-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path60_TCR_analysis.Rmd
327 lines (242 loc) · 10.6 KB
/
60_TCR_analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
---
title: "TCR clonality analyses"
output: github_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
# Clear the environment
rm(list = ls())
# Free up memory by forcing garbage collection
invisible(gc())
# Manually set the seed to an arbitrary number for consistency in reports
myseed <- 9
```
## Procedure
```{r libraries, message=F, warning=F}
options(stringsAsFactors = F)
DOMINO_DATA_PATH = "./data/import/TCR/"
data_dir <- "./data/import"
MIN_PRODUCTIVE_TEMPLATES = 1000
library(gdata)
library(data.table)
library(gridExtra)
library(grid)
library(RColorBrewer)
library(reshape2)
library(ggplot2)
library(ggpubr)
```
```{r functions}
# Leave this here because I'm lazy
test.pvalue = function(x) tryCatch({
t.test(x)$p.value
}, error = function(e) {
return(NA)
})
source("./code/ggplot_theme_dj_prm.R")
#' Custom ggplot theme with bolded text for easier legibility
```
```{r coloring}
ARM_palette = brewer.pal(n = 4, name = "Set1")
names(ARM_palette) = c("Nivo 0.3 mg/kg",
"Nivo 10 mg/kg-Naive",
"Nivo 10 mg/kg",
"Nivo 2 mg/kg")
Response20pct_palette = c("Not20pct" = "black",
"20pctDec" = "goldenrod2",
"NE" = "darkgrey")
# shape map for prior therapy
shape_prior <- c("Pretreated" = 16,
"Naive" = 18)
# color map for response
color_response <- c("Not20pct" = "black",
"20pctDec" = "goldenrod2",
"NE" = "darkgrey")
```
```{r read_TCR_data}
TCR_data = read.table(paste0(DOMINO_DATA_PATH, "sample_overview.tsv"),
header = T, sep = "\t")
TCR_manifest = read.xls(paste0(DOMINO_DATA_PATH, "ca209009.sample.info.guess_accessions.xlsx"),
header = T, sheet = 2)
TCR_tumor_info = read.csv(paste0(DOMINO_DATA_PATH, "Assuragen_roster.csv"),
header = T)
```
```{r format_TCR_data}
# Extracting properly formatted USUBJIB
TCR_manifest$USUBJID = paste(gsub("-","",TCR_manifest$Study.Code),
sapply(strsplit(TCR_manifest$Subject.Code," "),
function(i)
paste(sapply(i, as.numeric), collapse="-")), sep="-")
common_samples = intersect(TCR_tumor_info$Barcode,TCR_manifest$Alternate.Sample.ID)
TCR_tumor_info = TCR_tumor_info[TCR_tumor_info$Barcode %in% common_samples,]
# Collapse the timepoint/visit info into a single column
TCR_manifest$Timepoint[match(TCR_tumor_info$Barcode,TCR_manifest$Alternate.Sample.ID)] = TCR_tumor_info$Visit
TCR_manifest$Timepoint = gsub("SCREENING", "C1D1_0H", TCR_manifest$Timepoint)
# Format the Sample Type
TCR_manifest$Sample.Type = gsub("DNA", "Tumor", TCR_manifest$Sample.Type)
# Add the Biopsy info, as some tumor timepoints have been duplicated (multiple biopsies)
# (i.e. C1D1_0H / BIOP 1)
TCR_manifest$Biopsy = NA
TCR_manifest$Biopsy[match(TCR_tumor_info$Barcode,TCR_manifest$Alternate.Sample.ID)] = TCR_tumor_info$Container.Name
# Some tumor biopsy/timepoint have been duplicate. Would be interesting to assess robustness
# (i.e. C1D1_0H / BIOP 1 & C1D1_0H / BIOP 1)
TCR_manifest = TCR_manifest[!duplicated(TCR_manifest[,c("USUBJID","Sample.Type","Biopsy","Timepoint")]),]
# Remove samples for which we do not have timepoint info
TCR_manifest = TCR_manifest[TCR_manifest$Timepoint != "",]
# Apply a consistent formatting to timepoint data
TCR_manifest$Timepoint = gsub(" ","_",TCR_manifest$Timepoint)
# Merge the manifest and summary TCR statistics
TCR_data$Barcode = sapply(strsplit(TCR_data$sample_name, "-"), function(i) i[length(i)])
TCR_complete = merge(TCR_data, TCR_manifest, by="Barcode")
TCR_complete = TCR_complete[TCR_complete$productive_templates > MIN_PRODUCTIVE_TEMPLATES,]
```
```{r read_clinical_data}
# Read the clinical data
clinical = read.table(paste0(data_dir,"CM9_Patient_Annotation.txt"),
header = T, sep = "\t")
clinical$Response20pct = factor(clinical$Response20pct, levels = c("Not20pct","20pctDec"))
clinical = clinical[!is.na(clinical$Response20pct),]
# Establish the correct names/map for ARM
```
```{r merge}
# Merge the clinical and TCR data
sample_annotation = merge(TCR_complete, clinical, by = "USUBJID")
# Cleanup
rm(TCR_complete, TCR_data, TCR_manifest, TCR_tumor_info,
clinical, common_samples)
```
```{r annotation}
sample_annotation = sample_annotation[sample_annotation$MatchedLesionBiopsy &
!is.na(sample_annotation$MatchedLesionBiopsy),]
sample_annotation = sample_annotation[sample_annotation$Biopsy == "BIOP 1" |
is.na(sample_annotation$Biopsy),]
```
```{r reshape_data}
TCR_data_summary = dcast(sample_annotation, USUBJID + ARM + Sample.Type + Biopsy + Response20pct + VEGFstatus +
CD8PERCENT.BL + CD4PERCENT.BL + PD1PERCENT.BL + BOR
~ Timepoint,
value.var = c("productive_clonality"))
```
```{r baseline_clonality_response}
pdf("../results/TCR_baseline_clonality_response.pdf")
ggplot(TCR_data_summary, aes(y= C1D1_0H, x = Response20pct, color = Response20pct)) +
geom_boxplot(alpha = 0.5, outlier.shape = NA) +
geom_jitter(alpha= 0.5, width = 0.1) +
ylab("Baseline Clonality") +
scale_color_manual("Response", values = Response20pct_palette) +
facet_wrap(~ Sample.Type + VEGFstatus, nrow=2) +
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
plot.title = element_text(hjust = 0.5)) +
ggtitle("CA209-009 Baseline TCR Clonality By Response")
dev.off()
```
## Baseline clonality response tumor ONLY
```{r baseline_clonality_response_tumorONLY}
## Petra for publication
mycomparisons <- list(c("Not20pct","20pctDec"))
nona <- TCR_data_summary%>%
filter(!is.na(C1D1_0H),
Sample.Type == "Tumor")
plotcount = length(unique(nona$USUBJID))
plot_Baseline_Clonality <- ggplot(nona, aes(y= C1D1_0H, x = Response20pct)) +
geom_boxplot(alpha = 0.5, outlier.shape = NA) +
geom_point(aes(colour = Response20pct, shape = VEGFstatus),
size = 3,
position=position_jitterdodge(dodge.width=.5, jitter.width = 0.2)) +
scale_colour_manual(name = 'Response',
values = color_response) +
scale_shape_manual(name = 'Prior Therapy',
values = shape_prior) +
labs(title = "CA209-009 Baseline TCR Clonality By Response",
subtitle = paste("Patients with Biopsy data, N=",plotcount),
x = "Response Category",
y = "Baseline Clonality") +
scale_x_discrete(labels=c("Not20pct" = "NonResponder\nN = 43",
"20pctDec" = "Responder\nN = 11"))+
stat_compare_means(method="t.test", size = 8,
aes(label = paste0("P = ", ..p.format..)),
comparisons = mycomparisons,
label.y = 0.5)+
theme_dj(16)
plot_Baseline_Clonality
boxbaseline_file <- "./results/TCR_baseline_clonality_response.png"
ggsave(plot_Baseline_Clonality, file = boxbaseline_file, width=6, height=7,
units = "in", dpi = 96)
```
Nonresponder = `r sum(nona$Response20pct == "Not20pct")`
Responder = `r sum(nona$Response20pct == "20pctDec")`
File = `r boxbaseline_file`
```{r delta_clonality_pre_post_response}
paired_t_test_p = aggregate(list(p.value = TCR_data_summary$C2D8_168HR - TCR_data_summary$C1D1_0H),
by = list(Response20pct = TCR_data_summary$Response20pct, Sample.Type = TCR_data_summary$Sample.Type), FUN = test.pvalue)
pdf("../results/TCR_delta_clonality_response.pdf")
ggplot(TCR_data_summary, aes(y= C2D8_168HR - C1D1_0H, x = Response20pct, color = Response20pct)) +
geom_boxplot(alpha = 0.5, outlier.shape = NA) +
geom_jitter(alpha= 0.5, width = 0.1) +
facet_grid(~ Sample.Type) +
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
plot.title = element_text(hjust = 0.5)) +
scale_color_manual("Response", values = Response20pct_palette) +
ylab(expression(paste(Delta, "Clonality (Post - Pre)"))) +
geom_text(data = paired_t_test_p, size=4,
aes(y = 1.1*min(TCR_data_summary$C2D8_168HR - TCR_data_summary$C1D1_0H, na.rm=T) ,
label=paste0("p=",round(p.value,2)))) +
ggtitle("CA209-009 Pre vs Post TCR Clonality By Response")
dev.off()
```
## Delta clonality response tumor ONLY
```{r delta_clonality_pre_post_response_petra}
paired_t_test_p = aggregate(list(p.value = TCR_data_summary$C2D8_168HR - TCR_data_summary$C1D1_0H),
by = list(Response20pct = TCR_data_summary$Response20pct,
Sample.Type = TCR_data_summary$Sample.Type),
FUN = test.pvalue)%>%
filter(Sample.Type == "Tumor")
## Petra for publication
paired <- TCR_data_summary%>%
filter(!is.na(C1D1_0H),
Sample.Type == "Tumor")%>%
mutate(Day28_Change =C2D8_168HR - C1D1_0H)%>%
filter(!is.na(Day28_Change))
plotcount = length(unique(paired$USUBJID))
plot_change_Clonality <- ggplot(paired, aes(y= Day28_Change, x = Response20pct)) +
geom_boxplot(alpha = 0.5, outlier.shape = NA) +
geom_point(aes(colour = Response20pct, shape = VEGFstatus),
size = 3,
position=position_jitterdodge(dodge.width=.5, jitter.width = 0.2)) +
scale_colour_manual(name = 'Response',
values = color_response) +
scale_shape_manual(name = 'Prior Therapy',
values = shape_prior) +
labs(title = "CA209-009 Day 28 change in TCR Clonality By Response",
subtitle = paste("Patients with Biopsy data, N=",plotcount),
x = "Response Category",
y = "Day 28 Change in Clonality") +
scale_x_discrete(labels=c("Not20pct" = "NonResponder\nN = 40",
"20pctDec" = "Responder\nN = 11"))+
theme_dj(16)+
geom_text(data = paired_t_test_p, size=8,
aes(y = 1.1*max(paired$Day28_Change, na.rm=T) ,
label=paste0("P=",round(p.value,2))))
plot_change_Clonality
box_change_file <- "./results/TCR_Change_clonality_response.png"
ggsave(plot_change_Clonality, file = box_change_file, width=6, height=7,
units = "in", dpi = 96)
```
Nonresponder = `r sum(paired$Response20pct == "Not20pct")`
Responder = `r sum(paired$Response20pct == "20pctDec")`
File = `r boxbaseline_file`
```{r spaghetti_clonality_pre_post_response}
pdf("../results/TCR_spaghetti_clonality_response.pdf")
ggplot(subset(sample_annotation, Sample.Type == "Tumor" & Timepoint != "UNSC/ETERM"),
aes(x = Timepoint, y = productive_clonality, group = USUBJID, color = Response20pct)) +
geom_line() +
scale_color_manual("Response", values = Response20pct_palette) +
scale_x_discrete(name ="Timepoint",
labels=c("C1D1_0H" = "Pre-Treatment",
"C2D8_168HR" = "On-Treatment (C2D8)"))
dev.off()
```