-
Notifications
You must be signed in to change notification settings - Fork 1
/
FEM.py
46 lines (36 loc) · 1.09 KB
/
FEM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider
# dy/dx = 2x + y ; y(0) = 1 , h = 0.2 , x in [ 0 , 1 ]
# analytical solution: y(x) = -( 2 * x + 1 ) + 3 * e ^ x
fig, ax = plt.subplots()
plt.subplots_adjust(bottom=0.25)
h0 = 0.2
y0 = 1
lower0 = 0
upper0 = 1
def analytic(x):
return -2 * ( x + 1 ) + 3 * np.e ** x
def f(x, y):
return 2 * x + y
def FEM(h,y,lower,upper):
interval = np.arange(lower,upper+h,h)
ndsolve = np.array([y])
for x in interval:
y = y + h * f(x, y)
ndsolve = np.append(ndsolve,y)
ndsolve = np.delete(ndsolve, -1)
return interval, ndsolve
interval0, ndsolve0 = FEM(h0,y0,lower0,upper0)
l, = plt.plot(interval0,ndsolve0,'rx')
plt.plot(np.arange(0,1,0.001),analytic(np.arange(0,1,0.001)),'--')
axcolor = 'lightgoldenrodyellow'
axh = plt.axes([0.25, 0.1, 0.5, 0.1], facecolor=axcolor)
sh = Slider(axh, 'h', 0.001, 1., valinit=0.2)
def update(val):
h0 = sh.val
interval0, ndsolve0 = FEM(h0,y0,lower0,upper0)
l.set_data(interval0, ndsolve0)
fig.canvas.draw_idle()
sh.on_changed(update)
plt.show()