forked from atiselsts/uniswap-lp-articles-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_article_3.py
executable file
·442 lines (331 loc) · 15 KB
/
plot_article_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
#!/usr/bin/env python
#
# This plots the figures for the article on LVR.
#
import matplotlib.pyplot as pl
import numpy as np
from ing_theme_matplotlib import mpl_style
import v2_math
import v3_math
from math import sqrt
# Constants for the LP positions
INITIAL_PRICE = 1000
# select the value such that at 50:50 HODL we have 1.0 of the volatile asset X
INITIAL_VALUE = 2 * INITIAL_PRICE
INITIAL_X = INITIAL_VALUE / INITIAL_PRICE / 2
INITIAL_Y = INITIAL_VALUE / 2
# Constants for price simulations
# similar to the 1-day volatility for ETH-USD
SIGMA = 0.05
# assume 12 second blocks as in the mainnet
BLOCKS_PER_DAY = 86400 // 12
NUM_DAYS = 365
#NUM_DAYS = 2
# assume 0.3% and 0.05% swap fees
SWAP_FEE_03 = 0.3 / 100
SWAP_FEE_005 = 0.05 / 100
NUM_SIMULATIONS = 10000
# Constants for plotting
pl.rcParams["savefig.dpi"] = 200
############################################################
#
# Use geometrical Brownian motion to simulate price evolution.
#
def get_price_path(sigma_per_day, blocks_per_day=BLOCKS_PER_DAY, M=NUM_SIMULATIONS, num_days=NUM_DAYS):
np.random.seed(123) # make it repeatable
mu = 0.0 # assume delta neutral behavior
T = num_days
n = T * blocks_per_day
# calc each time step
dt = T/n
# simulation using numpy arrays
St = np.exp(
(mu - sigma_per_day ** 2 / 2) * dt
+ sigma_per_day * np.random.normal(0, np.sqrt(dt), size=(M, n-1)).T
)
# include array of 1's
St = np.vstack([np.ones(M), St])
# multiply through by S0 and return the cumulative product of elements along a given simulation path (axis=0).
St = INITIAL_PRICE * St.cumprod(axis=0)
return St
############################################################
# returns swap amounts from the pool's perspective (changes in the pool's composition)
def get_swap_amounts(L, reserve_x, reserve_y, target_price, fee_tier):
sqrt_tp = sqrt(target_price)
x = L / sqrt_tp - reserve_x
y = L * sqrt_tp - reserve_y
if x > 0:
# arber sells X, LP buys X
x_with_fee = x / (1 - fee_tier)
y_with_fee = y
swap_fee = (x_with_fee - x) * target_price
else:
# arber buys X, LP sells X
x_with_fee = x
y_with_fee = y / (1 - fee_tier)
swap_fee = y_with_fee - y
return x, x_with_fee, y, y_with_fee, swap_fee
############################################################
# this does some quick checks that the math is correct
def test_amounts():
L = v2_math.get_liquidity(INITIAL_X, INITIAL_Y)
price = INITIAL_PRICE
reserve_x = v2_math.calculate_x(L, price)
reserve_y = v2_math.calculate_y(L, price)
fee_tier = SWAP_FEE_03
for c in [1.0001, 1.0002, 1.01, 1.1, 1.2]:
x, x_with_fee, y, y_with_fee, swap_fee = get_swap_amounts(L, reserve_x, reserve_y, price / c, fee_tier)
#print(price / c, "to swap:", x, y)
verify_y = v2_math.sell_x(reserve_x, reserve_y, x_with_fee, fee_tier)
error = (verify_y + y) / verify_y
assert error < 1e-12
#print(" error=", error * 100, "%")
new_price = price / c
arb_pnl = -(x * new_price + y) - swap_fee
#print("arb_pnl=", arb_pnl)
if c == 1.2:
assert arb_pnl > 0
elif c == 1.0001:
assert arb_pnl < 0
for c in [1.0001, 1.0002, 1.01, 1.1, 1.2]:
x, x_with_fee, y, y_with_fee, swap_fee = get_swap_amounts(L, reserve_x, reserve_y, price * c, fee_tier)
verify_x = v2_math.buy_x(reserve_x, reserve_y, y_with_fee, fee_tier)
error = (verify_x + x) / verify_x
assert error < 1e-12
new_price = price * c
arb_pnl = -(x * new_price + y) - swap_fee
if c == 1.2:
assert arb_pnl > 0
elif c == 1.0001:
assert arb_pnl < 0
############################################################
def estimate_lvr(prices, swap_tx_cost, fee_tier):
fee_factor_down = 1.0 - fee_tier
fee_factor_up = 1.0 + fee_tier
# assume $1 million of liquidity in the pool (the larger, the better for all parties)
reserve_x = 500
reserve_y = 500_000
pool_value0 = reserve_x * INITIAL_PRICE + reserve_y
L = v2_math.get_liquidity(reserve_x, reserve_y)
# compute lvr and fees
lvr = 0
collected_fees = 0
num_tx = 0
for cex_price in prices:
pool_price = reserve_y / reserve_x
if cex_price > pool_price:
to_price = cex_price * fee_factor_down
if to_price < pool_price:
continue
else:
to_price = cex_price * fee_factor_up
if to_price > pool_price:
continue
to_sqrt_price = sqrt(to_price)
delta_x = L / to_sqrt_price - reserve_x
delta_y = L * to_sqrt_price - reserve_y
if delta_x > 0:
# arber sells X, LP buys X
swap_fee = fee_tier * delta_x * cex_price
else:
# arber buys X, LP sells X
swap_fee = fee_tier * delta_y
# assume fixed gas fees
lp_loss_vs_cex = -(delta_x * cex_price + delta_y)
arb_gain = lp_loss_vs_cex - swap_fee - swap_tx_cost
if arb_gain > 0:
lvr += lp_loss_vs_cex # account without swap fees and tx fees
reserve_x += delta_x
reserve_y += delta_y
collected_fees += swap_fee
num_tx += 1
# normalize by dividing with the initial value of the capital rather than the final value
lvr /= pool_value0
collected_fees /= pool_value0
return lvr, collected_fees, num_tx
############################################################
def compute_lvr(all_prices, swap_tx_cost, fee_tier):
print(f"compute_lvr, swap_tx_cost={swap_tx_cost}, fee_tier={100*fee_tier:.2}%")
#fee_multiplier = 1 / (1 - swap_fee)
all_lvr = []
all_fees = []
all_tx_per_block = []
if len(all_prices.shape) > 2:
# take the first elements from the second dimension
all_prices = all_prices[:,0,:]
for sim in range(all_prices.shape[1]):
prices = all_prices[:,sim]
lvr, collected_fees, num_tx = estimate_lvr(prices, swap_tx_cost, fee_tier)
all_lvr.append(lvr)
all_fees.append(collected_fees)
all_tx_per_block.append(num_tx / len(prices))
return np.mean(all_lvr), np.mean(all_fees), np.mean(all_tx_per_block)
############################################################
def plot_lvr_and_tx_cost():
# assume pool with $1 million liquidity
# if swap transaction costs:
# * $100 -> 1 bps fee per tranasaction
# * $10 -> 0.1 bps fee per tranasaction
# * $1 -> 0.01 bps fee per tranasaction
# * $0.1 -> 0.001 bps fee per tranasaction
#tx_cost_bps = np.array([0.0, 0.001, 0.002, 0.005, 0.01, 0.02])
#swap_tx_cost = INITIAL_VALUE * tx_cost_bps / (100 * 100)
# multiply by 500 because the assumption is $1M liquidity instead of $2000 as in this model
#swap_tx_cost *= 500
swap_tx_cost_dollars = np.array([0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0])
fig, ax = pl.subplots()
fig.set_size_inches((4, 3))
# reduce the number of simulations, since we iterate over each block
num_simulations = 50
all_prices = get_price_path(SIGMA, blocks_per_day=BLOCKS_PER_DAY, M=num_simulations)
final_prices = all_prices[-1,:]
returns = final_prices / INITIAL_PRICE
year_sigma = SIGMA * sqrt(NUM_DAYS) # convert from daily to yearly volatility
print(f"sigma={year_sigma:.2f} mean={np.mean(final_prices):.4f} std={np.std(np.log(returns)):.4f}")
lvr_and_fees_03 = [compute_lvr(all_prices, cost, SWAP_FEE_03) for cost in swap_tx_cost_dollars]
lvr_and_fees_005 = [compute_lvr(all_prices, cost, SWAP_FEE_005) for cost in swap_tx_cost_dollars]
x = swap_tx_cost_dollars
pl.plot(x, [100*u[0] for u in lvr_and_fees_03], label="Losses to LVR", marker="v")
pl.plot(x, [100*u[1] for u in lvr_and_fees_03], label="Gains from arb fees, 0.3% pool", marker="o", color="green")
pl.plot(x, [100*u[1] for u in lvr_and_fees_005], label="Gains from arb fees, 0.05% pool", marker="o", color="lightgreen")
pl.xlabel("Swap tx cost, $")
pl.ylabel("APR, %")
pl.legend()
pl.ylim(ymin=0)
pl.savefig("article_3_lvr_and_tx_cost.png", bbox_inches='tight')
pl.close()
############################################################
def plot_lvr_and_block_time():
#tx_cost_bps = 0.01
#swap_tx_cost = INITIAL_VALUE * tx_cost_bps / (100 * 100)
# multiply by 500 because the assumption is $1M liquidity instead of $2000 as in this model
#swap_tx_cost *= 500
# assume not so cheap transactions
swap_tx_cost_dollars = 5
fig, ax = pl.subplots()
fig.set_size_inches((4, 3))
# reduce the number of simulations, since we iterate over each block
num_simulations = 10 # very small, but the sigma and mean are still quite accurate
base_blocktime_sec = 1
blocks_per_day = 86400 // base_blocktime_sec
all_prices = get_price_path(SIGMA, blocks_per_day=blocks_per_day, M=num_simulations)
final_prices = all_prices[-1,:]
returns = final_prices / INITIAL_PRICE
year_sigma = SIGMA * sqrt(NUM_DAYS) # convert from daily to yearly volatility
print(f"sigma={year_sigma:.2f} mean={np.mean(final_prices):.4f} std={np.std(np.log(returns)):.4f}")
block_time_multipliers = [1, 2, 4, 8, 12]
lvr_and_fees = []
for multiplier in block_time_multipliers:
if multiplier > 1:
all_prices = all_prices.reshape((blocks_per_day * NUM_DAYS) // multiplier, multiplier, num_simulations)
final_prices = all_prices[-1,:][-1,:]
returns = final_prices / INITIAL_PRICE
year_sigma = SIGMA * sqrt(NUM_DAYS) # convert from daily to yearly volatility
print(f" m={multiplier} sigma={year_sigma:.2f} mean={np.mean(final_prices):.4f} std={np.std(np.log(returns)):.4f}")
lvr, fees1, _ = compute_lvr(all_prices, 0.0, SWAP_FEE_03)
lvr, fees2, _ = compute_lvr(all_prices, swap_tx_cost_dollars, SWAP_FEE_03)
lvr_and_fees.append((lvr, fees1, fees2))
block_time_sec = [u * base_blocktime_sec for u in block_time_multipliers]
pl.plot(block_time_sec, [100*u[0] for u in lvr_and_fees], label="Losses to LVR", marker="v")
pl.plot(block_time_sec, [100*u[1] for u in lvr_and_fees], label="Gains from arb fees, tx cost=$0", marker="o", color="green")
pl.plot(block_time_sec, [100*u[2] for u in lvr_and_fees], label=f"Gains from arb fees, tx cost=${swap_tx_cost_dollars}", marker="o", color="lightgreen")
pl.xlabel("Block time, seconds")
pl.ylabel("APR, %")
pl.legend()
pl.ylim(ymin=0)
pl.savefig("article_3_lvr_and_block_time.png", bbox_inches='tight')
pl.close()
############################################################
def compute_expected_divloss(sigma):
initial_x = INITIAL_X
initial_y = INITIAL_Y
year_sigma = sigma
sigma /= sqrt(NUM_DAYS) # convert from yearly to daily volatility
all_divloss = []
all_final_values = []
all_prices = get_price_path(sigma, blocks_per_day=1)
final_prices = all_prices[-1,:]
returns = final_prices / INITIAL_PRICE
print(f"sigma={year_sigma:.2f} mean={np.mean(final_prices):.4f} std={np.std(np.log(returns)):.4f}")
for sim in range(NUM_SIMULATIONS):
prices = all_prices[:,sim]
L = v2_math.get_liquidity(initial_x, initial_y)
V0 = v2_math.position_value_from_liquidity(L, INITIAL_PRICE)
Vhodl = prices[-1] * INITIAL_X + INITIAL_Y
Vfinal = v2_math.position_value_from_liquidity(L, prices[-1])
divloss = (Vfinal - Vhodl) / Vhodl
all_divloss.append(divloss)
all_final_values.append(Vfinal)
return np.mean(all_divloss)
############################################################
def plot_divloss_from_sigma():
fig, ax = pl.subplots()
fig.set_size_inches((8, 5))
fee_apr = np.arange(0, 30, 5)
sigmas = np.arange(0.1, 1.5, 0.1)
day_sigmas = [sigma / sqrt(NUM_DAYS) for sigma in sigmas]
divloss = [compute_expected_divloss(sigma) * 100 for sigma in sigmas]
model_divloss = [-100 * (sigma ** 2) / 8 for sigma in sigmas]
for fee in fee_apr:
pl.plot(sigmas, [dl + fee for dl in divloss], marker="o", label=f"Fee APR={fee:.0f}%")
pl.plot(sigmas, model_divloss, linestyle="--", marker="None", label="Divergence loss (analytical model)")
pl.xlabel("Annualized $\sigma$")
pl.ylabel("Profit and loss APR, %")
pl.legend()
pl.savefig("article_3_divloss_vs_fees.png", bbox_inches='tight')
pl.close()
############################################################
#
# This aims to replicate Table 1 from the paper "LVR-with-fees", i.e.
# "Automated Market Making and Arbitrage Profits in the Presence of Fees".
# The difference is they're using Poisson distribution, while here it is the random distr.
#
def simulate_prob_trade_per_block():
# don't simulate the 50 msec case, it requires too much blocks & not practical
base_blocktime_sec = 2
# corresponds to 2 sec, 12 sec, 2 min, 12 min
block_time_multipliers = [1, 6, 60, 300]
# as in the paper
swap_fee_bps = [1, 5, 10, 30, 100]
# WARNING: assume zero-cost swap Tx (probably as in the paper!)
tx_cost = 0.0
#tx_cost = 1.0
blocks_per_day = 86400 // base_blocktime_sec
num_days = 10
num_simulations = 50
all_prices = get_price_path(SIGMA, blocks_per_day=blocks_per_day, M=num_simulations, num_days=num_days)
final_prices = all_prices[-1,:]
returns = final_prices / INITIAL_PRICE
period_sigma = SIGMA * sqrt(num_days) # convert from daily to period volatility
print(f"sigma={period_sigma:.2f} mean={np.mean(final_prices):.4f} std={np.std(np.log(returns)):.4f}")
all_prob_per_block = {}
for multiplier in block_time_multipliers:
if multiplier > 1:
all_prices = all_prices.reshape((blocks_per_day * num_days) // multiplier, multiplier, num_simulations)
final_prices = all_prices[-1,:][-1,:]
returns = final_prices / INITIAL_PRICE
print(f" m={multiplier} sigma={period_sigma:.2f} mean={np.mean(final_prices):.4f} std={np.std(np.log(returns)):.4f}")
sim_result = [compute_lvr(all_prices, tx_cost, bps / 10_000) for bps in swap_fee_bps]
all_prob_per_block[multiplier] = [u[2] for u in sim_result]
for multiplier in block_time_multipliers[::-1]:
print(f"block time {multiplier * base_blocktime_sec: 5d} sec, arb prob %:", end="")
for i in range(len(swap_fee_bps)):
#print(f"fee={swap_fee_bps[i]} bps prob={all_prob_per_block[multiplier][i]:.2f} ", end="")
print(f"{100*all_prob_per_block[multiplier][i]: 3.1f} ", end="")
print("")
############################################################
def main():
mpl_style(True)
# sanity check the math
test_amounts()
# try to match LVR paper results
simulate_prob_trade_per_block()
# check what % of LVR goes to the LP as fees, as a function of Tx cost
plot_lvr_and_tx_cost()
# check what % of LVR goes to the LP as fees, as a function of block time
plot_lvr_and_block_time()
# plot the expectd DL == LVR depending on volatility
plot_divloss_from_sigma()
if __name__ == '__main__':
main()
print("all done!")