forked from StructuresComp/slinky-is-sliding
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
92 lines (68 loc) · 3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from slinky import neuralnets as snn
from slinky import func as f
from slinky import misc as m
import argparse
from torchdiffeq import odeint_adjoint as odeint
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
parser = argparse.ArgumentParser('ODE slinky')
args = parser.parse_args()
# parameter settings
device = torch.device("cuda:1")
args.niters = int(1e3)
args.atol = 1e-4
args.rtol = 1e-4
args.save_data = True
args.save_model = True
args.save_freq = 10
args.test_freq = 10
args.num_cycles = 76
args.folder = 'data_slinky'
args.deltaT = 0.01
args.batch_time = 1+1
args.batch_size = 5
args.dataRecorder = './histRecorder.txt'
# read in the data and set the variables
true_y = m.read_data('./SlinkyGroundTruth',args.num_cycles)[::10,...].to(device)
args.data_size = true_y.size()[0] # the length of the entire data
true_y0 = true_y[0,:].to(device)
t = torch.linspace(0.,(true_y.size()[0]-1)*args.deltaT,true_y.size()[0]).to(device)
if args.save_data:
m.makedirs(args.folder)
if __name__ == '__main__':
m.seed_torch() # fix the random seed
func_orig = f.ODEFunc(NeuronsPerLayer=32, NumLayer=5, Device=device).to(device) # the physical model
func = f.ODEPhys(func_orig).to(device) # the class converting a second-order system into a first-order system, to be solved by ODE solvers
optimizer = optim.Adam(func.parameters(), lr=1e-3)
hist = [] # recording the loss history
for itr in range(1, args.niters + 1):
optimizer.zero_grad()
batch_y0, batch_t, batch_y = m.get_batch(true_y,t,args.data_size,args.batch_time,args.batch_size)
batch_y0, batch_t, batch_y = batch_y0.to(device), batch_t.to(device), batch_y.to(device)
pred_y = odeint(func, batch_y0, batch_t, atol=args.atol, rtol=args.rtol).to(device)
select_cycles = torch.from_numpy(np.random.choice(np.arange(args.num_cycles, dtype=np.int64), 20, replace=False))
weight6 = torch.tensor([1e2,1e2,1,1e2,1e2,1]).to(device) ** 2
loss = torch.mean(torch.abs(pred_y[...,select_cycles,0:] - batch_y[...,select_cycles,0:]) ** 2 * weight6)
print('Iter {:04d} | Training Batch Loss {:.6f}'.format(itr, loss.item()))
loss.backward()
optimizer.step()
# need to record the training loss at each timestep
hist.append([args.batch_time,loss])
np.savetxt(args.dataRecorder, np.array(hist))
if True and itr % 2 == 0 and args.batch_time < 70:
args.batch_time += 1
print('increased the batch sequence length')
print('The current lenght is {:04d}'.format(args.batch_time))
if args.save_data and itr % args.test_freq == 0 and args.batch_time > 50:
func.eval()
pred_y = odeint(func, true_y0, t, atol=args.atol, rtol=args.rtol)
loss = torch.mean(torch.abs(pred_y - true_y))
print('Iter {:04d} | Training total Loss \033[1;32;43m{:.6f}\033[0m'.format(itr, loss.item()))
m.save_data(true_y, pred_y, t, args.folder, itr, 'train')
func.train()
if args.save_model and itr % args.save_freq == 0 and args.batch_time > 10:
func.eval()
torch.save(func_orig.state_dict(), './slinky_func_orig.pt')
func.train()