-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathgenerate_shapes_and_images.py
245 lines (215 loc) · 11.5 KB
/
generate_shapes_and_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import torch
import trimesh
import numpy as np
from munch import *
from PIL import Image
from tqdm import tqdm
from torch.nn import functional as F
from torch.utils import data
from torchvision import utils
from torchvision import transforms
from skimage.measure import marching_cubes
from scipy.spatial import Delaunay
from options import BaseOptions
from model import Generator
from utils import (
generate_camera_params,
align_volume,
extract_mesh_with_marching_cubes,
xyz2mesh,
)
torch.random.manual_seed(1234)
def generate(opt, g_ema, surface_g_ema, device, mean_latent, surface_mean_latent):
g_ema.eval()
if not opt.no_surface_renderings:
surface_g_ema.eval()
# set camera angles
if opt.fixed_camera_angles:
# These can be changed to any other specific viewpoints.
# You can add or remove viewpoints as you wish
locations = torch.tensor([[0, 0],
[-1.5 * opt.camera.azim, 0],
[-1 * opt.camera.azim, 0],
[-0.5 * opt.camera.azim, 0],
[0.5 * opt.camera.azim, 0],
[1 * opt.camera.azim, 0],
[1.5 * opt.camera.azim, 0],
[0, -1.5 * opt.camera.elev],
[0, -1 * opt.camera.elev],
[0, -0.5 * opt.camera.elev],
[0, 0.5 * opt.camera.elev],
[0, 1 * opt.camera.elev],
[0, 1.5 * opt.camera.elev]], device=device)
# For zooming in/out change the values of fov
# (This can be defined for each view separately via a custom tensor
# like the locations tensor above. Tensor shape should be [locations.shape[0],1])
# reasonable values are [0.75 * opt.camera.fov, 1.25 * opt.camera.fov]
fov = opt.camera.fov * torch.ones((locations.shape[0],1), device=device)
num_viewdirs = locations.shape[0]
else: # draw random camera angles
locations = None
# fov = None
fov = opt.camera.fov
num_viewdirs = opt.num_views_per_id
# generate images
for i in tqdm(range(opt.identities)):
with torch.no_grad():
chunk = 8
sample_z = torch.randn(1, opt.style_dim, device=device).repeat(num_viewdirs,1)
sample_cam_extrinsics, sample_focals, sample_near, sample_far, sample_locations = \
generate_camera_params(opt.renderer_output_size, device, batch=num_viewdirs,
locations=locations, #input_fov=fov,
uniform=opt.camera.uniform, azim_range=opt.camera.azim,
elev_range=opt.camera.elev, fov_ang=fov,
dist_radius=opt.camera.dist_radius)
rgb_images = torch.Tensor(0, 3, opt.size, opt.size)
rgb_images_thumbs = torch.Tensor(0, 3, opt.renderer_output_size, opt.renderer_output_size)
for j in range(0, num_viewdirs, chunk):
out = g_ema([sample_z[j:j+chunk]],
sample_cam_extrinsics[j:j+chunk],
sample_focals[j:j+chunk],
sample_near[j:j+chunk],
sample_far[j:j+chunk],
truncation=opt.truncation_ratio,
truncation_latent=mean_latent)
rgb_images = torch.cat([rgb_images, out[0].cpu()], 0)
rgb_images_thumbs = torch.cat([rgb_images_thumbs, out[1].cpu()], 0)
utils.save_image(rgb_images,
os.path.join(opt.results_dst_dir, 'images','{}.png'.format(str(i).zfill(7))),
nrow=num_viewdirs,
normalize=True,
padding=0,
value_range=(-1, 1),)
utils.save_image(rgb_images_thumbs,
os.path.join(opt.results_dst_dir, 'images','{}_thumb.png'.format(str(i).zfill(7))),
nrow=num_viewdirs,
normalize=True,
padding=0,
value_range=(-1, 1),)
# this is done to fit to RTX2080 RAM size (11GB)
del out
torch.cuda.empty_cache()
if not opt.no_surface_renderings:
surface_chunk = 1
scale = surface_g_ema.renderer.out_im_res / g_ema.renderer.out_im_res
surface_sample_focals = sample_focals * scale
for j in range(0, num_viewdirs, surface_chunk):
surface_out = surface_g_ema([sample_z[j:j+surface_chunk]],
sample_cam_extrinsics[j:j+surface_chunk],
surface_sample_focals[j:j+surface_chunk],
sample_near[j:j+surface_chunk],
sample_far[j:j+surface_chunk],
truncation=opt.truncation_ratio,
truncation_latent=surface_mean_latent,
return_sdf=True,
return_xyz=True)
xyz = surface_out[2].cpu()
sdf = surface_out[3].cpu()
# this is done to fit to RTX2080 RAM size (11GB)
del surface_out
torch.cuda.empty_cache()
# mesh extractions are done one at a time
for k in range(surface_chunk):
curr_locations = sample_locations[j:j+surface_chunk]
loc_str = '_azim{}_elev{}'.format(int(curr_locations[k,0] * 180 / np.pi),
int(curr_locations[k,1] * 180 / np.pi))
# Save depth outputs as meshes
depth_mesh_filename = os.path.join(opt.results_dst_dir,'depth_map_meshes','sample_{}_depth_mesh{}.obj'.format(i, loc_str))
depth_mesh = xyz2mesh(xyz[k:k+surface_chunk])
if depth_mesh != None:
with open(depth_mesh_filename, 'w') as f:
depth_mesh.export(f,file_type='obj')
# extract full geometry with marching cubes
if j == 0:
try:
frostum_aligned_sdf = align_volume(sdf)
marching_cubes_mesh = extract_mesh_with_marching_cubes(frostum_aligned_sdf[k:k+surface_chunk])
except ValueError:
marching_cubes_mesh = None
print('Marching cubes extraction failed.')
print('Please check whether the SDF values are all larger (or all smaller) than 0.')
if marching_cubes_mesh != None:
marching_cubes_mesh_filename = os.path.join(opt.results_dst_dir,'marching_cubes_meshes','sample_{}_marching_cubes_mesh{}.obj'.format(i, loc_str))
with open(marching_cubes_mesh_filename, 'w') as f:
marching_cubes_mesh.export(f,file_type='obj')
if __name__ == "__main__":
device = "cuda"
opt = BaseOptions().parse()
opt.model.is_test = True
opt.model.freeze_renderer = False
opt.rendering.offset_sampling = True
opt.rendering.static_viewdirs = True
opt.rendering.force_background = True
opt.rendering.perturb = 0
opt.inference.size = opt.model.size
opt.inference.camera = opt.camera
opt.inference.renderer_output_size = opt.model.renderer_spatial_output_dim
opt.inference.style_dim = opt.model.style_dim
opt.inference.project_noise = opt.model.project_noise
opt.inference.return_xyz = opt.rendering.return_xyz
# find checkpoint directory
# check if there's a fully trained model
checkpoints_dir = 'full_models'
checkpoint_path = os.path.join(checkpoints_dir, opt.experiment.expname + '.pt')
if os.path.isfile(checkpoint_path):
# define results directory name
result_model_dir = 'final_model'
else:
checkpoints_dir = os.path.join('checkpoint', opt.experiment.expname, 'full_pipeline')
checkpoint_path = os.path.join(checkpoints_dir,
'models_{}.pt'.format(opt.experiment.ckpt.zfill(7)))
# define results directory name
result_model_dir = 'iter_{}'.format(opt.experiment.ckpt.zfill(7))
# create results directory
results_dir_basename = os.path.join(opt.inference.results_dir, opt.experiment.expname)
opt.inference.results_dst_dir = os.path.join(results_dir_basename, result_model_dir)
if opt.inference.fixed_camera_angles:
opt.inference.results_dst_dir = os.path.join(opt.inference.results_dst_dir, 'fixed_angles')
else:
opt.inference.results_dst_dir = os.path.join(opt.inference.results_dst_dir, 'random_angles')
os.makedirs(opt.inference.results_dst_dir, exist_ok=True)
os.makedirs(os.path.join(opt.inference.results_dst_dir, 'images'), exist_ok=True)
if not opt.inference.no_surface_renderings:
os.makedirs(os.path.join(opt.inference.results_dst_dir, 'depth_map_meshes'), exist_ok=True)
os.makedirs(os.path.join(opt.inference.results_dst_dir, 'marching_cubes_meshes'), exist_ok=True)
# load saved model
checkpoint = torch.load(checkpoint_path)
# load image generation model
g_ema = Generator(opt.model, opt.rendering).to(device)
pretrained_weights_dict = checkpoint["g_ema"]
model_dict = g_ema.state_dict()
for k, v in pretrained_weights_dict.items():
if v.size() == model_dict[k].size():
model_dict[k] = v
g_ema.load_state_dict(model_dict)
# load a second volume renderer that extracts surfaces at 128x128x128 (or higher) for better surface resolution
if not opt.inference.no_surface_renderings:
opt['surf_extraction'] = Munch()
opt.surf_extraction.rendering = opt.rendering
opt.surf_extraction.model = opt.model.copy()
opt.surf_extraction.model.renderer_spatial_output_dim = 128
opt.surf_extraction.rendering.N_samples = opt.surf_extraction.model.renderer_spatial_output_dim
opt.surf_extraction.rendering.return_xyz = True
opt.surf_extraction.rendering.return_sdf = True
surface_g_ema = Generator(opt.surf_extraction.model, opt.surf_extraction.rendering, full_pipeline=False).to(device)
# Load weights to surface extractor
surface_extractor_dict = surface_g_ema.state_dict()
for k, v in pretrained_weights_dict.items():
if k in surface_extractor_dict.keys() and v.size() == surface_extractor_dict[k].size():
surface_extractor_dict[k] = v
surface_g_ema.load_state_dict(surface_extractor_dict)
else:
surface_g_ema = None
# get the mean latent vector for g_ema
if opt.inference.truncation_ratio < 1:
with torch.no_grad():
mean_latent = g_ema.mean_latent(opt.inference.truncation_mean, device)
else:
surface_mean_latent = None
# get the mean latent vector for surface_g_ema
if not opt.inference.no_surface_renderings:
surface_mean_latent = mean_latent[0]
else:
surface_mean_latent = None
generate(opt.inference, g_ema, surface_g_ema, device, mean_latent, surface_mean_latent)