-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathmodels.py
555 lines (470 loc) · 29.7 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
"""
File housing all models.
Each model can be created by invoking the appropriate function
given by:
make_MODELNAME_model(MODEL_SETTINGS)
Changes to allow this are still in progess
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models
import numpy as np
import torchfcn
import fcn
from constants import *
from modelling.baselines import make_rf_model, make_logreg_model, make_1d_nn_model, make_1d_2layer_nn_model, make_1d_cnn_model
from modelling.recurrent_norm import RecurrentNorm2d
from modelling.clstm_cell import ConvLSTMCell
from modelling.clstm import CLSTM
from modelling.cgru_segmenter import CGRUSegmenter
from modelling.clstm_segmenter import CLSTMSegmenter
from modelling.util import initialize_weights, get_num_bands, get_upsampling_weight, set_parameter_requires_grad
from modelling.fcn8 import FCN8
from modelling.unet import UNet, UNet_Encode, UNet_Decode
from modelling.unet3d import UNet3D
from modelling.multi_input_clstm import MI_CLSTM
from modelling.only_clstm_mi import ONLY_CLSTM_MI
from modelling.attention import ApplyAtt, attn_or_avg
# TODO: figure out how to decompose this
class FCN_CRNN(nn.Module):
def __init__(self, fcn_input_size, crnn_input_size, crnn_model_name,
hidden_dims, lstm_kernel_sizes, conv_kernel_size, lstm_num_layers, avg_hidden_states,
num_classes, bidirectional, pretrained, early_feats, use_planet, resize_planet,
num_bands_dict, main_crnn, main_attn_type, attn_dims,
enc_crnn, enc_attn, enc_attn_type):
super(FCN_CRNN, self).__init__()
self.fcn_input_size = fcn_input_size
self.crnn_input_size = crnn_input_size
self.hidden_dims = hidden_dims
self.lstm_kernel_sizes = lstm_kernel_sizes
self.conv_kernel_size = conv_kernel_size
self.lstm_num_layers = lstm_num_layers
self.avg_hidden_states = avg_hidden_states
self.num_classes = num_classes
self.bidirectional = bidirectional
self.early_feats = early_feats
self.use_planet = use_planet
self.resize_planet = resize_planet
self.num_bands_dict = num_bands_dict
self.main_attn_type = main_attn_type
self.attn_dims = attn_dims
self.main_crnn = main_crnn
self.enc_crnn = enc_crnn
self.enc_attn = enc_attn
self.enc_attn_type = enc_attn_type
self.processed_feats = {'main': None, 'enc4': None, 'enc3': None, 'enc2': None, 'enc1': None }
# get appropriate encoder / decoder
if not self.early_feats:
self.fcn = make_UNet_model(n_class=crnn_input_size[1], num_bands_dict=num_bands_dict, late_feats_for_fcn=True,
pretrained=pretrained, use_planet=use_planet, resize_planet=resize_planet)
else:
self.fcn_enc = make_UNetEncoder_model(num_bands_dict, use_planet=use_planet, resize_planet=resize_planet, pretrained=pretrained)
self.fcn_dec = make_UNetDecoder_model(num_classes, late_feats_for_fcn=False, use_planet=use_planet, resize_planet=resize_planet)
if crnn_model_name == "gru":
if self.early_feats:
self.crnn = CGRUSegmenter(crnn_input_size, hidden_dims, lstm_kernel_sizes,
conv_kernel_size, lstm_num_layers, crnn_input_size[1], bidirectional, avg_hidden_states)
else:
self.crnn = CGRUSegmenter(crnn_input_size, hidden_dims, lstm_kernel_sizes,
conv_kernel_size, lstm_num_layers, num_classes, bidirectional, avg_hidden_states)
elif crnn_model_name == "clstm":
self.attns = self.get_attns()
self.crnns = self.get_crnns()
self.final_convs = self.get_final_convs()
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, input_tensor, hres_inputs=None):
batch, timestamps, bands, rows, cols = input_tensor.size()
fcn_input = input_tensor.view(batch * timestamps, bands, rows, cols)
if len(hres_inputs.shape) > 1:
_, _, hbands, hrows, hcols = hres_inputs.size()
fcn_input_hres = hres_inputs.view(batch * timestamps, hbands, hrows, hcols)
else: fcn_input_hres = None
if self.early_feats:
# Encode features
center1_feats, enc4_feats, enc3_feats, enc2_feats, enc1_feats = self.fcn_enc(fcn_input, fcn_input_hres)
for cur_feats, cur_enc in zip([center1_feats, enc4_feats, enc3_feats, enc2_feats, enc1_feats], self.crnns):
if cur_feats is not None:
# Apply CRNN
cur_feats = cur_feats.view(batch, timestamps, -1, cur_feats.shape[-2], cur_feats.shape[-1])
if self.crnns[cur_enc] is not None:
cur_feats_fwd, cur_feats_rev = self.crnns[cur_enc](cur_feats)
else:
cur_feats_fwd = cur_feats
cur_feats_rev = None
# Apply attention
reweighted = attn_or_avg(self.attns[cur_enc], self.avg_hidden_states, cur_feats_fwd, cur_feats_rev, self.bidirectional)
# Apply final conv
final_feats = self.final_convs[cur_enc](reweighted) if self.final_convs[cur_enc] is not None else reweighted
self.processed_feats[cur_enc] = final_feats
# Decode and predict
preds = self.fcn_dec(self.processed_feats['main'], self.processed_feats['enc4'], self.processed_feats['enc3'],
self.processed_feats['enc2'], self.processed_feats['enc1'])
else:
# Encode and decode features
fcn_output = self.fcn(fcn_input, fcn_input_hres)
# Apply CRNN
crnn_input = fcn_output.view(batch, timestamps, -1, fcn_output.shape[-2], fcn_output.shape[-1])
if self.crnn_main(crnn_input) is not None:
crnn_output_fwd, crnn_output_rev = self.crnn_main(crnn_input)
else:
crnn_output_fwd = crnn_input
crnn_output_rev = None
# Apply attention
reweighted = attn_or_avg(self.attns['main'], self.avg_hidden_states, crnn_output_fwd, crnn_output_rev, self.bidirectional)
# Apply final conv
scores = self.final_convs['main'](reweighted)
preds = self.logsoftmax(scores)
return preds
def get_crnns(self):
self.crnn_main = self.crnn_enc4 = self.crnn_enc3 = self.crnn_enc2 = self.crnn_enc1 = None
if self.early_feats:
if self.main_crnn:
self.crnn_main = CLSTMSegmenter(self.crnn_input_size, self.hidden_dims, self.lstm_kernel_sizes,
self.conv_kernel_size, self.lstm_num_layers, self.crnn_input_size[1], self.bidirectional)
if self.enc_crnn:
crnn_input0, crnn_input1, crnn_input2, crnn_input3 = self.crnn_input_size
self.crnn_enc4 = CLSTMSegmenter([crnn_input0, crnn_input1//2, crnn_input2*2, crnn_input3*2], self.hidden_dims, self.lstm_kernel_sizes,
self.conv_kernel_size, self.lstm_num_layers, self.crnn_input_size[1]//2, self.bidirectional)
self.crnn_enc3 = CLSTMSegmenter([crnn_input0, crnn_input1//4, crnn_input2*4, crnn_input3*4], self.hidden_dims, self.lstm_kernel_sizes,
self.conv_kernel_size, self.lstm_num_layers, self.crnn_input_size[1]//4, self.bidirectional)
if self.use_planet and not self.resize_planet:
self.crnn_enc2 = CLSTMSegmenter([crnn_input0, crnn_input1//8, crnn_input2*8, crnn_input3*8], self.hidden_dims, self.lstm_kernel_sizes,
self.conv_kernel_size, self.lstm_num_layers, self.crnn_input_size[1]//8, self.bidirectional)
self.crnn_enc1 = CLSTMSegmenter([crnn_input0, crnn_input1//16, crnn_input2*16, crnn_input3*16], self.hidden_dims, self.lstm_kernel_sizes,
self.conv_kernel_size, self.lstm_num_layers, self.crnn_input_size[1]//16, self.bidirectional)
else:
self.crnn_main = CLSTMSegmenter(self.crnn_input_size, self.hidden_dims, self.lstm_kernel_sizes,
self.conv_kernel_size, self.lstm_num_layers, self.num_classes, self.bidirectional)
self.crnns = { 'main': self.crnn_main, 'enc4': self.crnn_enc4, 'enc3': self.crnn_enc3, 'enc2': self.crnn_enc2, 'enc1': self.crnn_enc1 }
return self.crnns
def get_attns(self):
self.attn_enc4 = self.attn_enc3 = self.attn_enc2 = self.attn_enc1 = None
if self.early_feats:
if self.enc_attn:
self.attn_enc4 = ApplyAtt(self.enc_attn_type, self.hidden_dims, self.attn_dims)
self.attn_enc3 = ApplyAtt(self.enc_attn_type, self.hidden_dims, self.attn_dims)
if self.use_planet and not self.resize_planet:
self.attn_enc2 = ApplyAtt(self.enc_attn_type, self.hidden_dims, self.attn_dims)
self.attn_enc1 = ApplyAtt(self.enc_attn_type, self.hidden_dims, self.attn_dims)
self.attn_main = ApplyAtt(self.main_attn_type, self.hidden_dims, self.attn_dims)
self.attns = { 'main': self.attn_main, 'enc4': self.attn_enc4, 'enc3': self.attn_enc3, 'enc2': self.attn_enc2, 'enc1': self.attn_enc1 }
return self.attns
def get_final_convs(self):
self.enc4_finalconv = self.enc3_finalconv = self.enc2_finalconv = self.enc1_finalconv = None
if self.early_feats:
self.main_finalconv = nn.Conv2d(in_channels=self.hidden_dims, out_channels=self.crnn_input_size[1], kernel_size=self.conv_kernel_size, padding=int((self.conv_kernel_size-1)/2))
if self.enc_crnn:
self.enc4_finalconv = nn.Conv2d(in_channels=self.hidden_dims, out_channels=self.crnn_input_size[1]//2, kernel_size=self.conv_kernel_size, padding=int((self.conv_kernel_size-1)/2))
self.enc3_finalconv = nn.Conv2d(in_channels=self.hidden_dims, out_channels=self.crnn_input_size[1]//4, kernel_size=self.conv_kernel_size, padding=int((self.conv_kernel_size-1)/2))
if self.use_planet and not self.resize_planet:
self.enc2_finalconv = nn.Conv2d(in_channels=self.hidden_dims, out_channels=self.crnn_input_size[1]//8, kernel_size=self.conv_kernel_size, padding=int((self.conv_kernel_size-1)/2))
self.enc1_finalconv = nn.Conv2d(in_channels=self.hidden_dims, out_channels=self.crnn_input_size[1]//16, kernel_size=self.conv_kernel_size, padding=int((self.conv_kernel_size-1)/2))
else:
self.main_finalconv = nn.Conv2d(in_channels=self.hidden_dims, out_channels=self.num_classes, kernel_size=self.conv_kernel_size, padding=int((self.conv_kernel_size-1)/2))
self.final_convs = { 'main': self.main_finalconv, 'enc4': self.enc4_finalconv, 'enc3': self.enc3_finalconv, 'enc2': self.enc2_finalconv, 'enc1': self.enc1_finalconv}
return self.final_convs
def make_MI_CLSTM_model(num_bands,
unet_out_channels,
crnn_input_size,
hidden_dims,
lstm_kernel_sizes,
lstm_num_layers,
conv_kernel_size,
num_classes,
avg_hidden_states,
early_feats,
bidirectional,
max_timesteps,
satellites,
resize_planet,
grid_size,
main_attn_type,
attn_dims):
model = MI_CLSTM(num_bands,
unet_out_channels,
crnn_input_size,
hidden_dims,
lstm_kernel_sizes,
conv_kernel_size,
lstm_num_layers,
avg_hidden_states,
num_classes,
early_feats,
bidirectional,
max_timesteps,
satellites,
resize_planet,
grid_size,
main_attn_type,
attn_dims)
return model
def make_MI_only_CLSTM_model(num_bands, crnn_input_size, hidden_dims, lstm_kernel_sizes, conv_kernel_size,
lstm_num_layers, avg_hidden_states, num_classes, bidirectional, max_timesteps,
satellites, main_attn_type, attn_dims):
model = ONLY_CLSTM_MI(num_bands, crnn_input_size, hidden_dims, lstm_kernel_sizes, conv_kernel_size,
lstm_num_layers, avg_hidden_states, num_classes, bidirectional, max_timesteps,
satellites, main_attn_type, attn_dims)
return model
def make_bidir_clstm_model(input_size, hidden_dims, lstm_kernel_sizes, conv_kernel_size, lstm_num_layers, num_classes, bidirectional, avg_hidden_states, main_attn_type, attn_dims):
""" Defines a (bidirectional) CLSTM model
Args:
input_size - (tuple) size of input dimensions
hidden_dims - (int or list) num features for hidden layers
lstm_kernel_sizes - (int) kernel size for lstm cells
conv_kernel_size - (int) ketnel size for convolutional layers
lstm_num_layers - (int) number of lstm cells to stack
num_classes - (int) number of classes to predict
bidirectional - (bool) if True, include reverse inputs and concatenate output features from forward and reverse models
if False, use only forward inputs and features
Returns:
returns the model!
"""
model = CLSTMSegmenter(input_size, hidden_dims, lstm_kernel_sizes, conv_kernel_size, lstm_num_layers, num_classes, bidirectional,
with_pred=True, avg_hidden_states=avg_hidden_states, attn_type=main_attn_type, attn_dims=attn_dims)
return model
def make_fcn_model(n_class, n_channel, freeze=True):
""" Defines a FCN8s model
Args:
n_class - (int) number of classes to predict
n_channel - (int) number of channels in input
freeze - (bool) whether to use pre-trained weights
TODO: unfreeze after x epochs of training
Returns:
returns the model!
"""
## load pretrained model
fcn8s_pretrained_model=torch.load(torchfcn.models.FCN8s.download())
fcn8s = FCN8(n_class, n_channel)
fcn8s.load_state_dict(fcn8s_pretrained_model,strict=False)
if freeze:
## Freeze the parameter you do not want to tune
for param in fcn8s.parameters():
if torch.sum(param==0)==0:
param.requires_grad = False
return fcn8s
def make_UNet_model(n_class, num_bands_dict, late_feats_for_fcn=False, pretrained=True, use_planet=False, resize_planet=False):
""" Defines a U-Net model
Args:
n_class - (int) number of classes to predict
n_channel - (int) number of channels in input
for_fcn - (bool) whether or not U-Net is to be used for FCN + CLSTM,
or false if just used as a U-Net. When True, the last conv and
softmax layer is removed and features are returned. When False,
the softmax layer is kept and probabilities are returned.
pretrained - (bool) whether to use pre-trained weights
Returns:
returns the model!
"""
model = UNet(n_class, num_bands_dict, late_feats_for_fcn, use_planet, resize_planet)
if pretrained:
# TODO: Why are pretrained weights from vgg13?
pre_trained = models.vgg13(pretrained=True)
pre_trained_features = list(pre_trained.features)
model.unet_encode.enc3.encode[3] = pre_trained_features[2] # 64 in, 64 out
model.unet_encode.enc4.encode[0] = pre_trained_features[5] # 64 in, 128 out
model.unet_encode.enc4.encode[3] = pre_trained_features[7] # 128 in, 128 out
model.unet_encode.center[0] = pre_trained_features[10] # 128 in, 256 out
model = model.cuda()
return model
def make_UNetEncoder_model(num_bands_dict, use_planet=True, resize_planet=False, pretrained=True):
model = UNet_Encode(num_bands_dict, use_planet, resize_planet)
if pretrained:
# TODO: Why are pretrained weights from vgg13?
pre_trained = models.vgg13(pretrained=True)
pre_trained_features = list(pre_trained.features)
model.enc3.encode[3] = pre_trained_features[2] # 64 in, 64 out
model.enc4.encode[0] = pre_trained_features[5] # 64 in, 128 out
model.enc4.encode[3] = pre_trained_features[7] # 128 in, 128 out
model.center[0] = pre_trained_features[10] # 128 in, 256 out
model = model.cuda()
return model
def make_UNetDecoder_model(n_class, late_feats_for_fcn, use_planet, resize_planet):
model = UNet_Decode(n_class, late_feats_for_fcn, use_planet, resize_planet)
model = model.cuda()
return model
def make_fcn_clstm_model(country, fcn_input_size, crnn_input_size, crnn_model_name,
hidden_dims, lstm_kernel_sizes, conv_kernel_size, lstm_num_layers, avg_hidden_states,
num_classes, bidirectional, pretrained, early_feats, use_planet, resize_planet,
num_bands_dict, main_crnn, main_attn_type, attn_dims,
enc_crnn, enc_attn, enc_attn_type):
""" Defines a fully-convolutional-network + CLSTM model
Args:
fcn_input_size - (tuple) input dimensions for FCN model
fcn_model_name - (str) model name used as the FCN portion of the network
crnn_input_size - (tuple) input dimensions for CRNN model
crnn_model_name - (str) model name used as the convolutional RNN portion of the network
hidden_dims - (int or list) num features for hidden layers
lstm_kernel_sizes - (int) kernel size for lstm cells
conv_kernel_size - (int) ketnel size for convolutional layers
lstm_num_layers - (int) number of lstm cells to stack
num_classes - (int) number of classes to predict
bidirectional - (bool) if True, include reverse inputs and concatenate output features from forward and reverse models
if False, use only forward inputs and features
pretrained - (bool) whether to use pre-trained weights
Returns:
returns the model!
"""
if early_feats:
crnn_input_size += (GRID_SIZE[country] // 4, GRID_SIZE[country] // 4)
else:
crnn_input_size += (GRID_SIZE[country], GRID_SIZE[country])
model = FCN_CRNN(fcn_input_size, crnn_input_size, crnn_model_name, hidden_dims, lstm_kernel_sizes,
conv_kernel_size, lstm_num_layers, avg_hidden_states, num_classes, bidirectional, pretrained,
early_feats, use_planet, resize_planet, num_bands_dict, main_crnn, main_attn_type, attn_dims,
enc_crnn, enc_attn, enc_attn_type)
model = model.cuda()
return model
def make_UNet3D_model(n_class, n_channel, timesteps, dropout):
""" Defined a 3d U-Net model
Args:
n_class - (int) number of classes to predict
n_channels - (int) number of input channgels
Returns:
returns the model!
"""
model = UNet3D(n_channel, n_class, timesteps, dropout)
model = model.cuda()
return model
def get_model(model_name, **kwargs):
""" Get appropriate model based on model_name and input arguments
Args:
model_name - (str) which model to use
kwargs - input arguments corresponding to the model name
Returns:
returns the model!
"""
model = None
if model_name == 'random_forest':
# use class weights
class_weight=None
if kwargs.get('loss_weight'):
class_weight = 'balanced'
model = make_rf_model(random_state=kwargs.get('seed', None),
n_jobs=kwargs.get('n_jobs', None),
n_estimators=kwargs.get('n_estimators', 100),
class_weight=class_weight)
elif model_name == 'bidir_clstm':
num_bands = get_num_bands(kwargs)['all']
num_timesteps = kwargs.get('num_timesteps')
# TODO: change the timestamps passed in to be more flexible (i.e allow specify variable length / fixed / truncuate / pad)
# TODO: don't hardcode values
model = make_bidir_clstm_model(input_size=(num_timesteps, num_bands, GRID_SIZE[kwargs.get('country')], GRID_SIZE[kwargs.get('country')]),
hidden_dims=kwargs.get('hidden_dims'),
lstm_kernel_sizes=(kwargs.get('crnn_kernel_sizes'), kwargs.get('crnn_kernel_sizes')),
conv_kernel_size=kwargs.get('conv_kernel_size'),
lstm_num_layers=kwargs.get('crnn_num_layers'),
num_classes=NUM_CLASSES[kwargs.get('country')],
bidirectional=kwargs.get('bidirectional'),
avg_hidden_states=kwargs.get('avg_hidden_states'),
main_attn_type=kwargs.get('main_attn_type'),
attn_dims = {'d': kwargs.get('d_attn_dim'), 'r': kwargs.get('r_attn_dim'),
'dk': kwargs.get('dk_attn_dim'), 'dv': kwargs.get('dv_attn_dim')})
elif model_name == 'fcn':
num_bands = get_num_bands(kwargs)['all']
model = make_fcn_model(n_class=NUM_CLASSES[kwargs.get('country')], n_channel = num_bands, freeze=True)
elif model_name == 'unet':
num_bands = get_num_bands(kwargs)['all']
num_timesteps = kwargs.get('num_timesteps')
if kwargs.get('time_slice') is None:
model = make_UNet_model(n_class=NUM_CLASSES[kwargs.get('country')], n_channel = num_bands*num_timesteps)
else:
model = make_UNet_model(n_class=NUM_CLASSES[kwargs.get('country')], n_channel = num_bands)
elif model_name == 'fcn_crnn':
num_bands = get_num_bands(kwargs)
num_timesteps = kwargs.get('num_timesteps')
fix_feats = kwargs.get('fix_feats')
pretrained_model_path = kwargs.get('pretrained_model_path')
model = make_fcn_clstm_model(country=kwargs.get('country'),
fcn_input_size=(num_timesteps, num_bands['all'], GRID_SIZE[kwargs.get('country')], GRID_SIZE[kwargs.get('country')]),
crnn_input_size=(num_timesteps, kwargs.get('fcn_out_feats')),
crnn_model_name=kwargs.get('crnn_model_name'),
hidden_dims=kwargs.get('hidden_dims'),
lstm_kernel_sizes=(kwargs.get('crnn_kernel_sizes'), kwargs.get('crnn_kernel_sizes')),
conv_kernel_size=kwargs.get('conv_kernel_size'),
lstm_num_layers=kwargs.get('crnn_num_layers'),
avg_hidden_states=kwargs.get('avg_hidden_states'),
num_classes=NUM_CLASSES[kwargs.get('country')],
bidirectional=kwargs.get('bidirectional'),
pretrained=kwargs.get('pretrained'),
early_feats=kwargs.get('early_feats'),
use_planet=kwargs.get('use_planet'),
resize_planet=kwargs.get('resize_planet'),
num_bands_dict=num_bands,
main_crnn=kwargs.get('main_crnn'),
main_attn_type=kwargs.get('main_attn_type'),
attn_dims = {'d': kwargs.get('d_attn_dim'), 'r': kwargs.get('r_attn_dim'),
'dk': kwargs.get('dk_attn_dim'), 'dv': kwargs.get('dv_attn_dim')},
enc_crnn=kwargs.get('enc_crnn'),
enc_attn=kwargs.get('enc_attn'),
enc_attn_type=kwargs.get('enc_attn_type'))
if (pretrained_model_path is not None) and (kwargs.get('pretrained') == True):
pre_trained_model=torch.load(pretrained_model_path)
# don't set pretrained weights for weights and bias before predictions
# because number of classes do not agree (i.e. germany has 17 classes)
dont_set = ['fcn_dec.final.6.weight', 'fcn_dec.final.6.bias']
updated_keys = []
for key, value in model.state_dict().items():
if key in dont_set: continue
elif key in pre_trained_model:
updated_keys.append(key)
weights = pre_trained_model[key]
model.state_dict()[key] = weights
for name, param in model.named_parameters():
if name in updated_keys:
param.requires_grad = not fix_feats
elif model_name == 'unet3d':
num_bands = get_num_bands(kwargs)['all']
model = make_UNet3D_model(n_class=NUM_CLASSES[kwargs.get('country')], n_channel=num_bands, timesteps=kwargs.get('num_timesteps'), dropout=kwargs.get('dropout'))
elif model_name == 'mi_clstm':
satellites = {'s1': kwargs.get('use_s1'), 's2': kwargs.get('use_s2'), 'planet': kwargs.get('use_planet')}
all_bands = get_num_bands(kwargs)['s1'] + get_num_bands(kwargs)['s2'] + get_num_bands(kwargs)['planet']
num_bands = {'s1': get_num_bands(kwargs)['s1'], 's2': get_num_bands(kwargs)['s2'], 'planet': get_num_bands(kwargs)['planet'], 'all': all_bands }
max_timesteps = kwargs.get('num_timesteps')
country = kwargs.get('country')
if kwargs.get('early_feats'):
crnn_input_size = (max_timesteps, kwargs.get('fcn_out_feats'), GRID_SIZE[country] // 4, GRID_SIZE[country] // 4)
else:
crnn_input_size = (max_timesteps, NUM_CLASSES[kwargs.get('country')], GRID_SIZE[country], GRID_SIZE[country])
model = make_MI_CLSTM_model(num_bands=num_bands,
unet_out_channels=kwargs.get('fcn_out_feats'),
crnn_input_size=crnn_input_size,
hidden_dims=kwargs.get('hidden_dims'),
lstm_kernel_sizes=(kwargs.get('crnn_kernel_sizes'), kwargs.get('crnn_kernel_sizes')),
conv_kernel_size=kwargs.get('conv_kernel_size'),
lstm_num_layers=kwargs.get('crnn_num_layers'),
avg_hidden_states=kwargs.get('avg_hidden_states'),
num_classes=NUM_CLASSES[kwargs.get('country')],
early_feats=kwargs.get('early_feats'),
bidirectional=kwargs.get('bidirectional'),
max_timesteps = kwargs.get('num_timesteps'),
satellites=satellites,
resize_planet=kwargs.get('resize_planet'),
grid_size=GRID_SIZE[country],
main_attn_type=kwargs.get('main_attn_type'),
attn_dims={'d': kwargs.get('d_attn_dim'), 'r': kwargs.get('r_attn_dim'),
'dv': kwargs.get('dv_attn_dim'), 'dk':kwargs.get('dk_attn_dim')})
elif model_name == 'only_clstm_mi':
satellites = {'s1': kwargs.get('use_s1'), 's2': kwargs.get('use_s2'), 'planet': kwargs.get('use_planet')}
all_bands = get_num_bands(kwargs)['s1'] + get_num_bands(kwargs)['s2'] + get_num_bands(kwargs)['planet']
num_bands = {'s1': get_num_bands(kwargs)['s1'], 's2': get_num_bands(kwargs)['s2'], 'planet': get_num_bands(kwargs)['planet'], 'all': all_bands }
max_timesteps = kwargs.get('num_timesteps')
country = kwargs.get('country')
crnn_input_size = (max_timesteps, kwargs.get('fcn_out_feats'), GRID_SIZE[country], GRID_SIZE[country])
model = make_MI_only_CLSTM_model(num_bands=num_bands,
crnn_input_size=crnn_input_size,
hidden_dims=kwargs.get('hidden_dims'),
lstm_kernel_sizes=(kwargs.get('crnn_kernel_sizes'), kwargs.get('crnn_kernel_sizes')),
conv_kernel_size=kwargs.get('conv_kernel_size'),
lstm_num_layers=kwargs.get('crnn_num_layers'),
avg_hidden_states=kwargs.get('avg_hidden_states'),
num_classes=NUM_CLASSES[kwargs.get('country')],
bidirectional=kwargs.get('bidirectional'),
max_timesteps = kwargs.get('num_timesteps'),
satellites=satellites,
main_attn_type=kwargs.get('main_attn_type'),
attn_dims={'d': kwargs.get('d_attn_dim'), 'r': kwargs.get('r_attn_dim'),
'dv': kwargs.get('dv_attn_dim'), 'dk':kwargs.get('dk_attn_dim')})
else:
raise ValueError(f"Model {model_name} unsupported, check `model_name` arg")
return model