ ## | test_plan_section("Testing Simulation Means Function") diff --git a/tests/testthat/test-f_simulation_base_survival.R b/tests/testthat/test-f_simulation_base_survival.R index 096ce955..84fd1664 100644 --- a/tests/testthat/test-f_simulation_base_survival.R +++ b/tests/testthat/test-f_simulation_base_survival.R @@ -15,8 +15,8 @@ ## | ## | File name: test-f_simulation_base_survival.R ## | Creation date: 08 November 2023, 09:11:01 -## | File version: $Revision: 7665 $ -## | Last changed: $Date: 2024-02-23 17:33:46 +0100 (Fr, 23 Feb 2024) $ +## | File version: $Revision: 7920 $ +## | Last changed: $Date: 2024-05-23 13:56:24 +0200 (Do, 23 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -138,12 +138,12 @@ test_that("'getSimulationSurvival': configuration 2", { expect_equal(simulationResults$numberOfSubjects[1, ], c(186.51, 180.63, 173.73, 168.48), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(simulationResults$numberOfSubjects[2, ], c(406.05, 420.67123, 424.60256, 393.44615), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[2, ], collapse = ", "), ")")) expect_equal(simulationResults$numberOfSubjects[3, ], c(428.4, 466.33333, 480.96429, 488.78261), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[3, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[1, ], c(20, 20, 20, 20), label = paste0("c(", paste0(simulationResults$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[2, ], c(64.483333, 73.054795, 78.884615, 72.015385), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[3, ], c(70.6, 80.555556, 134.14286, 156.02174), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[3, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[1, ], c(20, 20, 20, 20), label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[2, ], c(84.483333, 93.054795, 98.884615, 92.015385), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[3, ], c(155.08333, 173.61035, 233.02747, 248.03712), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[1, ], c(20, 20, 20, 20), label = paste0("c(", paste0(simulationResults$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[2, ], c(64.483333, 73.054795, 78.884615, 72.015385), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[3, ], c(70.6, 80.555556, 134.14286, 156.02174), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$eventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[1, ], c(20, 20, 20, 20), label = paste0("c(", paste0(simulationResults$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[2, ], c(84.483333, 93.054795, 98.884615, 92.015385), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[3, ], c(155.08333, 173.61035, 233.02747, 248.03712), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[3, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[1, ], c(100, 100, 100, 100), label = paste0("c(", paste0(simulationResults$iterations[1, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[2, ], c(60, 73, 78, 65), label = paste0("c(", paste0(simulationResults$iterations[2, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[3, ], c(5, 9, 28, 46), label = paste0("c(", paste0(simulationResults$iterations[3, ], collapse = ", "), ")")) @@ -184,8 +184,8 @@ test_that("'getSimulationSurvival': configuration 2", { expect_equal(simulationResultsCodeBased$studyDuration, simulationResults$studyDuration, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$eventsNotAchieved, simulationResults$eventsNotAchieved, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$numberOfSubjects, simulationResults$numberOfSubjects, tolerance = 1e-07) - expect_equal(simulationResultsCodeBased$singleEventsPerStage, simulationResults$singleEventsPerStage, tolerance = 1e-07) - expect_equal(simulationResultsCodeBased$cumulativeEventsPerStage, simulationResults$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultsCodeBased$eventsPerStage, simulationResults$eventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultsCodeBased$overallEventsPerStage, simulationResults$overallEventsPerStage, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$iterations, simulationResults$iterations, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$overallReject, simulationResults$overallReject, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$rejectPerStage, simulationResults$rejectPerStage, tolerance = 1e-07) @@ -247,12 +247,12 @@ test_that("'getSimulationSurvival': configuration 3", { expect_equal(simulationResults$numberOfSubjects[1, ], c(275.04, 265.86, 248.46, 231.45), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(simulationResults$numberOfSubjects[2, ], c(496.07246, 481.84722, 476, 463.84), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[2, ], collapse = ", "), ")")) expect_equal(simulationResults$numberOfSubjects[3, ], c(500, 500, 500, 494), label = paste0("c(", paste0(simulationResults$numberOfSubjects[3, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[1, ], c(20, 20, 20, 20), label = paste0("c(", paste0(simulationResults$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[2, ], c(86.507246, 74.541667, 74.677966, 74.48), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[3, ], c(155.24324, 97.666667, 124.28571, 37), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[3, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[1, ], c(20, 20, 20, 20), label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[2, ], c(106.50725, 94.541667, 94.677966, 94.48), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[3, ], c(261.75049, 192.20833, 218.96368, 131.48), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[1, ], c(20, 20, 20, 20), label = paste0("c(", paste0(simulationResults$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[2, ], c(86.507246, 74.541667, 74.677966, 74.48), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[3, ], c(155.24324, 97.666667, 124.28571, 37), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$eventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[1, ], c(20, 20, 20, 20), label = paste0("c(", paste0(simulationResults$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[2, ], c(106.50725, 94.541667, 94.677966, 94.48), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[3, ], c(261.75049, 192.20833, 218.96368, 131.48), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[3, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[1, ], c(100, 100, 100, 100), label = paste0("c(", paste0(simulationResults$iterations[1, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[2, ], c(69, 72, 59, 50), label = paste0("c(", paste0(simulationResults$iterations[2, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[3, ], c(37, 12, 7, 2), label = paste0("c(", paste0(simulationResults$iterations[3, ], collapse = ", "), ")")) @@ -293,8 +293,8 @@ test_that("'getSimulationSurvival': configuration 3", { expect_equal(simulationResultsCodeBased$studyDuration, simulationResults$studyDuration, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$eventsNotAchieved, simulationResults$eventsNotAchieved, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$numberOfSubjects, simulationResults$numberOfSubjects, tolerance = 1e-07) - expect_equal(simulationResultsCodeBased$singleEventsPerStage, simulationResults$singleEventsPerStage, tolerance = 1e-07) - expect_equal(simulationResultsCodeBased$cumulativeEventsPerStage, simulationResults$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultsCodeBased$eventsPerStage, simulationResults$eventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultsCodeBased$overallEventsPerStage, simulationResults$overallEventsPerStage, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$iterations, simulationResults$iterations, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$overallReject, simulationResults$overallReject, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$rejectPerStage, simulationResults$rejectPerStage, tolerance = 1e-07) @@ -362,12 +362,12 @@ test_that("'getSimulationSurvival': configuration 4", { expect_equal(simulationResults$numberOfSubjects[1, ], 231.41, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(simulationResults$numberOfSubjects[2, ], 448.23158, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[2, ], collapse = ", "), ")")) expect_equal(simulationResults$numberOfSubjects[3, ], 491.66667, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[3, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[2, ], 71.694737, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[3, ], 111.76667, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[3, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[2, ], 91.694737, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[3, ], 203.4614, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResults$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[2, ], 71.694737, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[3, ], 111.76667, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$eventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[2, ], 91.694737, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[3, ], 203.4614, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[3, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[1, ], 100, label = paste0("c(", paste0(simulationResults$iterations[1, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[2, ], 95, label = paste0("c(", paste0(simulationResults$iterations[2, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[3, ], 30, label = paste0("c(", paste0(simulationResults$iterations[3, ], collapse = ", "), ")")) @@ -398,8 +398,8 @@ test_that("'getSimulationSurvival': configuration 4", { expect_equal(simulationResultsCodeBased$studyDuration, simulationResults$studyDuration, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$eventsNotAchieved, simulationResults$eventsNotAchieved, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$numberOfSubjects, simulationResults$numberOfSubjects, tolerance = 1e-07) - expect_equal(simulationResultsCodeBased$singleEventsPerStage, simulationResults$singleEventsPerStage, tolerance = 1e-07) - expect_equal(simulationResultsCodeBased$cumulativeEventsPerStage, simulationResults$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultsCodeBased$eventsPerStage, simulationResults$eventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultsCodeBased$overallEventsPerStage, simulationResults$overallEventsPerStage, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$iterations, simulationResults$iterations, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$overallReject, simulationResults$overallReject, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$rejectPerStage, simulationResults$rejectPerStage, tolerance = 1e-07) @@ -462,12 +462,12 @@ test_that("'getSimulationSurvival': configuration 5", { expect_equal(simulationResults$numberOfSubjects[1, ], c(126.03, 121.42, 115.37, 113.16), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(simulationResults$numberOfSubjects[2, ], c(187.50575, 190.98876, 193.16304, 192.33), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[2, ], collapse = ", "), ")")) expect_equal(simulationResults$numberOfSubjects[3, ], c(199.11111, 200, 199.39655, 199.28571), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[3, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[1, ], c(20, 20, 20, 20), label = paste0("c(", paste0(simulationResults$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[2, ], c(28.54023, 31.561798, 35.130435, 35.79), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[3, ], c(26.388889, 33.558824, 37.155172, 37.792208), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[3, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[1, ], c(20, 20, 20, 20), label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[2, ], c(48.54023, 51.561798, 55.130435, 55.79), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[3, ], c(74.929119, 85.120621, 92.285607, 93.582208), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[1, ], c(20, 20, 20, 20), label = paste0("c(", paste0(simulationResults$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[2, ], c(28.54023, 31.561798, 35.130435, 35.79), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[3, ], c(26.388889, 33.558824, 37.155172, 37.792208), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$eventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[1, ], c(20, 20, 20, 20), label = paste0("c(", paste0(simulationResults$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[2, ], c(48.54023, 51.561798, 55.130435, 55.79), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[3, ], c(74.929119, 85.120621, 92.285607, 93.582208), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[3, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[1, ], c(100, 100, 100, 100), label = paste0("c(", paste0(simulationResults$iterations[1, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[2, ], c(87, 89, 92, 100), label = paste0("c(", paste0(simulationResults$iterations[2, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[3, ], c(18, 34, 58, 77), label = paste0("c(", paste0(simulationResults$iterations[3, ], collapse = ", "), ")")) @@ -508,8 +508,8 @@ test_that("'getSimulationSurvival': configuration 5", { expect_equal(simulationResultsCodeBased$studyDuration, simulationResults$studyDuration, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$eventsNotAchieved, simulationResults$eventsNotAchieved, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$numberOfSubjects, simulationResults$numberOfSubjects, tolerance = 1e-07) - expect_equal(simulationResultsCodeBased$singleEventsPerStage, simulationResults$singleEventsPerStage, tolerance = 1e-07) - expect_equal(simulationResultsCodeBased$cumulativeEventsPerStage, simulationResults$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultsCodeBased$eventsPerStage, simulationResults$eventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultsCodeBased$overallEventsPerStage, simulationResults$overallEventsPerStage, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$iterations, simulationResults$iterations, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$overallReject, simulationResults$overallReject, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$rejectPerStage, simulationResults$rejectPerStage, tolerance = 1e-07) @@ -579,12 +579,12 @@ test_that("'getSimulationSurvival': configuration 6", { expect_equal(simulationResults$numberOfSubjects[1, ], 205.17, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(simulationResults$numberOfSubjects[2, ], 258.63158, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[2, ], collapse = ", "), ")")) expect_equal(simulationResults$numberOfSubjects[3, ], 258.76923, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[3, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[2, ], 105.21053, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[3, ], 97.307692, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[3, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[2, ], 125.21053, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[3, ], 222.51822, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResults$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[2, ], 105.21053, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[3, ], 97.307692, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$eventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[2, ], 125.21053, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[3, ], 222.51822, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[3, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[1, ], 100, label = paste0("c(", paste0(simulationResults$iterations[1, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[2, ], 38, label = paste0("c(", paste0(simulationResults$iterations[2, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[3, ], 13, label = paste0("c(", paste0(simulationResults$iterations[3, ], collapse = ", "), ")")) @@ -615,8 +615,8 @@ test_that("'getSimulationSurvival': configuration 6", { expect_equal(simulationResultsCodeBased$studyDuration, simulationResults$studyDuration, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$eventsNotAchieved, simulationResults$eventsNotAchieved, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$numberOfSubjects, simulationResults$numberOfSubjects, tolerance = 1e-07) - expect_equal(simulationResultsCodeBased$singleEventsPerStage, simulationResults$singleEventsPerStage, tolerance = 1e-07) - expect_equal(simulationResultsCodeBased$cumulativeEventsPerStage, simulationResults$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultsCodeBased$eventsPerStage, simulationResults$eventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultsCodeBased$overallEventsPerStage, simulationResults$overallEventsPerStage, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$iterations, simulationResults$iterations, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$overallReject, simulationResults$overallReject, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$rejectPerStage, simulationResults$rejectPerStage, tolerance = 1e-07) @@ -727,12 +727,12 @@ test_that("'getSimulationSurvival': configuration 7", { expect_equal(simulationResults$numberOfSubjects[1, ], 211.81, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(simulationResults$numberOfSubjects[2, ], 259.98, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[2, ], collapse = ", "), ")")) expect_equal(simulationResults$numberOfSubjects[3, ], 260, label = paste0("c(", paste0(simulationResults$numberOfSubjects[3, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[2, ], 87.53, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[3, ], 93.376344, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[3, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[2, ], 107.53, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[3, ], 200.90634, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResults$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[2, ], 87.53, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[3, ], 93.376344, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$eventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[2, ], 107.53, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[3, ], 200.90634, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[3, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[1, ], 100, label = paste0("c(", paste0(simulationResults$iterations[1, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[2, ], 100, label = paste0("c(", paste0(simulationResults$iterations[2, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[3, ], 93, label = paste0("c(", paste0(simulationResults$iterations[3, ], collapse = ", "), ")")) @@ -765,8 +765,8 @@ test_that("'getSimulationSurvival': configuration 7", { expect_equal(simulationResultsCodeBased$studyDuration, simulationResults$studyDuration, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$eventsNotAchieved, simulationResults$eventsNotAchieved, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$numberOfSubjects, simulationResults$numberOfSubjects, tolerance = 1e-07) - expect_equal(simulationResultsCodeBased$singleEventsPerStage, simulationResults$singleEventsPerStage, tolerance = 1e-07) - expect_equal(simulationResultsCodeBased$cumulativeEventsPerStage, simulationResults$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultsCodeBased$eventsPerStage, simulationResults$eventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultsCodeBased$overallEventsPerStage, simulationResults$overallEventsPerStage, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$iterations, simulationResults$iterations, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$overallReject, simulationResults$overallReject, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$rejectPerStage, simulationResults$rejectPerStage, tolerance = 1e-07) @@ -825,12 +825,12 @@ test_that("'getSimulationSurvival': configuration 8", { expect_equal(simulationResults$numberOfSubjects[1, ], 199.73, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(simulationResults$numberOfSubjects[2, ], 200, label = paste0("c(", paste0(simulationResults$numberOfSubjects[2, ], collapse = ", "), ")")) expect_equal(simulationResults$numberOfSubjects[3, ], 200, label = paste0("c(", paste0(simulationResults$numberOfSubjects[3, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[2, ], 20, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[3, ], 20, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[3, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[2, ], 40, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[3, ], 60, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResults$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[2, ], 20, label = paste0("c(", paste0(simulationResults$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[3, ], 20, label = paste0("c(", paste0(simulationResults$eventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[2, ], 40, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[3, ], 60, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[3, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[1, ], 100, label = paste0("c(", paste0(simulationResults$iterations[1, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[2, ], 99, label = paste0("c(", paste0(simulationResults$iterations[2, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[3, ], 95, label = paste0("c(", paste0(simulationResults$iterations[3, ], collapse = ", "), ")")) @@ -861,8 +861,8 @@ test_that("'getSimulationSurvival': configuration 8", { expect_equal(simulationResultsCodeBased$studyDuration, simulationResults$studyDuration, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$eventsNotAchieved, simulationResults$eventsNotAchieved, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$numberOfSubjects, simulationResults$numberOfSubjects, tolerance = 1e-07) - expect_equal(simulationResultsCodeBased$singleEventsPerStage, simulationResults$singleEventsPerStage, tolerance = 1e-07) - expect_equal(simulationResultsCodeBased$cumulativeEventsPerStage, simulationResults$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultsCodeBased$eventsPerStage, simulationResults$eventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultsCodeBased$overallEventsPerStage, simulationResults$overallEventsPerStage, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$iterations, simulationResults$iterations, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$overallReject, simulationResults$overallReject, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$rejectPerStage, simulationResults$rejectPerStage, tolerance = 1e-07) @@ -922,12 +922,12 @@ test_that("'getSimulationSurvival': configuration 9;", { expect_equal(simulationResults$numberOfSubjects[1, ], 257.27, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(simulationResults$numberOfSubjects[2, ], 260, label = paste0("c(", paste0(simulationResults$numberOfSubjects[2, ], collapse = ", "), ")")) expect_equal(simulationResults$numberOfSubjects[3, ], 260, label = paste0("c(", paste0(simulationResults$numberOfSubjects[3, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[2, ], 86.161616, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[3, ], 89.574713, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[3, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[2, ], 106.16162, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[3, ], 195.73633, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResults$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[2, ], 86.161616, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[3, ], 89.574713, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$eventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[2, ], 106.16162, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[3, ], 195.73633, tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[3, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[1, ], 100, label = paste0("c(", paste0(simulationResults$iterations[1, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[2, ], 99, label = paste0("c(", paste0(simulationResults$iterations[2, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[3, ], 87, label = paste0("c(", paste0(simulationResults$iterations[3, ], collapse = ", "), ")")) @@ -958,8 +958,8 @@ test_that("'getSimulationSurvival': configuration 9;", { expect_equal(simulationResultsCodeBased$studyDuration, simulationResults$studyDuration, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$eventsNotAchieved, simulationResults$eventsNotAchieved, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$numberOfSubjects, simulationResults$numberOfSubjects, tolerance = 1e-07) - expect_equal(simulationResultsCodeBased$singleEventsPerStage, simulationResults$singleEventsPerStage, tolerance = 1e-07) - expect_equal(simulationResultsCodeBased$cumulativeEventsPerStage, simulationResults$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultsCodeBased$eventsPerStage, simulationResults$eventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultsCodeBased$overallEventsPerStage, simulationResults$overallEventsPerStage, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$iterations, simulationResults$iterations, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$overallReject, simulationResults$overallReject, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$rejectPerStage, simulationResults$rejectPerStage, tolerance = 1e-07) @@ -1023,12 +1023,12 @@ test_that("'getSimulationSurvival': configuration 10;", { expect_equal(simulationResults$numberOfSubjects[1, ], c(195.58, 192.19, 190.21), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(simulationResults$numberOfSubjects[2, ], c(258.86, 259.77778, 259.64646), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[2, ], collapse = ", "), ")")) expect_equal(simulationResults$numberOfSubjects[3, ], c(260, 260, 260), label = paste0("c(", paste0(simulationResults$numberOfSubjects[3, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[1, ], c(20, 20, 20), label = paste0("c(", paste0(simulationResults$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[2, ], c(85.16, 89.353535, 92.363636), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[3, ], c(92, 90.181818, 98.623656), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[3, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[1, ], c(20, 20, 20), label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[2, ], c(105.16, 109.35354, 112.36364), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[3, ], c(197.16, 199.53535, 210.98729), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[1, ], c(20, 20, 20), label = paste0("c(", paste0(simulationResults$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[2, ], c(85.16, 89.353535, 92.363636), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[3, ], c(92, 90.181818, 98.623656), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$eventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[1, ], c(20, 20, 20), label = paste0("c(", paste0(simulationResults$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[2, ], c(105.16, 109.35354, 112.36364), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[3, ], c(197.16, 199.53535, 210.98729), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[3, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[1, ], c(100, 100, 100), label = paste0("c(", paste0(simulationResults$iterations[1, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[2, ], c(100, 99, 99), label = paste0("c(", paste0(simulationResults$iterations[2, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[3, ], c(86, 88, 93), label = paste0("c(", paste0(simulationResults$iterations[3, ], collapse = ", "), ")")) @@ -1067,8 +1067,8 @@ test_that("'getSimulationSurvival': configuration 10;", { expect_equal(simulationResultsCodeBased$studyDuration, simulationResults$studyDuration, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$eventsNotAchieved, simulationResults$eventsNotAchieved, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$numberOfSubjects, simulationResults$numberOfSubjects, tolerance = 1e-07) - expect_equal(simulationResultsCodeBased$singleEventsPerStage, simulationResults$singleEventsPerStage, tolerance = 1e-07) - expect_equal(simulationResultsCodeBased$cumulativeEventsPerStage, simulationResults$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultsCodeBased$eventsPerStage, simulationResults$eventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultsCodeBased$overallEventsPerStage, simulationResults$overallEventsPerStage, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$iterations, simulationResults$iterations, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$overallReject, simulationResults$overallReject, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$rejectPerStage, simulationResults$rejectPerStage, tolerance = 1e-07) @@ -1147,12 +1147,12 @@ test_that("'getSimulationSurvival': configuration 11;", { expect_equal(simulationResults$numberOfSubjects[1, ], c(532.2, 476.1, 432.4, 414.9), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(simulationResults$numberOfSubjects[2, ], c(788.2, 681.33333, 599.66667, 562.8), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[2, ], collapse = ", "), ")")) expect_equal(simulationResults$numberOfSubjects[3, ], c(800, 778.66667, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$numberOfSubjects[3, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[1, ], c(58, 58, 58, 58), label = paste0("c(", paste0(simulationResults$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[2, ], c(162.8, 74.888889, 46, 44), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResults$singleEventsPerStage[3, ], c(162.8, 132, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$singleEventsPerStage[3, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[1, ], c(58, 58, 58, 58), label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[2, ], c(220.8, 132.88889, 104, 102), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResults$cumulativeEventsPerStage[3, ], c(383.6, 264.88889, 104, 102), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$cumulativeEventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[1, ], c(58, 58, 58, 58), label = paste0("c(", paste0(simulationResults$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[2, ], c(162.8, 74.888889, 46, 44), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResults$eventsPerStage[3, ], c(162.8, 132, NA_real_, NA_real_), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$eventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[1, ], c(58, 58, 58, 58), label = paste0("c(", paste0(simulationResults$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[2, ], c(220.8, 132.88889, 104, 102), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResults$overallEventsPerStage[3, ], c(383.6, 264.88889, 104, 102), tolerance = 1e-07, label = paste0("c(", paste0(simulationResults$overallEventsPerStage[3, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[1, ], c(10, 10, 10, 10), label = paste0("c(", paste0(simulationResults$iterations[1, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[2, ], c(10, 9, 6, 5), label = paste0("c(", paste0(simulationResults$iterations[2, ], collapse = ", "), ")")) expect_equal(simulationResults$iterations[3, ], c(10, 3, 0, 0), label = paste0("c(", paste0(simulationResults$iterations[3, ], collapse = ", "), ")")) @@ -1193,8 +1193,8 @@ test_that("'getSimulationSurvival': configuration 11;", { expect_equal(simulationResultsCodeBased$studyDuration, simulationResults$studyDuration, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$eventsNotAchieved, simulationResults$eventsNotAchieved, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$numberOfSubjects, simulationResults$numberOfSubjects, tolerance = 1e-07) - expect_equal(simulationResultsCodeBased$singleEventsPerStage, simulationResults$singleEventsPerStage, tolerance = 1e-07) - expect_equal(simulationResultsCodeBased$cumulativeEventsPerStage, simulationResults$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultsCodeBased$eventsPerStage, simulationResults$eventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultsCodeBased$overallEventsPerStage, simulationResults$overallEventsPerStage, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$iterations, simulationResults$iterations, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$overallReject, simulationResults$overallReject, tolerance = 1e-07) expect_equal(simulationResultsCodeBased$rejectPerStage, simulationResults$rejectPerStage, tolerance = 1e-07) @@ -1772,10 +1772,10 @@ test_that("'getSimulationSurvival': Specify effect size for a two-stage group de expect_equal(simulationResult$eventsNotAchieved[2, ], 0, label = paste0("c(", paste0(simulationResult$eventsNotAchieved[2, ], collapse = ", "), ")")) expect_equal(simulationResult$numberOfSubjects[1, ], 199.47, tolerance = 1e-07, label = paste0("c(", paste0(simulationResult$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(simulationResult$numberOfSubjects[2, ], 200, label = paste0("c(", paste0(simulationResult$numberOfSubjects[2, ], collapse = ", "), ")")) - expect_equal(simulationResult$singleEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResult$singleEventsPerStage[2, ], 20, label = paste0("c(", paste0(simulationResult$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResult$cumulativeEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResult$cumulativeEventsPerStage[2, ], 40, label = paste0("c(", paste0(simulationResult$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResult$eventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResult$eventsPerStage[2, ], 20, label = paste0("c(", paste0(simulationResult$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResult$overallEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResult$overallEventsPerStage[2, ], 40, label = paste0("c(", paste0(simulationResult$overallEventsPerStage[2, ], collapse = ", "), ")")) expect_equal(simulationResult$iterations[1, ], 100, label = paste0("c(", paste0(simulationResult$iterations[1, ], collapse = ", "), ")")) expect_equal(simulationResult$iterations[2, ], 97, label = paste0("c(", paste0(simulationResult$iterations[2, ], collapse = ", "), ")")) expect_equal(simulationResult$overallReject, 0.27, tolerance = 1e-07, label = paste0("c(", paste0(simulationResult$overallReject, collapse = ", "), ")")) @@ -1803,8 +1803,8 @@ test_that("'getSimulationSurvival': Specify effect size for a two-stage group de expect_equal(simulationResultCodeBased$studyDuration, simulationResult$studyDuration, tolerance = 1e-07) expect_equal(simulationResultCodeBased$eventsNotAchieved, simulationResult$eventsNotAchieved, tolerance = 1e-07) expect_equal(simulationResultCodeBased$numberOfSubjects, simulationResult$numberOfSubjects, tolerance = 1e-07) - expect_equal(simulationResultCodeBased$singleEventsPerStage, simulationResult$singleEventsPerStage, tolerance = 1e-07) - expect_equal(simulationResultCodeBased$cumulativeEventsPerStage, simulationResult$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultCodeBased$eventsPerStage, simulationResult$eventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultCodeBased$overallEventsPerStage, simulationResult$overallEventsPerStage, tolerance = 1e-07) expect_equal(simulationResultCodeBased$iterations, simulationResult$iterations, tolerance = 1e-07) expect_equal(simulationResultCodeBased$overallReject, simulationResult$overallReject, tolerance = 1e-07) expect_equal(simulationResultCodeBased$rejectPerStage, simulationResult$rejectPerStage, tolerance = 1e-07) @@ -1852,12 +1852,12 @@ test_that("'getSimulationSurvival': As above, but with a three-stage O'Brien and expect_equal(simulationResult$numberOfSubjects[1, ], 195.313, tolerance = 1e-07, label = paste0("c(", paste0(simulationResult$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(simulationResult$numberOfSubjects[2, ], 200, label = paste0("c(", paste0(simulationResult$numberOfSubjects[2, ], collapse = ", "), ")")) expect_equal(simulationResult$numberOfSubjects[3, ], 200, label = paste0("c(", paste0(simulationResult$numberOfSubjects[3, ], collapse = ", "), ")")) - expect_equal(simulationResult$singleEventsPerStage[1, ], 16, label = paste0("c(", paste0(simulationResult$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResult$singleEventsPerStage[2, ], 12, label = paste0("c(", paste0(simulationResult$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResult$singleEventsPerStage[3, ], 12, label = paste0("c(", paste0(simulationResult$singleEventsPerStage[3, ], collapse = ", "), ")")) - expect_equal(simulationResult$cumulativeEventsPerStage[1, ], 16, label = paste0("c(", paste0(simulationResult$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResult$cumulativeEventsPerStage[2, ], 28, label = paste0("c(", paste0(simulationResult$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResult$cumulativeEventsPerStage[3, ], 40, label = paste0("c(", paste0(simulationResult$cumulativeEventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResult$eventsPerStage[1, ], 16, label = paste0("c(", paste0(simulationResult$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResult$eventsPerStage[2, ], 12, label = paste0("c(", paste0(simulationResult$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResult$eventsPerStage[3, ], 12, label = paste0("c(", paste0(simulationResult$eventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simulationResult$overallEventsPerStage[1, ], 16, label = paste0("c(", paste0(simulationResult$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResult$overallEventsPerStage[2, ], 28, label = paste0("c(", paste0(simulationResult$overallEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResult$overallEventsPerStage[3, ], 40, label = paste0("c(", paste0(simulationResult$overallEventsPerStage[3, ], collapse = ", "), ")")) expect_equal(simulationResult$iterations[1, ], 1000, label = paste0("c(", paste0(simulationResult$iterations[1, ], collapse = ", "), ")")) expect_equal(simulationResult$iterations[2, ], 985, label = paste0("c(", paste0(simulationResult$iterations[2, ], collapse = ", "), ")")) expect_equal(simulationResult$iterations[3, ], 861, label = paste0("c(", paste0(simulationResult$iterations[3, ], collapse = ", "), ")")) @@ -1890,8 +1890,8 @@ test_that("'getSimulationSurvival': As above, but with a three-stage O'Brien and expect_equal(simulationResultCodeBased$studyDuration, simulationResult$studyDuration, tolerance = 1e-07) expect_equal(simulationResultCodeBased$eventsNotAchieved, simulationResult$eventsNotAchieved, tolerance = 1e-07) expect_equal(simulationResultCodeBased$numberOfSubjects, simulationResult$numberOfSubjects, tolerance = 1e-07) - expect_equal(simulationResultCodeBased$singleEventsPerStage, simulationResult$singleEventsPerStage, tolerance = 1e-07) - expect_equal(simulationResultCodeBased$cumulativeEventsPerStage, simulationResult$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultCodeBased$eventsPerStage, simulationResult$eventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultCodeBased$overallEventsPerStage, simulationResult$overallEventsPerStage, tolerance = 1e-07) expect_equal(simulationResultCodeBased$iterations, simulationResult$iterations, tolerance = 1e-07) expect_equal(simulationResultCodeBased$overallReject, simulationResult$overallReject, tolerance = 1e-07) expect_equal(simulationResultCodeBased$rejectPerStage, simulationResult$rejectPerStage, tolerance = 1e-07) @@ -1936,10 +1936,10 @@ test_that("'getSimulationSurvival': Effect size is based on event rate at specif expect_equal(simulationResult$eventsNotAchieved[2, ], 0, label = paste0("c(", paste0(simulationResult$eventsNotAchieved[2, ], collapse = ", "), ")")) expect_equal(simulationResult$numberOfSubjects[1, ], 199.69, tolerance = 1e-07, label = paste0("c(", paste0(simulationResult$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(simulationResult$numberOfSubjects[2, ], 200, label = paste0("c(", paste0(simulationResult$numberOfSubjects[2, ], collapse = ", "), ")")) - expect_equal(simulationResult$singleEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResult$singleEventsPerStage[2, ], 20, label = paste0("c(", paste0(simulationResult$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResult$cumulativeEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResult$cumulativeEventsPerStage[2, ], 40, label = paste0("c(", paste0(simulationResult$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResult$eventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResult$eventsPerStage[2, ], 20, label = paste0("c(", paste0(simulationResult$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResult$overallEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResult$overallEventsPerStage[2, ], 40, label = paste0("c(", paste0(simulationResult$overallEventsPerStage[2, ], collapse = ", "), ")")) expect_equal(simulationResult$iterations[1, ], 100, label = paste0("c(", paste0(simulationResult$iterations[1, ], collapse = ", "), ")")) expect_equal(simulationResult$iterations[2, ], 92, label = paste0("c(", paste0(simulationResult$iterations[2, ], collapse = ", "), ")")) expect_equal(simulationResult$overallReject, 0.52, tolerance = 1e-07, label = paste0("c(", paste0(simulationResult$overallReject, collapse = ", "), ")")) @@ -1967,8 +1967,8 @@ test_that("'getSimulationSurvival': Effect size is based on event rate at specif expect_equal(simulationResultCodeBased$studyDuration, simulationResult$studyDuration, tolerance = 1e-07) expect_equal(simulationResultCodeBased$eventsNotAchieved, simulationResult$eventsNotAchieved, tolerance = 1e-07) expect_equal(simulationResultCodeBased$numberOfSubjects, simulationResult$numberOfSubjects, tolerance = 1e-07) - expect_equal(simulationResultCodeBased$singleEventsPerStage, simulationResult$singleEventsPerStage, tolerance = 1e-07) - expect_equal(simulationResultCodeBased$cumulativeEventsPerStage, simulationResult$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultCodeBased$eventsPerStage, simulationResult$eventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultCodeBased$overallEventsPerStage, simulationResult$overallEventsPerStage, tolerance = 1e-07) expect_equal(simulationResultCodeBased$iterations, simulationResult$iterations, tolerance = 1e-07) expect_equal(simulationResultCodeBased$overallReject, simulationResult$overallReject, tolerance = 1e-07) expect_equal(simulationResultCodeBased$rejectPerStage, simulationResult$rejectPerStage, tolerance = 1e-07) @@ -2010,10 +2010,10 @@ test_that("'getSimulationSurvival': Effect size is based on hazard rate for the expect_equal(simulationResult$eventsNotAchieved[2, ], 0, label = paste0("c(", paste0(simulationResult$eventsNotAchieved[2, ], collapse = ", "), ")")) expect_equal(simulationResult$numberOfSubjects[1, ], 195.5, tolerance = 1e-07, label = paste0("c(", paste0(simulationResult$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(simulationResult$numberOfSubjects[2, ], 200, label = paste0("c(", paste0(simulationResult$numberOfSubjects[2, ], collapse = ", "), ")")) - expect_equal(simulationResult$singleEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResult$singleEventsPerStage[2, ], 20, label = paste0("c(", paste0(simulationResult$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResult$cumulativeEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResult$cumulativeEventsPerStage[2, ], 40, label = paste0("c(", paste0(simulationResult$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResult$eventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResult$eventsPerStage[2, ], 20, label = paste0("c(", paste0(simulationResult$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResult$overallEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResult$overallEventsPerStage[2, ], 40, label = paste0("c(", paste0(simulationResult$overallEventsPerStage[2, ], collapse = ", "), ")")) expect_equal(simulationResult$iterations[1, ], 100, label = paste0("c(", paste0(simulationResult$iterations[1, ], collapse = ", "), ")")) expect_equal(simulationResult$iterations[2, ], 94, label = paste0("c(", paste0(simulationResult$iterations[2, ], collapse = ", "), ")")) expect_equal(simulationResult$overallReject, 0.49, tolerance = 1e-07, label = paste0("c(", paste0(simulationResult$overallReject, collapse = ", "), ")")) @@ -2039,8 +2039,8 @@ test_that("'getSimulationSurvival': Effect size is based on hazard rate for the expect_equal(simulationResultCodeBased$studyDuration, simulationResult$studyDuration, tolerance = 1e-07) expect_equal(simulationResultCodeBased$eventsNotAchieved, simulationResult$eventsNotAchieved, tolerance = 1e-07) expect_equal(simulationResultCodeBased$numberOfSubjects, simulationResult$numberOfSubjects, tolerance = 1e-07) - expect_equal(simulationResultCodeBased$singleEventsPerStage, simulationResult$singleEventsPerStage, tolerance = 1e-07) - expect_equal(simulationResultCodeBased$cumulativeEventsPerStage, simulationResult$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultCodeBased$eventsPerStage, simulationResult$eventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultCodeBased$overallEventsPerStage, simulationResult$overallEventsPerStage, tolerance = 1e-07) expect_equal(simulationResultCodeBased$iterations, simulationResult$iterations, tolerance = 1e-07) expect_equal(simulationResultCodeBased$overallReject, simulationResult$overallReject, tolerance = 1e-07) expect_equal(simulationResultCodeBased$rejectPerStage, simulationResult$rejectPerStage, tolerance = 1e-07) @@ -2081,10 +2081,10 @@ test_that("'getSimulationSurvival': Specification of piecewise exponential survi expect_equal(simulationResult$eventsNotAchieved[2, ], 0, label = paste0("c(", paste0(simulationResult$eventsNotAchieved[2, ], collapse = ", "), ")")) expect_equal(simulationResult$numberOfSubjects[1, ], 193.51, tolerance = 1e-07, label = paste0("c(", paste0(simulationResult$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(simulationResult$numberOfSubjects[2, ], 200, label = paste0("c(", paste0(simulationResult$numberOfSubjects[2, ], collapse = ", "), ")")) - expect_equal(simulationResult$singleEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResult$singleEventsPerStage[2, ], 20, label = paste0("c(", paste0(simulationResult$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResult$cumulativeEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResult$cumulativeEventsPerStage[2, ], 40, label = paste0("c(", paste0(simulationResult$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResult$eventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResult$eventsPerStage[2, ], 20, label = paste0("c(", paste0(simulationResult$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResult$overallEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResult$overallEventsPerStage[2, ], 40, label = paste0("c(", paste0(simulationResult$overallEventsPerStage[2, ], collapse = ", "), ")")) expect_equal(simulationResult$iterations[1, ], 100, label = paste0("c(", paste0(simulationResult$iterations[1, ], collapse = ", "), ")")) expect_equal(simulationResult$iterations[2, ], 96, label = paste0("c(", paste0(simulationResult$iterations[2, ], collapse = ", "), ")")) expect_equal(simulationResult$overallReject, 0.32, tolerance = 1e-07, label = paste0("c(", paste0(simulationResult$overallReject, collapse = ", "), ")")) @@ -2108,8 +2108,8 @@ test_that("'getSimulationSurvival': Specification of piecewise exponential survi expect_equal(simulationResultCodeBased$studyDuration, simulationResult$studyDuration, tolerance = 1e-07) expect_equal(simulationResultCodeBased$eventsNotAchieved, simulationResult$eventsNotAchieved, tolerance = 1e-07) expect_equal(simulationResultCodeBased$numberOfSubjects, simulationResult$numberOfSubjects, tolerance = 1e-07) - expect_equal(simulationResultCodeBased$singleEventsPerStage, simulationResult$singleEventsPerStage, tolerance = 1e-07) - expect_equal(simulationResultCodeBased$cumulativeEventsPerStage, simulationResult$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultCodeBased$eventsPerStage, simulationResult$eventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultCodeBased$overallEventsPerStage, simulationResult$overallEventsPerStage, tolerance = 1e-07) expect_equal(simulationResultCodeBased$iterations, simulationResult$iterations, tolerance = 1e-07) expect_equal(simulationResultCodeBased$overallReject, simulationResult$overallReject, tolerance = 1e-07) expect_equal(simulationResultCodeBased$rejectPerStage, simulationResult$rejectPerStage, tolerance = 1e-07) @@ -2145,10 +2145,10 @@ test_that("'getSimulationSurvival': Specification of piecewise exponential survi expect_equal(simulationResult$eventsNotAchieved[2, ], 0, label = paste0("c(", paste0(simulationResult$eventsNotAchieved[2, ], collapse = ", "), ")")) expect_equal(simulationResult$numberOfSubjects[1, ], 193.51, tolerance = 1e-07, label = paste0("c(", paste0(simulationResult$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(simulationResult$numberOfSubjects[2, ], 200, label = paste0("c(", paste0(simulationResult$numberOfSubjects[2, ], collapse = ", "), ")")) - expect_equal(simulationResult$singleEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResult$singleEventsPerStage[2, ], 20, label = paste0("c(", paste0(simulationResult$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResult$cumulativeEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResult$cumulativeEventsPerStage[2, ], 40, label = paste0("c(", paste0(simulationResult$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResult$eventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResult$eventsPerStage[2, ], 20, label = paste0("c(", paste0(simulationResult$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResult$overallEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResult$overallEventsPerStage[2, ], 40, label = paste0("c(", paste0(simulationResult$overallEventsPerStage[2, ], collapse = ", "), ")")) expect_equal(simulationResult$iterations[1, ], 100, label = paste0("c(", paste0(simulationResult$iterations[1, ], collapse = ", "), ")")) expect_equal(simulationResult$iterations[2, ], 96, label = paste0("c(", paste0(simulationResult$iterations[2, ], collapse = ", "), ")")) expect_equal(simulationResult$overallReject, 0.32, tolerance = 1e-07, label = paste0("c(", paste0(simulationResult$overallReject, collapse = ", "), ")")) @@ -2172,8 +2172,8 @@ test_that("'getSimulationSurvival': Specification of piecewise exponential survi expect_equal(simulationResultCodeBased$studyDuration, simulationResult$studyDuration, tolerance = 1e-07) expect_equal(simulationResultCodeBased$eventsNotAchieved, simulationResult$eventsNotAchieved, tolerance = 1e-07) expect_equal(simulationResultCodeBased$numberOfSubjects, simulationResult$numberOfSubjects, tolerance = 1e-07) - expect_equal(simulationResultCodeBased$singleEventsPerStage, simulationResult$singleEventsPerStage, tolerance = 1e-07) - expect_equal(simulationResultCodeBased$cumulativeEventsPerStage, simulationResult$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultCodeBased$eventsPerStage, simulationResult$eventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultCodeBased$overallEventsPerStage, simulationResult$overallEventsPerStage, tolerance = 1e-07) expect_equal(simulationResultCodeBased$iterations, simulationResult$iterations, tolerance = 1e-07) expect_equal(simulationResultCodeBased$overallReject, simulationResult$overallReject, tolerance = 1e-07) expect_equal(simulationResultCodeBased$rejectPerStage, simulationResult$rejectPerStage, tolerance = 1e-07) @@ -2214,10 +2214,10 @@ test_that("'getSimulationSurvival': Specification of piecewise exponential survi expect_equal(simulationResult$eventsNotAchieved[2, ], 0, label = paste0("c(", paste0(simulationResult$eventsNotAchieved[2, ], collapse = ", "), ")")) expect_equal(simulationResult$numberOfSubjects[1, ], 193.51, tolerance = 1e-07, label = paste0("c(", paste0(simulationResult$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(simulationResult$numberOfSubjects[2, ], 200, label = paste0("c(", paste0(simulationResult$numberOfSubjects[2, ], collapse = ", "), ")")) - expect_equal(simulationResult$singleEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResult$singleEventsPerStage[2, ], 20, label = paste0("c(", paste0(simulationResult$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResult$cumulativeEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResult$cumulativeEventsPerStage[2, ], 40, label = paste0("c(", paste0(simulationResult$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResult$eventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResult$eventsPerStage[2, ], 20, label = paste0("c(", paste0(simulationResult$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResult$overallEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResult$overallEventsPerStage[2, ], 40, label = paste0("c(", paste0(simulationResult$overallEventsPerStage[2, ], collapse = ", "), ")")) expect_equal(simulationResult$iterations[1, ], 100, label = paste0("c(", paste0(simulationResult$iterations[1, ], collapse = ", "), ")")) expect_equal(simulationResult$iterations[2, ], 96, label = paste0("c(", paste0(simulationResult$iterations[2, ], collapse = ", "), ")")) expect_equal(simulationResult$overallReject, 0.32, tolerance = 1e-07, label = paste0("c(", paste0(simulationResult$overallReject, collapse = ", "), ")")) @@ -2241,8 +2241,8 @@ test_that("'getSimulationSurvival': Specification of piecewise exponential survi expect_equal(simulationResultCodeBased$studyDuration, simulationResult$studyDuration, tolerance = 1e-07) expect_equal(simulationResultCodeBased$eventsNotAchieved, simulationResult$eventsNotAchieved, tolerance = 1e-07) expect_equal(simulationResultCodeBased$numberOfSubjects, simulationResult$numberOfSubjects, tolerance = 1e-07) - expect_equal(simulationResultCodeBased$singleEventsPerStage, simulationResult$singleEventsPerStage, tolerance = 1e-07) - expect_equal(simulationResultCodeBased$cumulativeEventsPerStage, simulationResult$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultCodeBased$eventsPerStage, simulationResult$eventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultCodeBased$overallEventsPerStage, simulationResult$overallEventsPerStage, tolerance = 1e-07) expect_equal(simulationResultCodeBased$iterations, simulationResult$iterations, tolerance = 1e-07) expect_equal(simulationResultCodeBased$overallReject, simulationResult$overallReject, tolerance = 1e-07) expect_equal(simulationResultCodeBased$rejectPerStage, simulationResult$rejectPerStage, tolerance = 1e-07) @@ -2278,10 +2278,10 @@ test_that("'getSimulationSurvival': Specification of piecewise exponential survi expect_equal(simulationResult$eventsNotAchieved[2, ], 0, label = paste0("c(", paste0(simulationResult$eventsNotAchieved[2, ], collapse = ", "), ")")) expect_equal(simulationResult$numberOfSubjects[1, ], 193.51, tolerance = 1e-07, label = paste0("c(", paste0(simulationResult$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(simulationResult$numberOfSubjects[2, ], 200, label = paste0("c(", paste0(simulationResult$numberOfSubjects[2, ], collapse = ", "), ")")) - expect_equal(simulationResult$singleEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResult$singleEventsPerStage[2, ], 20, label = paste0("c(", paste0(simulationResult$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResult$cumulativeEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResult$cumulativeEventsPerStage[2, ], 40, label = paste0("c(", paste0(simulationResult$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResult$eventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResult$eventsPerStage[2, ], 20, label = paste0("c(", paste0(simulationResult$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResult$overallEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResult$overallEventsPerStage[2, ], 40, label = paste0("c(", paste0(simulationResult$overallEventsPerStage[2, ], collapse = ", "), ")")) expect_equal(simulationResult$iterations[1, ], 100, label = paste0("c(", paste0(simulationResult$iterations[1, ], collapse = ", "), ")")) expect_equal(simulationResult$iterations[2, ], 96, label = paste0("c(", paste0(simulationResult$iterations[2, ], collapse = ", "), ")")) expect_equal(simulationResult$overallReject, 0.32, tolerance = 1e-07, label = paste0("c(", paste0(simulationResult$overallReject, collapse = ", "), ")")) @@ -2305,8 +2305,8 @@ test_that("'getSimulationSurvival': Specification of piecewise exponential survi expect_equal(simulationResultCodeBased$studyDuration, simulationResult$studyDuration, tolerance = 1e-07) expect_equal(simulationResultCodeBased$eventsNotAchieved, simulationResult$eventsNotAchieved, tolerance = 1e-07) expect_equal(simulationResultCodeBased$numberOfSubjects, simulationResult$numberOfSubjects, tolerance = 1e-07) - expect_equal(simulationResultCodeBased$singleEventsPerStage, simulationResult$singleEventsPerStage, tolerance = 1e-07) - expect_equal(simulationResultCodeBased$cumulativeEventsPerStage, simulationResult$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultCodeBased$eventsPerStage, simulationResult$eventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultCodeBased$overallEventsPerStage, simulationResult$overallEventsPerStage, tolerance = 1e-07) expect_equal(simulationResultCodeBased$iterations, simulationResult$iterations, tolerance = 1e-07) expect_equal(simulationResultCodeBased$overallReject, simulationResult$overallReject, tolerance = 1e-07) expect_equal(simulationResultCodeBased$rejectPerStage, simulationResult$rejectPerStage, tolerance = 1e-07) @@ -2341,10 +2341,10 @@ test_that("'getSimulationSurvival': Specification of piecewise exponential survi expect_equal(simulationResult$eventsNotAchieved[2, ], 0, label = paste0("c(", paste0(simulationResult$eventsNotAchieved[2, ], collapse = ", "), ")")) expect_equal(simulationResult$numberOfSubjects[1, ], 197.81, tolerance = 1e-07, label = paste0("c(", paste0(simulationResult$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(simulationResult$numberOfSubjects[2, ], 200, label = paste0("c(", paste0(simulationResult$numberOfSubjects[2, ], collapse = ", "), ")")) - expect_equal(simulationResult$singleEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResult$singleEventsPerStage[2, ], 20, label = paste0("c(", paste0(simulationResult$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simulationResult$cumulativeEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simulationResult$cumulativeEventsPerStage[2, ], 40, label = paste0("c(", paste0(simulationResult$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResult$eventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResult$eventsPerStage[2, ], 20, label = paste0("c(", paste0(simulationResult$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simulationResult$overallEventsPerStage[1, ], 20, label = paste0("c(", paste0(simulationResult$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simulationResult$overallEventsPerStage[2, ], 40, label = paste0("c(", paste0(simulationResult$overallEventsPerStage[2, ], collapse = ", "), ")")) expect_equal(simulationResult$iterations[1, ], 100, label = paste0("c(", paste0(simulationResult$iterations[1, ], collapse = ", "), ")")) expect_equal(simulationResult$iterations[2, ], 100, label = paste0("c(", paste0(simulationResult$iterations[2, ], collapse = ", "), ")")) expect_equal(simulationResult$overallReject, 0.06, tolerance = 1e-07, label = paste0("c(", paste0(simulationResult$overallReject, collapse = ", "), ")")) @@ -2368,8 +2368,8 @@ test_that("'getSimulationSurvival': Specification of piecewise exponential survi expect_equal(simulationResultCodeBased$studyDuration, simulationResult$studyDuration, tolerance = 1e-07) expect_equal(simulationResultCodeBased$eventsNotAchieved, simulationResult$eventsNotAchieved, tolerance = 1e-07) expect_equal(simulationResultCodeBased$numberOfSubjects, simulationResult$numberOfSubjects, tolerance = 1e-07) - expect_equal(simulationResultCodeBased$singleEventsPerStage, simulationResult$singleEventsPerStage, tolerance = 1e-07) - expect_equal(simulationResultCodeBased$cumulativeEventsPerStage, simulationResult$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultCodeBased$eventsPerStage, simulationResult$eventsPerStage, tolerance = 1e-07) + expect_equal(simulationResultCodeBased$overallEventsPerStage, simulationResult$overallEventsPerStage, tolerance = 1e-07) expect_equal(simulationResultCodeBased$iterations, simulationResult$iterations, tolerance = 1e-07) expect_equal(simulationResultCodeBased$overallReject, simulationResult$overallReject, tolerance = 1e-07) expect_equal(simulationResultCodeBased$rejectPerStage, simulationResult$rejectPerStage, tolerance = 1e-07) @@ -2427,12 +2427,12 @@ test_that("'getSimulationSurvival': Perform recalculation of number of events ba expect_equal(resultsWithSSR1$numberOfSubjects[1, ], c(531.25, 521.07, 500.8, 498.42, 488.13, 473.47, 464.37), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR1$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(resultsWithSSR1$numberOfSubjects[2, ], c(800, 800, 799.45, 798.66327, 796.55208, 797.06061, 793.47826), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR1$numberOfSubjects[2, ], collapse = ", "), ")")) expect_equal(resultsWithSSR1$numberOfSubjects[3, ], c(800, 800, 800, 800, 800, 800, 800), label = paste0("c(", paste0(resultsWithSSR1$numberOfSubjects[3, ], collapse = ", "), ")")) - expect_equal(resultsWithSSR1$singleEventsPerStage[1, ], c(58, 58, 58, 58, 58, 58, 58), label = paste0("c(", paste0(resultsWithSSR1$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(resultsWithSSR1$singleEventsPerStage[2, ], c(175.65, 173.27, 171.84, 171.43878, 170.57292, 169.67677, 161.44565), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR1$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(resultsWithSSR1$singleEventsPerStage[3, ], c(175.28125, 169.51042, 154.10227, 148.89552, 137.3, 142.17143, 133.72727), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR1$singleEventsPerStage[3, ], collapse = ", "), ")")) - expect_equal(resultsWithSSR1$cumulativeEventsPerStage[1, ], c(58, 58, 58, 58, 58, 58, 58), label = paste0("c(", paste0(resultsWithSSR1$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(resultsWithSSR1$cumulativeEventsPerStage[2, ], c(233.65, 231.27, 229.84, 229.43878, 228.57292, 227.67677, 219.44565), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR1$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(resultsWithSSR1$cumulativeEventsPerStage[3, ], c(408.93125, 400.78042, 383.94227, 378.3343, 365.87292, 369.8482, 353.17292), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR1$cumulativeEventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(resultsWithSSR1$eventsPerStage[1, ], c(58, 58, 58, 58, 58, 58, 58), label = paste0("c(", paste0(resultsWithSSR1$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(resultsWithSSR1$eventsPerStage[2, ], c(175.65, 173.27, 171.84, 171.43878, 170.57292, 169.67677, 161.44565), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR1$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(resultsWithSSR1$eventsPerStage[3, ], c(175.28125, 169.51042, 154.10227, 148.89552, 137.3, 142.17143, 133.72727), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR1$eventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(resultsWithSSR1$overallEventsPerStage[1, ], c(58, 58, 58, 58, 58, 58, 58), label = paste0("c(", paste0(resultsWithSSR1$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(resultsWithSSR1$overallEventsPerStage[2, ], c(233.65, 231.27, 229.84, 229.43878, 228.57292, 227.67677, 219.44565), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR1$overallEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(resultsWithSSR1$overallEventsPerStage[3, ], c(408.93125, 400.78042, 383.94227, 378.3343, 365.87292, 369.8482, 353.17292), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR1$overallEventsPerStage[3, ], collapse = ", "), ")")) expect_equal(resultsWithSSR1$iterations[1, ], c(100, 100, 100, 100, 100, 100, 100), label = paste0("c(", paste0(resultsWithSSR1$iterations[1, ], collapse = ", "), ")")) expect_equal(resultsWithSSR1$iterations[2, ], c(100, 100, 100, 98, 96, 99, 92), label = paste0("c(", paste0(resultsWithSSR1$iterations[2, ], collapse = ", "), ")")) expect_equal(resultsWithSSR1$iterations[3, ], c(96, 96, 88, 67, 50, 35, 11), label = paste0("c(", paste0(resultsWithSSR1$iterations[3, ], collapse = ", "), ")")) @@ -2465,8 +2465,8 @@ test_that("'getSimulationSurvival': Perform recalculation of number of events ba expect_equal(resultsWithSSR1CodeBased$studyDuration, resultsWithSSR1$studyDuration, tolerance = 1e-07) expect_equal(resultsWithSSR1CodeBased$eventsNotAchieved, resultsWithSSR1$eventsNotAchieved, tolerance = 1e-07) expect_equal(resultsWithSSR1CodeBased$numberOfSubjects, resultsWithSSR1$numberOfSubjects, tolerance = 1e-07) - expect_equal(resultsWithSSR1CodeBased$singleEventsPerStage, resultsWithSSR1$singleEventsPerStage, tolerance = 1e-07) - expect_equal(resultsWithSSR1CodeBased$cumulativeEventsPerStage, resultsWithSSR1$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(resultsWithSSR1CodeBased$eventsPerStage, resultsWithSSR1$eventsPerStage, tolerance = 1e-07) + expect_equal(resultsWithSSR1CodeBased$overallEventsPerStage, resultsWithSSR1$overallEventsPerStage, tolerance = 1e-07) expect_equal(resultsWithSSR1CodeBased$iterations, resultsWithSSR1$iterations, tolerance = 1e-07) expect_equal(resultsWithSSR1CodeBased$overallReject, resultsWithSSR1$overallReject, tolerance = 1e-07) expect_equal(resultsWithSSR1CodeBased$rejectPerStage, resultsWithSSR1$rejectPerStage, tolerance = 1e-07) @@ -2513,12 +2513,12 @@ test_that("'getSimulationSurvival': Perform recalculation of number of events ba expect_equal(resultsWithSSR2$numberOfSubjects[1, ], c(531.25, 521.07, 500.8, 498.42, 488.13, 473.47, 464.37), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR2$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(resultsWithSSR2$numberOfSubjects[2, ], c(798.3, 792.67, 784.71, 785.72449, 774.40625, 754.47475, 731), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR2$numberOfSubjects[2, ], collapse = ", "), ")")) expect_equal(resultsWithSSR2$numberOfSubjects[3, ], c(800, 800, 800, 800, 799.08333, 797.51111, 794.95238), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR2$numberOfSubjects[3, ], collapse = ", "), ")")) - expect_equal(resultsWithSSR2$singleEventsPerStage[1, ], c(58, 58, 58, 58, 58, 58, 58), label = paste0("c(", paste0(resultsWithSSR2$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(resultsWithSSR2$singleEventsPerStage[2, ], c(171.71, 164.76, 155.91, 152.63265, 143.21875, 127.82828, 113.84783), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR2$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(resultsWithSSR2$singleEventsPerStage[3, ], c(173.88889, 169.45263, 147.34783, 139.60563, 120.25, 125.66667, 100.2381), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR2$singleEventsPerStage[3, ], collapse = ", "), ")")) - expect_equal(resultsWithSSR2$cumulativeEventsPerStage[1, ], c(58, 58, 58, 58, 58, 58, 58), label = paste0("c(", paste0(resultsWithSSR2$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(resultsWithSSR2$cumulativeEventsPerStage[2, ], c(229.71, 222.76, 213.91, 210.63265, 201.21875, 185.82828, 171.84783), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR2$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(resultsWithSSR2$cumulativeEventsPerStage[3, ], c(403.59889, 392.21263, 361.25783, 350.23829, 321.46875, 311.49495, 272.08592), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR2$cumulativeEventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(resultsWithSSR2$eventsPerStage[1, ], c(58, 58, 58, 58, 58, 58, 58), label = paste0("c(", paste0(resultsWithSSR2$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(resultsWithSSR2$eventsPerStage[2, ], c(171.71, 164.76, 155.91, 152.63265, 143.21875, 127.82828, 113.84783), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR2$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(resultsWithSSR2$eventsPerStage[3, ], c(173.88889, 169.45263, 147.34783, 139.60563, 120.25, 125.66667, 100.2381), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR2$eventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(resultsWithSSR2$overallEventsPerStage[1, ], c(58, 58, 58, 58, 58, 58, 58), label = paste0("c(", paste0(resultsWithSSR2$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(resultsWithSSR2$overallEventsPerStage[2, ], c(229.71, 222.76, 213.91, 210.63265, 201.21875, 185.82828, 171.84783), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR2$overallEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(resultsWithSSR2$overallEventsPerStage[3, ], c(403.59889, 392.21263, 361.25783, 350.23829, 321.46875, 311.49495, 272.08592), tolerance = 1e-07, label = paste0("c(", paste0(resultsWithSSR2$overallEventsPerStage[3, ], collapse = ", "), ")")) expect_equal(resultsWithSSR2$iterations[1, ], c(100, 100, 100, 100, 100, 100, 100), label = paste0("c(", paste0(resultsWithSSR2$iterations[1, ], collapse = ", "), ")")) expect_equal(resultsWithSSR2$iterations[2, ], c(100, 100, 100, 98, 96, 99, 92), label = paste0("c(", paste0(resultsWithSSR2$iterations[2, ], collapse = ", "), ")")) expect_equal(resultsWithSSR2$iterations[3, ], c(99, 95, 92, 71, 60, 45, 21), label = paste0("c(", paste0(resultsWithSSR2$iterations[3, ], collapse = ", "), ")")) @@ -2551,8 +2551,8 @@ test_that("'getSimulationSurvival': Perform recalculation of number of events ba expect_equal(resultsWithSSR2CodeBased$studyDuration, resultsWithSSR2$studyDuration, tolerance = 1e-07) expect_equal(resultsWithSSR2CodeBased$eventsNotAchieved, resultsWithSSR2$eventsNotAchieved, tolerance = 1e-07) expect_equal(resultsWithSSR2CodeBased$numberOfSubjects, resultsWithSSR2$numberOfSubjects, tolerance = 1e-07) - expect_equal(resultsWithSSR2CodeBased$singleEventsPerStage, resultsWithSSR2$singleEventsPerStage, tolerance = 1e-07) - expect_equal(resultsWithSSR2CodeBased$cumulativeEventsPerStage, resultsWithSSR2$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(resultsWithSSR2CodeBased$eventsPerStage, resultsWithSSR2$eventsPerStage, tolerance = 1e-07) + expect_equal(resultsWithSSR2CodeBased$overallEventsPerStage, resultsWithSSR2$overallEventsPerStage, tolerance = 1e-07) expect_equal(resultsWithSSR2CodeBased$iterations, resultsWithSSR2$iterations, tolerance = 1e-07) expect_equal(resultsWithSSR2CodeBased$overallReject, resultsWithSSR2$overallReject, tolerance = 1e-07) expect_equal(resultsWithSSR2CodeBased$rejectPerStage, resultsWithSSR2$rejectPerStage, tolerance = 1e-07) @@ -2720,8 +2720,8 @@ test_that("'getSimulationSurvival': Confirm that different inputs of lambda, med expect_equal(x2$numberOfSubjects[1, ], x1$numberOfSubjects[1, ], tolerance = 1e-07) expect_equal(x2$numberOfSubjects1[1, ], x1$numberOfSubjects1[1, ], tolerance = 1e-07) expect_equal(x2$numberOfSubjects2[1, ], x1$numberOfSubjects2[1, ], tolerance = 1e-07) - expect_equal(x2$singleEventsPerStage[1, ], x1$singleEventsPerStage[1, ]) - expect_equal(x2$cumulativeEventsPerStage[1, ], x1$cumulativeEventsPerStage[1, ]) + expect_equal(x2$eventsPerStage[1, ], x1$eventsPerStage[1, ]) + expect_equal(x2$overallEventsPerStage[1, ], x1$overallEventsPerStage[1, ]) expect_equal(x2$expectedNumberOfSubjects, x1$expectedNumberOfSubjects, tolerance = 1e-07) expect_equal(x2$rejectPerStage[1, ], x1$rejectPerStage[1, ], tolerance = 1e-07) expect_equal(x2$overallReject, x1$overallReject, tolerance = 1e-07) @@ -2763,8 +2763,8 @@ test_that("'getSimulationSurvival': Confirm that different inputs of lambda, med expect_equal(x3$numberOfSubjects[1, ], x1$numberOfSubjects[1, ], tolerance = 1e-07) expect_equal(x3$numberOfSubjects1[1, ], x1$numberOfSubjects1[1, ], tolerance = 1e-07) expect_equal(x3$numberOfSubjects2[1, ], x1$numberOfSubjects2[1, ], tolerance = 1e-07) - expect_equal(x3$singleEventsPerStage[1, ], x1$singleEventsPerStage[1, ]) - expect_equal(x3$cumulativeEventsPerStage[1, ], x1$cumulativeEventsPerStage[1, ]) + expect_equal(x3$eventsPerStage[1, ], x1$eventsPerStage[1, ]) + expect_equal(x3$overallEventsPerStage[1, ], x1$overallEventsPerStage[1, ]) expect_equal(x3$expectedNumberOfSubjects, x1$expectedNumberOfSubjects, tolerance = 1e-07) expect_equal(x3$rejectPerStage[1, ], x1$rejectPerStage[1, ], tolerance = 1e-07) expect_equal(x3$overallReject, x1$overallReject, tolerance = 1e-07) @@ -2805,8 +2805,8 @@ test_that("'getSimulationSurvival': Confirm that different inputs of lambda, med expect_equal(x4$numberOfSubjects[1, ], x1$numberOfSubjects[1, ], tolerance = 1e-07) expect_equal(x4$numberOfSubjects1[1, ], x1$numberOfSubjects1[1, ], tolerance = 1e-07) expect_equal(x4$numberOfSubjects2[1, ], x1$numberOfSubjects2[1, ], tolerance = 1e-07) - expect_equal(x4$singleEventsPerStage[1, ], x1$singleEventsPerStage[1, ]) - expect_equal(x4$cumulativeEventsPerStage[1, ], x1$cumulativeEventsPerStage[1, ]) + expect_equal(x4$eventsPerStage[1, ], x1$eventsPerStage[1, ]) + expect_equal(x4$overallEventsPerStage[1, ], x1$overallEventsPerStage[1, ]) expect_equal(x4$expectedNumberOfSubjects, x1$expectedNumberOfSubjects, tolerance = 1e-07) expect_equal(x4$rejectPerStage[1, ], x1$rejectPerStage[1, ], tolerance = 1e-07) expect_equal(x4$overallReject, x1$overallReject, tolerance = 1e-07) @@ -2848,8 +2848,8 @@ test_that("'getSimulationSurvival': Confirm that different inputs of lambda, med expect_equal(x5$numberOfSubjects[1, ], x1$numberOfSubjects[1, ], tolerance = 1e-07) expect_equal(x5$numberOfSubjects1[1, ], x1$numberOfSubjects1[1, ], tolerance = 1e-07) expect_equal(x5$numberOfSubjects2[1, ], x1$numberOfSubjects2[1, ], tolerance = 1e-07) - expect_equal(x5$singleEventsPerStage[1, ], x1$singleEventsPerStage[1, ]) - expect_equal(x5$cumulativeEventsPerStage[1, ], x1$cumulativeEventsPerStage[1, ]) + expect_equal(x5$eventsPerStage[1, ], x1$eventsPerStage[1, ]) + expect_equal(x5$overallEventsPerStage[1, ], x1$overallEventsPerStage[1, ]) expect_equal(x5$expectedNumberOfSubjects, x1$expectedNumberOfSubjects, tolerance = 1e-07) expect_equal(x5$rejectPerStage[1, ], x1$rejectPerStage[1, ], tolerance = 1e-07) expect_equal(x5$overallReject, x1$overallReject, tolerance = 1e-07) @@ -2891,8 +2891,8 @@ test_that("'getSimulationSurvival': Confirm that different inputs of lambda, med expect_equal(x6$numberOfSubjects[1, ], x1$numberOfSubjects[1, ], tolerance = 1e-07) expect_equal(x6$numberOfSubjects1[1, ], x1$numberOfSubjects1[1, ], tolerance = 1e-07) expect_equal(x6$numberOfSubjects2[1, ], x1$numberOfSubjects2[1, ], tolerance = 1e-07) - expect_equal(x6$singleEventsPerStage[1, ], x1$singleEventsPerStage[1, ]) - expect_equal(x6$cumulativeEventsPerStage[1, ], x1$cumulativeEventsPerStage[1, ]) + expect_equal(x6$eventsPerStage[1, ], x1$eventsPerStage[1, ]) + expect_equal(x6$overallEventsPerStage[1, ], x1$overallEventsPerStage[1, ]) expect_equal(x6$expectedNumberOfSubjects, x1$expectedNumberOfSubjects, tolerance = 1e-07) expect_equal(x6$rejectPerStage[1, ], x1$rejectPerStage[1, ], tolerance = 1e-07) expect_equal(x6$overallReject, x1$overallReject, tolerance = 1e-07) @@ -2934,8 +2934,8 @@ test_that("'getSimulationSurvival': Confirm that different inputs of lambda, med expect_equal(x7$numberOfSubjects[1, ], x1$numberOfSubjects[1, ], tolerance = 1e-07) expect_equal(x7$numberOfSubjects1[1, ], x1$numberOfSubjects1[1, ], tolerance = 1e-07) expect_equal(x7$numberOfSubjects2[1, ], x1$numberOfSubjects2[1, ], tolerance = 1e-07) - expect_equal(x7$singleEventsPerStage[1, ], x1$singleEventsPerStage[1, ]) - expect_equal(x7$cumulativeEventsPerStage[1, ], x1$cumulativeEventsPerStage[1, ]) + expect_equal(x7$eventsPerStage[1, ], x1$eventsPerStage[1, ]) + expect_equal(x7$overallEventsPerStage[1, ], x1$overallEventsPerStage[1, ]) expect_equal(x7$expectedNumberOfSubjects, x1$expectedNumberOfSubjects, tolerance = 1e-07) expect_equal(x7$rejectPerStage[1, ], x1$rejectPerStage[1, ], tolerance = 1e-07) expect_equal(x7$overallReject, x1$overallReject, tolerance = 1e-07) @@ -3006,8 +3006,8 @@ test_that("'getSimulationSurvival': Confirm that different definitions of delaye expect_equal(x2$numberOfSubjects[1, ], x1$numberOfSubjects[1, ], tolerance = 1e-07) expect_equal(x2$numberOfSubjects1[1, ], x1$numberOfSubjects1[1, ], tolerance = 1e-07) expect_equal(x2$numberOfSubjects2[1, ], x1$numberOfSubjects2[1, ], tolerance = 1e-07) - expect_equal(x2$singleEventsPerStage[1, ], x1$singleEventsPerStage[1, ]) - expect_equal(x2$cumulativeEventsPerStage[1, ], x1$cumulativeEventsPerStage[1, ]) + expect_equal(x2$eventsPerStage[1, ], x1$eventsPerStage[1, ]) + expect_equal(x2$overallEventsPerStage[1, ], x1$overallEventsPerStage[1, ]) expect_equal(x2$expectedNumberOfSubjects, x1$expectedNumberOfSubjects, tolerance = 1e-07) expect_equal(x2$rejectPerStage[1, ], x1$rejectPerStage[1, ], tolerance = 1e-07) expect_equal(x2$overallReject, x1$overallReject, tolerance = 1e-07) @@ -3065,12 +3065,12 @@ test_that("'getSimulationSurvival': Confirm that the function works correctly wi expect_equal(simResults$numberOfSubjects[1, ], c(198.3, 183, 190.8), tolerance = 1e-07, label = paste0("c(", paste0(simResults$numberOfSubjects[1, ], collapse = ", "), ")")) expect_equal(simResults$numberOfSubjects[2, ], c(260, 256, 260), label = paste0("c(", paste0(simResults$numberOfSubjects[2, ], collapse = ", "), ")")) expect_equal(simResults$numberOfSubjects[3, ], c(260, 260, 260), label = paste0("c(", paste0(simResults$numberOfSubjects[3, ], collapse = ", "), ")")) - expect_equal(simResults$singleEventsPerStage[1, ], c(20, 20, 20), label = paste0("c(", paste0(simResults$singleEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simResults$singleEventsPerStage[2, ], c(85.333333, 64.833333, 77), tolerance = 1e-07, label = paste0("c(", paste0(simResults$singleEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simResults$singleEventsPerStage[3, ], c(69.2, 57.8, 100), tolerance = 1e-07, label = paste0("c(", paste0(simResults$singleEventsPerStage[3, ], collapse = ", "), ")")) - expect_equal(simResults$cumulativeEventsPerStage[1, ], c(20, 20, 20), label = paste0("c(", paste0(simResults$cumulativeEventsPerStage[1, ], collapse = ", "), ")")) - expect_equal(simResults$cumulativeEventsPerStage[2, ], c(105.33333, 84.833333, 97), tolerance = 1e-07, label = paste0("c(", paste0(simResults$cumulativeEventsPerStage[2, ], collapse = ", "), ")")) - expect_equal(simResults$cumulativeEventsPerStage[3, ], c(174.53333, 142.63333, 197), tolerance = 1e-07, label = paste0("c(", paste0(simResults$cumulativeEventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simResults$eventsPerStage[1, ], c(20, 20, 20), label = paste0("c(", paste0(simResults$eventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simResults$eventsPerStage[2, ], c(85.333333, 64.833333, 77), tolerance = 1e-07, label = paste0("c(", paste0(simResults$eventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simResults$eventsPerStage[3, ], c(69.2, 57.8, 100), tolerance = 1e-07, label = paste0("c(", paste0(simResults$eventsPerStage[3, ], collapse = ", "), ")")) + expect_equal(simResults$overallEventsPerStage[1, ], c(20, 20, 20), label = paste0("c(", paste0(simResults$overallEventsPerStage[1, ], collapse = ", "), ")")) + expect_equal(simResults$overallEventsPerStage[2, ], c(105.33333, 84.833333, 97), tolerance = 1e-07, label = paste0("c(", paste0(simResults$overallEventsPerStage[2, ], collapse = ", "), ")")) + expect_equal(simResults$overallEventsPerStage[3, ], c(174.53333, 142.63333, 197), tolerance = 1e-07, label = paste0("c(", paste0(simResults$overallEventsPerStage[3, ], collapse = ", "), ")")) expect_equal(simResults$iterations[1, ], c(10, 10, 10), label = paste0("c(", paste0(simResults$iterations[1, ], collapse = ", "), ")")) expect_equal(simResults$iterations[2, ], c(6, 6, 4), label = paste0("c(", paste0(simResults$iterations[2, ], collapse = ", "), ")")) expect_equal(simResults$iterations[3, ], c(5, 5, 2), label = paste0("c(", paste0(simResults$iterations[3, ], collapse = ", "), ")")) @@ -3103,8 +3103,8 @@ test_that("'getSimulationSurvival': Confirm that the function works correctly wi expect_equal(simResultsCodeBased$studyDuration, simResults$studyDuration, tolerance = 1e-07) expect_equal(simResultsCodeBased$eventsNotAchieved, simResults$eventsNotAchieved, tolerance = 1e-07) expect_equal(simResultsCodeBased$numberOfSubjects, simResults$numberOfSubjects, tolerance = 1e-07) - expect_equal(simResultsCodeBased$singleEventsPerStage, simResults$singleEventsPerStage, tolerance = 1e-07) - expect_equal(simResultsCodeBased$cumulativeEventsPerStage, simResults$cumulativeEventsPerStage, tolerance = 1e-07) + expect_equal(simResultsCodeBased$eventsPerStage, simResults$eventsPerStage, tolerance = 1e-07) + expect_equal(simResultsCodeBased$overallEventsPerStage, simResults$overallEventsPerStage, tolerance = 1e-07) expect_equal(simResultsCodeBased$iterations, simResults$iterations, tolerance = 1e-07) expect_equal(simResultsCodeBased$overallReject, simResults$overallReject, tolerance = 1e-07) expect_equal(simResultsCodeBased$rejectPerStage, simResults$rejectPerStage, tolerance = 1e-07) diff --git a/tests/testthat/test-f_simulation_calc_subjects_function.R b/tests/testthat/test-f_simulation_calc_subjects_function.R index 1cb8dc64..3cd01d88 100644 --- a/tests/testthat/test-f_simulation_calc_subjects_function.R +++ b/tests/testthat/test-f_simulation_calc_subjects_function.R @@ -15,13 +15,14 @@ ## | ## | File name: test-f_simulation_calc_subjects_function.R ## | Creation date: 23 February 2024, 12:20:41 -## | File version: $Revision: 7742 $ -## | Last changed: $Date: 2024-03-22 13:46:29 +0100 (Fr, 22 Mrz 2024) $ +## | File version: $Revision: 7928 $ +## | Last changed: $Date: 2024-05-23 16:35:16 +0200 (Do, 23 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | test_plan_section("Testing user defined 'calc subjects/events functions'") + test_that("Function .getCalcSubjectsFunctionCppCode works for C++ code", { .skipTestIfDisabled() diff --git a/tests/testthat/test-f_simulation_enrichment_survival.R b/tests/testthat/test-f_simulation_enrichment_survival.R index d372c84d..319fa4af 100644 --- a/tests/testthat/test-f_simulation_enrichment_survival.R +++ b/tests/testthat/test-f_simulation_enrichment_survival.R @@ -15,9 +15,9 @@ ## | ## | File name: test-f_simulation_enrichment_survival.R ## | Creation date: 08 November 2023, 09:11:32 -## | File version: $Revision: 7662 $ -## | Last changed: $Date: 2024-02-23 12:42:26 +0100 (Fr, 23 Feb 2024) $ -## | Last changed by: $Author: pahlke $ +## | File version: $Revision$ +## | Last changed: $Date$ +## | Last changed by: $Author$ ## | test_plan_section("Testing Simulation Enrichment Survival Function") diff --git a/tests/testthat/test-f_simulation_multiarm_means.R b/tests/testthat/test-f_simulation_multiarm_means.R index 77458156..01ab4ae7 100644 --- a/tests/testthat/test-f_simulation_multiarm_means.R +++ b/tests/testthat/test-f_simulation_multiarm_means.R @@ -1408,7 +1408,7 @@ test_that("'getSimulationMultiArmMeans': using selectArmsFunction", { # @refFS[Formula]{fs:adjustedPValueSubsetDunnett} # @refFS[Formula]{fs:adjustedPValueSubsetSidak} # @refFS[Formula]{fs:adjustedPValueSubsetSimes} - selectArmsFunctionSimulationMultiArmMeans <- function(effectSizes) { + selectArmsFunctionSimulationMultiArmMeans <- function(effectVector) { return(c(TRUE, FALSE, FALSE, FALSE)) } diff --git a/tests/testthat/test-f_simulation_multiarm_rates.R b/tests/testthat/test-f_simulation_multiarm_rates.R index 83a51e01..3c1bcd27 100644 --- a/tests/testthat/test-f_simulation_multiarm_rates.R +++ b/tests/testthat/test-f_simulation_multiarm_rates.R @@ -1424,7 +1424,7 @@ test_that("'getSimulationMultiArmRates': using selectArmsFunction", { # @refFS[Formula]{fs:simulationMultiArmSelections} # @refFS[Formula]{fs:multiarmRejectionRule} # @refFS[Formula]{fs:adjustedPValueSubsetDunnett} - selectArmsFunctionSimulationMultiArmRates <- function(effectSizes) { + selectArmsFunctionSimulationMultiArmRates <- function(effectVector) { return(c(TRUE, FALSE, FALSE, FALSE)) } diff --git a/tests/testthat/test-f_simulation_multiarm_survival.R b/tests/testthat/test-f_simulation_multiarm_survival.R index 84813cb0..e8967463 100644 --- a/tests/testthat/test-f_simulation_multiarm_survival.R +++ b/tests/testthat/test-f_simulation_multiarm_survival.R @@ -15,8 +15,8 @@ ## | ## | File name: test-f_simulation_multiarm_survival.R ## | Creation date: 09 February 2024, 10:57:46 -## | File version: $Revision: 7665 $ -## | Last changed: $Date: 2024-02-23 17:33:46 +0100 (Fr, 23 Feb 2024) $ +## | File version: $Revision: 7920 $ +## | Last changed: $Date: 2024-05-23 13:56:24 +0200 (Do, 23 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -1433,7 +1433,7 @@ test_that("'getSimulationMultiArmSurvival': using selectArmsFunction", { # @refFS[Formula]{fs:simulationMultiArmSelections} # @refFS[Formula]{fs:multiarmRejectionRule} # @refFS[Formula]{fs:adjustedPValueSubsetDunnett} - selectArmsFunctionSimulationMultiArmSurvival <- function(effectSizes) { + selectArmsFunctionSimulationMultiArmSurvival <- function(effectVector) { return(c(TRUE, FALSE, FALSE, FALSE)) } @@ -1626,7 +1626,7 @@ test_that("'getSimulationMultiArmSurvival': comparison of base and multi-arm, in expect_equal(comp3[1, ], c(-0.06, -0.02, -0.03), tolerance = 1e-07, label = paste0(comp3[1, ])) expect_equal(comp3[2, ], c(0.08, 0.06, 0), tolerance = 1e-07, label = paste0(comp3[2, ])) - comp4 <- round(y$cumulativeEventsPerStage - x$cumulativeEventsPerStage[, , 1], 1) + comp4 <- round(y$overallEventsPerStage - x$eventsPerStage[, , 1], 1) ## Comparison of the results of matrixarray object 'comp4' with expected results expect_equal(comp4[1, ], c(0, 0, 0), label = paste0(comp4[1, ])) @@ -1694,7 +1694,7 @@ test_that("'getSimulationMultiArmSurvival': comparison of base and multi-arm, Fi expect_equal(comp3[1, ], c(-0.03, 0.01, -0.01), tolerance = 1e-07, label = paste0(comp3[1, ])) expect_equal(comp3[2, ], c(0.05, 0.05, -0.01), tolerance = 1e-07, label = paste0(comp3[2, ])) - comp4 <- round(y$cumulativeEventsPerStage - x$cumulativeEventsPerStage[, , 1], 1) + comp4 <- round(y$overallEventsPerStage - x$eventsPerStage[, , 1], 1) ## Comparison of the results of matrixarray object 'comp4' with expected results expect_equal(comp4[1, ], c(0, 0, 0), label = paste0(comp4[1, ])) @@ -1764,7 +1764,7 @@ test_that("'getSimulationMultiArmSurvival': comparison of base and multi-arm, in expect_equal(comp3[1, ], c(0, 0, 0), label = paste0(comp3[1, ])) expect_equal(comp3[2, ], c(0, 0, 0), label = paste0(comp3[2, ])) - comp4 <- round(y$cumulativeEventsPerStage - x$cumulativeEventsPerStage[, , 1], 1) + comp4 <- round(y$overallEventsPerStage - x$eventsPerStage[, , 1], 1) ## Comparison of the results of matrixarray object 'comp4' with expected results expect_equal(comp4[1, ], c(0, 0, 0), label = paste0(comp4[1, ])) diff --git a/tests/testthat/test-f_simulation_performance_score.R b/tests/testthat/test-f_simulation_performance_score.R index 56ed2d40..8531fee9 100644 --- a/tests/testthat/test-f_simulation_performance_score.R +++ b/tests/testthat/test-f_simulation_performance_score.R @@ -15,8 +15,8 @@ ## | ## | File name: test-f_simulation_performance_score.R ## | Creation date: 06 February 2023, 12:14:51 -## | File version: $Revision: 7742 $ -## | Last changed: $Date: 2024-03-22 13:46:29 +0100 (Fr, 22 Mrz 2024) $ +## | File version: $Revision: 7905 $ +## | Last changed: $Date: 2024-05-21 17:15:42 +0200 (Di, 21 Mai 2024) $ ## | Last changed by: $Author: pahlke $ ## | @@ -71,13 +71,6 @@ test_that("getPerformanceScore handles SimulationResultsMeans", { ) }) -# Test for a simulationResult that does not have `bindingFutility = TRUE` -test_that("getPerformanceScore handles non-binding futility", { - simulationResult <- createCorrectSimulationResultObject("SimulationResultsMeans") - simulationResult$.design$bindingFutility <- FALSE - expect_warning(getPerformanceScore(simulationResult)) -}) - # Test for a simulationResult that does not have `kMax = 2` test_that("getPerformanceScore handles non-two-stage designs", { simulationResult <- createCorrectSimulationResultObject("SimulationResultsMeans") @@ -102,15 +95,6 @@ test_that("getPerformanceScore calculates performance score correctly", { expect_type(scores, "environment") }) -# Test to verify that the warning about the function being experimental is issued -test_that("getPerformanceScore issues warning", { - simulationResult <- createCorrectSimulationResultObject("SimulationResultsMeans") - expect_warning( - getPerformanceScore(simulationResult), - "The performance score function is experimental and hence not fully validated" - ) -}) - # Test to check if the correct values are returned test_that("getPerformanceScore returns correct result object", { simulationResult <- createCorrectSimulationResultObject("SimulationResultsMeans")