-
Notifications
You must be signed in to change notification settings - Fork 97
/
example-code.py
1181 lines (922 loc) · 37.3 KB
/
example-code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# This code uses Python's optional typing annotations. You can
# ignore them and do not need to use them. If you do use them
# then you must include this future annotations line first.
from __future__ import annotations
from typing import Optional, Iterator, Any
import os
import sys
import time
import datetime
import apsw
import apsw.ext
import random
import re
from pathlib import Path
### version_check: Checking APSW and SQLite versions
# Where the extension module is on the filesystem
print(" Using APSW file", apsw.__file__)
# From the extension
print(" APSW version", apsw.apsw_version())
# From the sqlite header file at APSW compile time
print("SQLite header version", apsw.SQLITE_VERSION_NUMBER)
# The SQLite code running
print(" SQLite lib version", apsw.sqlite_lib_version())
# If True then SQLite is incorporated into the extension.
# If False then a shared library is being used, or static linking
print(" Using amalgamation", apsw.using_amalgamation)
### bestpractice: Best Practice
# Ensure SQLite usage prevents common mistakes, and gets best
# performance via :doc:`apsw.bestpractice <bestpractice>`
import apsw.bestpractice
apsw.bestpractice.apply(apsw.bestpractice.recommended)
### logging: Logging
# It is a good idea to get SQLite's logs as you will get more
# information about errors. Best practice also includes this.
# :meth:`apsw.ext.log_sqlite` forwards SQLite's log messages to the
# :mod:`logging` module.
apsw.ext.log_sqlite()
# You can also write to SQLite's log
apsw.log(apsw.SQLITE_ERROR, "A message from Python")
### open_db: Opening the database
# You open the database by using :class:`Connection`
# Default will create the database if it doesn't exist
connection = apsw.Connection("dbfile")
# Open existing read-only
connection = apsw.Connection("dbfile", flags=apsw.SQLITE_OPEN_READONLY)
# Open existing read-write (exception if it doesn't exist)
connection = apsw.Connection("dbfile", flags=apsw.SQLITE_OPEN_READWRITE)
### executing_sql: Executing SQL
# Use :meth:`Connection.execute` to execute SQL
connection.execute("create table point(x,y,z)")
connection.execute("insert into point values(1, 2, 3)")
# You can use multiple ; separated statements
connection.execute("""
insert into point values(4, 5, 6);
create table log(timestamp, event);
create table foo(a, b, c);
create table important(secret, data);
""")
# read rows
for row in connection.execute("select * from point"):
print(row)
### why_bindings: Why you use bindings to provide values
# It is tempting to compose strings with the values in them, but it is
# easy to mangle the query especially if values contain punctuation
# and unicode. It is known as `SQL injection
# <https://en.wikipedia.org/wiki/SQL_injection>`__. Bindings are the
# correct way to supply values to queries.
# a simple value
event = "system started"
# DO NOT DO THIS
query = f"insert into log values(0, '{ event }')"
print("query:", query)
# BECAUSE ... a bad guy could provide a value like this
event = "bad guy here') ; drop table important; -- comment"
# which has effects like this
query = f"insert into log values(0, '{ event }')"
print("bad guy:", query)
### bindings_sequence: Bindings (sequence)
# Bindings can be provided as a sequence such as with
# a tuple or list. Use **?** to show where the values go.
query = "insert into log values(?, ?)"
data = (7, "transmission started")
connection.execute(query, data)
# You can also use numbers after the ? to select
# values from the sequence. Note that numbering
# starts at 1
query = "select ?1, ?3, ?2"
data = ("alpha", "beta", "gamma")
for row in connection.execute(query, data):
print(row)
### bindings_dict: Bindings (dict)
# You can also supply bindings with a dictionary. Use **:NAME**,
# **@NAME**, or **$NAME**, to provide the key name in the query.
# Names are case sensitive.
query = "insert into point values(:x, @Y, $z)"
data = {"x": 7, "Y": 8, "z": 9}
connection.execute(query, data)
### transaction: Transactions
# By default each statement is its own transaction. A transaction
# finishes by flushing data to storage and waiting for the operating
# system to confirm it is permanently there (ie will survive a power
# failure) which takes a while.
# 3 separate transactions
connection.execute("insert into point values(2, 2, 2)")
connection.execute("insert into point values(3, 3, 3)")
connection.execute("insert into point values(4, 4, 4)")
# You can use BEGIN / COMMIT to manually make a transaction
connection.execute("BEGIN")
connection.execute("insert into point values(2, 2, 2)")
connection.execute("insert into point values(3, 3, 3)")
connection.execute("insert into point values(4, 4, 4)")
connection.execute("COMMIT")
# Or use `with` that does it automatically
with connection:
connection.execute("insert into point values(2, 2, 2)")
connection.execute("insert into point values(3, 3, 3)")
connection.execute("insert into point values(4, 4, 4)")
# Nested transactions are supported
with connection:
connection.execute("insert into point values(2, 2, 2)")
with connection:
connection.execute("insert into point values(3, 3, 3)")
connection.execute("insert into point values(4, 4, 4)")
### executemany: executemany
# You can execute the same SQL against a sequence using
# :meth:`Connection.executemany`
data = (
(1, 1, 1),
(2, 2, 2),
(3, 3, 3),
(4, 4, 4),
(5, 5, 5),
)
query = "insert into point values(?,?,?)"
# we do it in a transaction
with connection:
# the query is run for each item in data
connection.executemany(query, data)
### pragma: Pragmas
# SQLite has a `wide variety of pragmas <https://www.sqlite.org/pragma.html>`__ to control
# the database configuration and library behaviour. See the :doc:`tips` for maintaining
# your schema.
# WAL mode is good for write performance
connection.pragma("journal_mode", "wal")
# Foreign keys are off by default, so turn them on
connection.pragma("foreign_keys", True)
# You can use this to see if any other connection (including other processes) has
# changed the database
connection.pragma("data_version")
# Useful at startup to detect some database corruption
check = connection.pragma("integrity_check")
if check != "ok":
print("Integrity check errors", check)
### exectrace: Tracing execution
# You can trace execution of SQL statements. See :ref:`more about
# tracing <tracing>`.
def my_tracer(cursor: apsw.Cursor, statement: str, bindings: Optional[apsw.Bindings]) -> bool:
"Called just before executing each statement"
print("SQL:", statement.strip())
print("Bindings:", bindings)
return True # if you return False then execution is aborted
# you can trace a single cursor
cursor = connection.cursor()
cursor.exec_trace = my_tracer
cursor.execute(
"""
drop table if exists bar;
create table bar(x,y,z);
select * from point where x=?;
""",
(3,),
)
# if set on a connection then all cursors are traced
connection.exec_trace = my_tracer
# and clearing it
connection.exec_trace = None
### rowtrace: Tracing returned rows
# You can trace returned rows, including modifying what is returned or
# skipping it completely. See :ref:`more about tracing <tracing>`.
def row_tracer(cursor: apsw.Cursor, row: apsw.SQLiteValues) -> apsw.SQLiteValues:
"""Called with each row of results before they are handed off. You can return None to
cause the row to be skipped or a different set of values to return"""
print("Row:", row)
return row
# you can trace a single cursor
cursor = connection.cursor()
cursor.row_trace = row_tracer
for row in cursor.execute("select x,y from point where x>4"):
pass
# if set on a connection then all cursors are traced
connection.row_trace = row_tracer
# and clearing it
connection.row_trace = None
### scalar: Defining scalar functions
# Scalar functions take one or more values and return one value. They
# are registered by calling :meth:`Connection.create_scalar_function`.
def ilove7(*args: apsw.SQLiteValue) -> int:
"A scalar function"
print(f"ilove7 got { args } but I love 7")
return 7
connection.create_scalar_function("seven", ilove7)
for row in connection.execute("select seven(x,y) from point where x>4"):
print("row", row)
### aggregate: Defining aggregate functions
# Aggregate functions are called multiple times with matching rows,
# and then provide a final value. An example is calculating an
# average. They are registered by calling
# :meth:`Connection.create_aggregate_function`.
class longest:
# Find which value when represented as a string is
# the longest
def __init__(self) -> None:
self.longest = ""
def step(self, *args: apsw.SQLiteValue) -> None:
# Called with each matching row
for arg in args:
if len(str(arg)) > len(self.longest):
self.longest = str(arg)
def final(self) -> str:
# Called at the very end
return self.longest
connection.create_aggregate_function("longest", longest)
print(connection.execute("select longest(event) from log").get)
### window: Defining window functions
# Window functions input values come from a "window" around a row of
# interest. Four methods are called as the window moves to add,
# remove, get the current value, and finalize.
#
# An example is calculating an average of values in the window to
# compare to the row. They are registered by calling
# :meth:`Connection.create_window_function`.
#
# This is the Python equivalent to the C based example in the `SQLite
# documentation
# <https://www.sqlite.org/windowfunctions.html#user_defined_aggregate_window_functions>`__
class SumInt:
def __init__(self):
self.v = 0
def step(self, arg):
print("step", arg)
self.v += arg
def inverse(self, arg):
print("inverse", arg)
self.v -= arg
def final(self):
print("final", self.v)
return self.v
def value(self):
print("value", self.v)
return self.v
connection.create_window_function("sumint", SumInt)
for row in connection.execute("""
CREATE TABLE t3(x, y);
INSERT INTO t3 VALUES('a', 4),
('b', 5),
('c', 3),
('d', 8),
('e', 1);
-- Use the window function
SELECT x, sumint(y) OVER (
ORDER BY x ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING
) AS sum_y
FROM t3 ORDER BY x;
"""):
print("ROW", row)
### collation: Defining collations (sorting)
# How you sort can depend on the languages or values involved. You
# register a collation by calling :meth:`Connection.create_collation`.
# This example sorting mechanisms understands some text followed by a
# number and ensures the number portion gets sorted correctly
connection.execute("create table names(name)")
connection.executemany(
"insert into names values(?)",
(
("file1",),
("file7",),
("file17",),
("file20",),
("file3",),
),
)
print("Standard sorting")
for row in connection.execute("select * from names order by name"):
print(row)
def str_num_collate(s1: apsw.SQLiteValue, s2: apsw.SQLiteValue) -> int:
# return -1 if s1<s2, +1 if s1>s2 else 0 for equal
def parts(s: str) -> list:
"Converts str into list of alternating str and int parts"
return [int(v) if v.isdigit() else v for v in re.split(r"(\d+)", s)]
ps1 = parts(str(s1))
ps2 = parts(str(s2))
# compare
if ps1 < ps2:
return -1
if ps1 > ps2:
return 1
return 0
connection.create_collation("strnum", str_num_collate)
print("\nUsing strnum")
for row in connection.execute("select * from names order by name collate strnum"):
print(row)
### colnames: Accessing results by column name
# You can access results by column name using :mod:`dataclasses`.
# APSW provides :class:`apsw.ext.DataClassRowFactory` for names.
import apsw.ext
connection.execute("""
create table books(id, title, author, year);
insert into books values(7, 'Animal Farm', 'George Orwell', 1945);
insert into books values(37, 'The Picture of Dorian Gray', 'Oscar Wilde', 1890);
""")
# Normally you use column numbers
for row in connection.execute("select title, id, year from books where author=?", ("Oscar Wilde",)):
# this is very fragile
print("title", row[0])
print("id", row[1])
print("year", row[2])
# Turn on dataclasses - frozen makes them read-only
connection.row_trace = apsw.ext.DataClassRowFactory(dataclass_kwargs={"frozen": True})
print("\nNow with dataclasses\n")
# Same query - note using AS to set column name
for row in connection.execute(
"""SELECT title,
id AS book_id,
year AS book_year
FROM books WHERE author = ?""",
("Oscar Wilde",),
):
print("title", row.title)
print("id", row.book_id)
print("year", row.book_year)
# clear
connection.row_trace = None
### type_conversion: Type conversion into/out of database
# You can use :class:`apsw.ext.TypesConverterCursorFactory` to do
# conversion, both for types you define and for other types.
import apsw.ext
registrar = apsw.ext.TypesConverterCursorFactory()
connection.cursor_factory = registrar
# A type we define - deriving from SQLiteTypeAdapter automatically registers conversion
# to a SQLite value
class Point(apsw.ext.SQLiteTypeAdapter):
def __init__(self, x, y):
self.x = x
self.y = y
def __repr__(self) -> str:
return f"Point({ self.x }, { self.y })"
def __eq__(self, other: object) -> bool:
return isinstance(other, type(self)) and self.x == other.x and self.y == other.y
def to_sqlite_value(self) -> str:
# called to convert Point into something SQLite supports
return f"{ self.x };{ self.y }"
# This converter will be registered
@classmethod
def convert_from_sqlite(cls, value: str) -> Point:
return cls(*(float(part) for part in value.split(";")))
# Existing types
def complex_to_sqlite_value(c: complex) -> str:
return f"{ c.real }+{ c.imag }"
def datetime_to_sqlite_value(dt: datetime.datetime) -> float:
# Represent as floating point UTC value no matter
# what timezone is used. Also consider other
# formats like ISO8601.
return dt.timestamp()
# ... require manual registration
registrar.register_adapter(complex, complex_to_sqlite_value)
registrar.register_adapter(datetime.datetime, datetime_to_sqlite_value)
# conversion from a SQLite value requires registration
registrar.register_converter("POINT", Point.convert_from_sqlite)
# ... and for stdlib types
def sqlite_to_complex(v: str) -> complex:
return complex(*(float(part) for part in v.split("+")))
def sqlite_to_datetime(v: float) -> datetime.datetime:
# Keep the UTC values coming back from the database
# as UTC
return datetime.datetime.fromtimestamp(v, datetime.timezone.utc)
registrar.register_converter("COMPLEX", sqlite_to_complex)
registrar.register_converter("TIMESTAMP", sqlite_to_datetime)
# note that the type names are case sensitive and must match the
# registration
connection.execute("create table conversion(p POINT, c COMPLEX, t TIMESTAMP)")
# convert going into database
test_data = (Point(5.2, 7.6), 3 + 4j, datetime.datetime.now())
connection.execute("insert into conversion values(?, ?, ?)", test_data)
print("inserted", test_data)
# and coming back out
print("querying data")
for row in connection.execute("select * from conversion"):
for i, value in enumerate(row):
print(f"column {i} = { value !r}")
# clear registrar
connection.cursor_factory = apsw.Cursor
### query_details: Query details
# :meth:`apsw.ext.query_info` can provide a lot of information about a
# query (without running it)
import apsw.ext
# test tables
connection.execute("""
create table customers(
id INTEGER PRIMARY KEY,
name CHAR,
address CHAR);
create table orders(
id INTEGER PRIMARY KEY,
customer_id INTEGER,
item MY_OWN_TYPE);
create index cust_addr on customers(address);
""")
query = """
SELECT * FROM orders
JOIN customers ON orders.customer_id=customers.id
WHERE address = ?;
SELECT 7;"""
# ask for all information available
qd = apsw.ext.query_info(
connection,
query,
actions=True, # which tables/views etc and how they are accessed
explain=True, # shows low level VDBE
explain_query_plan=True, # how SQLite solves the query
)
# help with formatting
import pprint
print("query", qd.query)
print("\nbindings_count", qd.bindings_count)
print("\nbindings_names", qd.bindings_names)
print("\nexpanded_sql", qd.expanded_sql)
print("\nfirst_query", qd.first_query)
print("\nquery_remaining", qd.query_remaining)
print("\nis_explain", qd.is_explain)
print("\nis_readonly", qd.is_readonly)
print("\ndescription\n", pprint.pformat(qd.description))
if hasattr(qd, "description_full"):
print("\ndescription_full\n", pprint.pformat(qd.description_full))
print("\nquery_plan\n", pprint.pformat(qd.query_plan))
print("\nFirst 5 actions\n", pprint.pformat(qd.actions[:5]))
print("\nFirst 5 explain\n", pprint.pformat(qd.explain[:5]))
### blob_io: Blob I/O
# BLOBS (binary large objects) are supported by SQLite. Note that you
# cannot change the size of one, but you can allocate one filled with
# zeroes, and then later open it and read / write the contents similar
# to a file, without having the entire blob in memory. Use
# :meth:`Connection.blob_open` to open a blob.
connection.execute("create table blobby(x,y)")
# Add a blob we will fill in later
connection.execute("insert into blobby values(1, zeroblob(10000))")
# Or as a binding
connection.execute("insert into blobby values(2, ?)", (apsw.zeroblob(20000),))
# Open a blob for writing. We need to know the rowid
rowid = connection.execute("select ROWID from blobby where x=1").get
blob = connection.blob_open("main", "blobby", "y", rowid, True)
blob.write(b"hello world")
blob.seek(2000)
blob.read(24)
# seek relative to the end
blob.seek(-32, 2)
blob.write(b"hello world, again")
blob.close()
### backup: Backup an open database
# You can :ref:`backup <backup>` a database that is open. The pages are copied in
# batches of your choosing and allow continued use of the source
# database.
# We will copy a disk database into this memory database
destination = apsw.Connection(":memory:")
# Copy into destination
with destination.backup("main", connection, "main") as backup:
# The source database can change while doing the backup
# and the backup will still pick up those changes
while not backup.done:
backup.step(7) # copy up to 7 pages each time
# monitor progress
print(backup.remaining, backup.page_count)
### authorizer: Authorizer (control what SQL can do)
# You can allow, deny, or ignore what SQL does. Use
# :attr:`Connection.authorizer` to set an authorizer.
def auth(
operation: int, p1: Optional[str], p2: Optional[str], db_name: Optional[str], trigger_or_view: Optional[str]
) -> int:
"""Called when each operation is prepared. We can return SQLITE_OK, SQLITE_DENY or
SQLITE_IGNORE"""
# find the operation name
print(apsw.mapping_authorizer_function[operation], p1, p2, db_name, trigger_or_view)
if operation == apsw.SQLITE_CREATE_TABLE and p1 and p1.startswith("private"):
return apsw.SQLITE_DENY # not allowed to create tables whose names start with private
return apsw.SQLITE_OK # always allow
connection.authorizer = auth
connection.execute("insert into names values('foo')")
connection.execute("select name from names limit 1")
try:
connection.execute("create table private_stuff(secret)")
print("Created secret table!")
except Exception as e:
print(e)
# Clear authorizer
connection.authorizer = None
### progress_handler: Progress handler
# Some operations (eg joins, sorting) can take many operations to
# complete. Register a progress handler callback with
# :meth:`Connection.set_progress_handler` which lets you provide
# feedback and allows cancelling.
# create a table with random numbers
with connection:
connection.execute("create table numbers(x)")
connection.executemany("insert into numbers values(?)", ((random.randint(0, 9999999999),) for _ in range(100)))
def progress_handler() -> bool:
print("progress handler called")
return False # returning True aborts
# register handler every 50 vdbe instructions
connection.set_progress_handler(progress_handler, 50)
# Sorting the numbers to find the biggest
for max_num in connection.execute("select max(x) from numbers"):
print(max_num)
# Clear handler
connection.set_progress_handler(None)
### filecontrol: File Control
# We can get/set low level information using the
# :meth:`Connection.file_control` interface. In this example we get
# the `data version
# <https://sqlite.org/c3ref/c_fcntl_begin_atomic_write.html#sqlitefcntldataversion>`__.
# There is a `pragma
# <https://sqlite.org/pragma.html#pragma_data_version>`__ but it
# doesn't change for commits on the same connection.
# We use ctypes to provide the correct C level data types and pointers
import ctypes
def get_data_version(db):
# unsigned 32 bit integer
data_version = ctypes.c_uint32(0)
ok = db.file_control(
"main", # or an attached database name
apsw.SQLITE_FCNTL_DATA_VERSION, # code
ctypes.addressof(data_version),
) # pass C level pointer
assert ok, "SQLITE_FCNTL_DATA_VERSION was not understood!"
return data_version.value
# Show starting values
print("fcntl", get_data_version(connection), "pragma", connection.pragma("data_version"))
# See the fcntl value versus pragma value
for sql in (
"create table fcntl_example(x)",
"begin ; insert into fcntl_example values(3)",
# we can see the version doesn't change inside a transaction
"insert into fcntl_example values(4)",
"commit",
"pragma user_version=1234",
):
print(sql)
connection.execute(sql)
print("fcntl", get_data_version(connection), "pragma", connection.pragma("data_version"))
### commit_hook: Commit hook
# A commit hook can allow or veto commits. Register a commit hook
# with :meth:`Connection.set_commit_hook`.
def my_commit_hook() -> bool:
print("in commit hook")
hour = time.localtime()[3]
if hour >= 8 and hour < 18:
print("commits okay at this time")
return False # let commit go ahead
print("no commits out of hours")
return True # abort commits outside of 8am through 6pm
connection.set_commit_hook(my_commit_hook)
try:
with connection:
connection.execute("""create table example(x,y,z);
insert into example values (3,4,5)""")
except apsw.ConstraintError:
print("commit was not allowed")
connection.set_commit_hook(None)
### update_hook: Update hook
# Update hooks let you know that data has been added, changed, or
# removed. For example you could use this to discard cached
# information. Register a hook using
# :meth:`Connection.set_update_hook`.
def my_update_hook(type: int, db_name: str, table_name: str, rowid: int) -> None:
op: str = apsw.mapping_authorizer_function[type]
print(f"Updated: { op } db { db_name }, table { table_name }, rowid { rowid }")
connection.set_update_hook(my_update_hook)
connection.execute("insert into names values(?)", ("file93",))
connection.execute("update names set name=? where name=?", ("file94", "file93"))
connection.execute("delete from names where name=?", ("file94",))
# Clear the hook
connection.set_update_hook(None)
### virtual_tables: Virtual tables
# :ref:`Virtual tables <virtualtables>` let you provide data on demand
# as a SQLite table so you can use SQL queries against that data.
# Writing your own virtual table requires understanding how to return
# less than all the data via the `BestIndex
# <https://www.sqlite.org/vtab.html#the_xbestindex_method>`__ method.
#
# You can export a Python function as a virtual table in 3 lines of
# code using :func:`apsw.ext.make_virtual_module`, being able to
# provide both positional and keyword arguments.
#
# For the first example you'll find :meth:`apsw.ext.generate_series`
# useful instead.
# Yield a row at a time
def table_range(start=1, stop=100, step=1):
for i in range(start, stop + 1, step):
yield (i,)
# set column names
table_range.columns = ("value",)
# set how to access what table_range returns
table_range.column_access = apsw.ext.VTColumnAccess.By_Index
# register it
apsw.ext.make_virtual_module(connection, "range", table_range)
# see it work. we can provide both positional and keyword
# arguments
query = "SELECT * FROM range(90) WHERE step=2"
print(apsw.ext.format_query_table(connection, query))
# the parameters are hidden columns so '*' doesn't select them
# but you can ask
query = "SELECT *, start, stop, step FROM range(89) WHERE step=3"
print(apsw.ext.format_query_table(connection, query))
# Expose the unicode database.
import unicodedata
# A more complex example exporting unicodedata module
# The methods we will call on each codepoint
unicode_methods = (
"name",
"decimal",
"digit",
"numeric",
"category",
"combining",
"bidirectional",
"east_asian_width",
"mirrored",
"decomposition",
)
# the function we will turn into a virtual table returning
# each row as a dict
def unicode_data(start=0, stop=sys.maxunicode):
# some methods raise ValueError on some codepoints
def call(meth: str, c: str):
try:
return getattr(unicodedata, meth)(c)
except ValueError:
return None
for c in range(start, stop + 1):
yield {k: call(k, chr(c)) for k in unicode_methods}
# setup column names and access
unicode_data.columns = unicode_methods
unicode_data.column_access = apsw.ext.VTColumnAccess.By_Name
# register
apsw.ext.make_virtual_module(connection, "unicode_data", unicode_data)
# how many codepoints are in each category?
query = """
SELECT count(*), category FROM unicode_data
WHERE stop = 0xffff -- BMP only
GROUP BY category
ORDER BY category
LIMIT 10"""
print(apsw.ext.format_query_table(connection, query))
# A more complex example - given a list of directories return information
# about the files within them recursively
def get_files_info(
directories: str, sep: str = os.pathsep, *, ignore_symlinks: bool = True
) -> Iterator[dict[str, Any]]:
for root in directories.split(sep):
with os.scandir(root) as sd:
for entry in sd:
if entry.is_symlink() and ignore_symlinks:
continue
if entry.is_dir():
yield from get_files_info(os.path.join(root, entry.name), ignore_symlinks=ignore_symlinks)
elif entry.is_file():
s = entry.stat()
yield {
"directory": root,
"name": entry.name,
"extension": os.path.splitext(entry.name)[1],
**{k: getattr(s, k) for k in get_files_info.stat_columns},
}
# which stat columns do we want?
get_files_info.stat_columns = tuple(n for n in dir(os.stat(".")) if n.startswith("st_"))
# setup columns and access by providing an example of the first entry returned
get_files_info.columns, get_files_info.column_access = apsw.ext.get_column_names(next(get_files_info(".")))
apsw.ext.make_virtual_module(connection, "files_info", get_files_info)
# all the sys.path directories
bindings = (
os.pathsep.join(
p
for p in sys.path
if os.path.isdir(p)
# except our current one
and not os.path.samefile(p, ".")
),
)
# Find the 3 biggest files that aren't libraries
query = """SELECT st_size, directory, name
FROM files_info(?)
WHERE extension NOT IN ('.a', '.so')
ORDER BY st_size DESC
LIMIT 3"""
print(apsw.ext.format_query_table(connection, query, bindings))
# Find the 3 oldest Python files
query = """SELECT DATE(st_ctime, 'auto') AS date, directory, name
FROM files_info(?)
WHERE extension='.py'
ORDER BY st_size DESC
LIMIT 3"""
print(apsw.ext.format_query_table(connection, query, bindings))
# find space used by filename extension
query = """SELECT extension, SUM(st_size) as total_size
FROM files_info(?)
GROUP BY extension
ORDER BY extension"""
print(apsw.ext.format_query_table(connection, query, bindings))
# unregister a virtual table by passing None
connection.create_module("files_info", None)
### vfs: VFS - Virtual File System
# :ref:`VFS <vfs>` lets you control how SQLite accesses storage. APSW
# makes it easy to "inherit" from an existing VFS and monitor or alter
# data as it flows through.
#
# :class:`URI <URIFilename>` are shown as a way to receive parameters
# when opening/creating a database file, and :class:`pragmas <VFSFcntlPragma>`
# for receiving parameters once a database is open.
# This example VFS obfuscates the database file contents by xor all
# bytes with 0xa5.
def obfuscate(data: bytes):
return bytes([x ^ 0xA5 for x in data])
# Inheriting from a base of "" means the default vfs
class ObfuscatedVFS(apsw.VFS):
def __init__(self, vfsname="obfuscated", basevfs=""):
self.vfs_name = vfsname
self.base_vfs = basevfs
super().__init__(self.vfs_name, self.base_vfs)
# We want to return our own file implementation, but also
# want it to inherit
def xOpen(self, name, flags):
in_flags = []
for k, v in apsw.mapping_open_flags.items():
if isinstance(k, int) and flags[0] & k:
in_flags.append(v)
print("xOpen flags", " | ".join(in_flags))
if isinstance(name, apsw.URIFilename):
print(" uri filename", name.filename())
# We can look at uri parameters
print(" fast is", name.uri_parameter("fast"))
print(" level is", name.uri_int("level", 3))
print(" warp is", name.uri_boolean("warp", False))
print(" notpresent is", name.uri_parameter("notpresent"))
# all of them
print(" all uris", name.parameters)
else:
print(" filename", name)
return ObfuscatedVFSFile(self.base_vfs, name, flags)
# The file implementation where we override xRead and xWrite to call our
# encryption routine
class ObfuscatedVFSFile(apsw.VFSFile):
def __init__(self, inheritfromvfsname, filename, flags):
super().__init__(inheritfromvfsname, filename, flags)
def xRead(self, amount, offset):
return obfuscate(super().xRead(amount, offset))
def xWrite(self, data, offset):
super().xWrite(obfuscate(data), offset)
def xFileControl(self, op: int, ptr: int) -> bool:
if op != apsw.SQLITE_FCNTL_PRAGMA:
return super().xFileControl(op, ptr)
# implement our own pragma
p = apsw.VFSFcntlPragma(ptr)
print(f"pragma received { p.name } = { p.value }")
# what do we understand?
if p.name == "my_custom_pragma":
p.result = "orange"
return True
# We did not understand
return False
# To register the VFS we just instantiate it
obfuvfs = ObfuscatedVFS()
# Lets see what vfs are now available?
print("VFS available", apsw.vfs_names())
# Make an obfuscated db, passing in some URI parameters
# default open flags
open_flags = apsw.SQLITE_OPEN_READWRITE | apsw.SQLITE_OPEN_CREATE
# add in using URI parameters
open_flags |= apsw.SQLITE_OPEN_URI
# uri parameters are after the ? separated by &
obfudb = apsw.Connection(
"file:myobfudb?fast=speed&level=7&warp=on&another=true", flags=open_flags, vfs=obfuvfs.vfs_name
)