-
Notifications
You must be signed in to change notification settings - Fork 69
/
matlab_matvec.i
463 lines (407 loc) · 14.5 KB
/
matlab_matvec.i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
// Matlab specific swig code (to be executed after header parsing)
namespace iDynTree
{
%define VECTORSPARSECOPY(sparsevector, dynVector, cols)
//getting pointer to sparse structure
mwIndex* ir = mxGetIr(sparsevector);
mwIndex* jc = mxGetJc(sparsevector);
double *data = mxGetPr(sparsevector);
//If cols == 1 assume it is a column vector (or a 1 element vector)
bool isColumnVector = (cols == 1);
//zero the matrix (iDynTree vector is dense)
dynVector->zero();
for (mwIndex col = 0; col < cols; col++)
{
/*
jc[col] contains information about the nonzero values.
jc[col + 1] - jc[col] = number of nonzero elements in column col
These nonzero elements can be access with a for loop starting at
jc[col] and ending at jc[col + 1] - 1.
*/
mwIndex startingRowIndex = jc[col];
mwIndex endRowIndex = jc[col + 1];
if (startingRowIndex == endRowIndex)
{
//no elements in this column
continue;
}
for (mwIndex currentIndex = startingRowIndex; currentIndex < endRowIndex; currentIndex++)
{
//access the element
mwIndex row = ir[currentIndex];
//iDynTree has only one size.
dynVector->operator()(isColumnVector ? row : col) = data[currentIndex];
}
}
%enddef
%define MATRIXSPARSECOPY(sparsematrix, dynMatrix, cols)
//getting pointer to sparse structure
mwIndex* ir = mxGetIr(sparsematrix);
mwIndex* jc = mxGetJc(sparsematrix);
double *data = mxGetPr(sparsematrix);
//zero the matrix (iDynTree matrix is dense)
dynMatrix->zero();
for (mwIndex col = 0; col < cols; col++)
{
/*
jc[col] contains information about the nonzero values.
jc[col + 1] - jc[col] = number of nonzero elements in column col
These nonzero elements can be access with a for loop starting at
jc[col] and ending at jc[col + 1] - 1.
*/
mwIndex startingRowIndex = jc[col];
mwIndex endRowIndex = jc[col + 1];
if (startingRowIndex == endRowIndex)
{
//no elements in this column
continue;
}
for (mwIndex currentIndex = startingRowIndex; currentIndex < endRowIndex; currentIndex++)
{
//access the element
mwIndex row = ir[currentIndex];
dynMatrix->operator()(row, col) = data[currentIndex];
}
}
%enddef
%extend VectorFixSize
{
// Convert to a dense matrix
mxArray * toMatlab() const
{
mxArray *p = mxCreateDoubleMatrix($self->size(), 1, mxREAL);
double* d = static_cast<double*>(mxGetData(p));
$self->fillBuffer(d); // Column-major
return p;
}
// Convert from a dense matrix
void fromMatlab(mxArray * in)
{
// check size
const mwSize * dims = mxGetDimensions(in);
size_t fixValSize = $self->size();
size_t nonSingletonDimension = (dims[0] == 1 ? dims[1] : dims[0]);
if (nonSingletonDimension == fixValSize)
{
if (mxIsSparse(in))
{
VECTORSPARSECOPY(in, $self, dims[1])
} else {
double* d = static_cast<double*>(mxGetData(in));
double* selfData = $self->data();
for(size_t i=0; i < fixValSize; i++ )
{
selfData[i] = d[i];
}
}
return;
} else {
mexErrMsgIdAndTxt("iDynTree:Core:wrongDimension",
"Wrong vector size. Matlab size: %d. iDynTree size: %d", nonSingletonDimension, fixValSize);
}
}
}
%extend MatrixFixSize
{
// Convert to a dense matrix
mxArray * toMatlab() const
{
mxArray *p = mxCreateDoubleMatrix($self->rows(), $self->cols(), mxREAL);
double* d = static_cast<double*>(mxGetData(p));
$self->fillColMajorBuffer(d); // Column-major
return p;
}
// Convert from a dense or sparse matrix
void fromMatlab(mxArray * in)
{
// check size
const mwSize * dims = mxGetDimensions(in);
size_t fixValRows = $self->rows();
size_t fixValCols = $self->cols();
if (dims[0] == fixValRows && dims[1] == fixValCols)
{
if (mxIsSparse(in))
{
MATRIXSPARSECOPY(in, $self, fixValCols)
} else {
double* d = static_cast<double*>(mxGetData(in));
for (size_t row = 0; row < fixValRows; row++)
{
for (size_t col = 0; col < fixValCols; col++)
{
$self->operator()(row,col) = d[col*fixValRows + row];
}
}
return;
}
} else {
mexErrMsgIdAndTxt("iDynTree:Core:wrongDimension",
"Wrong matrix size. Matlab size: (%d,%d). iDynTree size: (%d,%d)", dims[0], dims[1], fixValRows, fixValCols);
}
}
}
%extend VectorDynSize
{
// Convert to a dense matrix
mxArray * toMatlab() const
{
mxArray *p = mxCreateDoubleMatrix($self->size(), 1, mxREAL);
double* d = static_cast<double*>(mxGetData(p));
$self->fillBuffer(d); // Column-major
return p;
}
// Convert from a dense matrix
void fromMatlab(mxArray * in)
{
// check size
const mwSize * dims = mxGetDimensions(in);
$self->size();
if (( dims[0] == 1 || dims[1] == 1))
{
// Get the size of the input vector
size_t inSize;
if( dims[0] == 1 )
{
inSize = dims[1];
}
else
{
inSize = dims[0];
}
// If the input vector has a size different
// from the one of the iDynTree::VectorDynSize,
// we resize iDynTree::VectorDynSize
if( $self->size() != inSize )
{
$self->resize(inSize);
mexWarnMsgIdAndTxt("iDynTree:Core:perfomance", "Resizing iDynTree vector to %d", inSize);
}
if (mxIsSparse(in))
{
VECTORSPARSECOPY(in, $self, dims[1])
} else {
double* d = static_cast<double*>(mxGetData(in));
double* selfData = $self->data();
for(size_t i=0; i < inSize; i++ )
{
selfData[i] = d[i];
}
}
return;
}
}
}
%extend MatrixDynSize
{
// Convert to a dense matrix
mxArray * toMatlab() const
{
mxArray *p = mxCreateDoubleMatrix($self->rows(), $self->cols(), mxREAL);
double* d = static_cast<double*>(mxGetData(p));
$self->fillColMajorBuffer(d); // Column-major
return p;
}
// Convert from a dense or sparse matrix
void fromMatlab(mxArray * in)
{
// check size
const mwSize * dims = mxGetDimensions(in);
size_t rows = $self->rows();
size_t cols = $self->cols();
if (dims[0] != rows || dims[1] != cols)
{
$self->resize(dims[0], dims[1]);
mexWarnMsgIdAndTxt("iDynTree:Core:perfomance", "Resizing iDynTree vector to (%d,%d)", dims[0], dims[1]);
}
// Update rows and cols
rows = $self->rows();
cols = $self->cols();
if (mxIsSparse(in))
{
MATRIXSPARSECOPY(in, $self, cols)
} else {
double* d = static_cast<double*>(mxGetData(in));
for (size_t row = 0; row < rows; row++)
{
for (size_t col = 0; col < cols; col++)
{
$self->operator()(row,col) = d[col*rows + row];
}
}
return;
}
}
}
%extend SparseMatrix<iDynTree::ColumnMajor>
{
// Convert to a sparse matrix
mxArray * toMatlab() const
{
mxArray *p = mxCreateSparse($self->rows(), $self->columns(),
$self->numberOfNonZeros(), mxREAL);
if (!p) return 0;
mwIndex* ir = mxGetIr(p);
mwIndex* jc = mxGetJc(p);
double *data = mxGetPr(p);
double const * matrixBuffer = self->valuesBuffer();
int const * tempIr = self->innerIndicesBuffer();
int const * tempJc = self->outerIndicesBuffer();
//copy back into real arrays
for (unsigned i = 0; i < self->numberOfNonZeros(); ++i) {
ir[i] = tempIr[i];
data[i] = matrixBuffer[i];
}
for (unsigned i = 0; i < self->columns() + 1; ++i) {
jc[i] = tempJc[i];
}
return p;
}
// Convert to a dense matrix
mxArray * toMatlabDense() const
{
mxArray *p = mxCreateDoubleMatrix($self->rows(), $self->columns(), mxREAL);
double* d = static_cast<double*>(mxGetData(p));
//mapping output matrix to dense
memset(d, 0, sizeof(double) * self->rows() * self->columns());
//mapping output matrix to dense
for (typename iDynTree::SparseMatrix<iDynTree::ColumnMajor>::const_iterator it(self->begin());
it != self->end(); ++it) {
d[self->rows() * it->column + it->row] = it->value;
}
return p;
}
// Convert from a dense or sparse matrix
void fromMatlab(mxArray * in)
{
// check size
const mwSize * dims = mxGetDimensions(in);
size_t rows = dims[0];
size_t cols = dims[1];
if (self->rows() != rows || self->columns() != cols)
{
self->resize(rows, cols);
mexWarnMsgIdAndTxt("iDynTree:Core:perfomance", "Resizing iDynTree vector to (%d,%d)", rows, cols);
}
if (mxIsSparse(in))
{
mwIndex* ir = mxGetIr(in);
mwIndex* jc = mxGetJc(in);
double *data = mxGetPr(in);
const mwSize * dims = mxGetDimensions(in);
mwIndex nnz = jc[dims[1]];
iDynTree::Triplets triplets;
triplets.reserve(nnz);
//fill triplets
for (size_t col = 0; col < cols; ++col) {
//iterate over the rows nz
for (int innerIndex = jc[col]; innerIndex < jc[col + 1]; ++innerIndex) {
triplets.pushTriplet(iDynTree::Triplet(ir[innerIndex], col, data[innerIndex]));
}
}
self->setFromTriplets(triplets);
} else {
double* d = static_cast<double*>(mxGetData(in));
iDynTree::Triplets triplets;
triplets.reserve(rows * cols);
for (size_t row = 0; row < rows; row++)
{
for (size_t col = 0; col < cols; col++)
{
// probably this should be substituted with a check to eps
if (d[col * rows + row] == 0) continue;
triplets.pushTriplet(iDynTree::Triplet(row, col, d[col * rows + row]));
}
}
self->setFromTriplets(triplets);
return;
}
}
}
%extend SparseMatrix<iDynTree::RowMajor>
{
// Convert to a sparse matrix
mxArray * toMatlab() const
{
mxArray *p = mxCreateSparse($self->rows(), $self->columns(),
$self->numberOfNonZeros(), mxREAL);
if (!p) return 0;
iDynTree::SparseMatrix<iDynTree::ColumnMajor> colMajorMatrix;
colMajorMatrix = *$self;
mwIndex* ir = mxGetIr(p);
mwIndex* jc = mxGetJc(p);
double *data = mxGetPr(p);
double const * matrixBuffer = colMajorMatrix.valuesBuffer();
int const * tempIr = colMajorMatrix.innerIndicesBuffer();
int const * tempJc = colMajorMatrix.outerIndicesBuffer();
//copy back into real arrays
for (unsigned i = 0; i < colMajorMatrix.numberOfNonZeros(); ++i) {
ir[i] = tempIr[i];
data[i] = matrixBuffer[i];
}
for (unsigned i = 0; i < colMajorMatrix.columns() + 1; ++i) {
jc[i] = tempJc[i];
}
return p;
}
// Convert to a dense matrix
mxArray * toMatlabDense() const
{
mxArray *p = mxCreateDoubleMatrix($self->rows(), $self->columns(), mxREAL);
double* d = static_cast<double*>(mxGetData(p));
//mapping output matrix to dense
memset(d, 0, sizeof(double) * self->rows() * self->columns());
//mapping output matrix to dense
for (typename iDynTree::SparseMatrix<iDynTree::RowMajor>::const_iterator it(self->begin());
it != self->end(); ++it) {
d[self->rows() * it->column + it->row] = it->value;
}
return p;
}
// Convert from a dense or sparse matrix
void fromMatlab(mxArray * in)
{
// check size
const mwSize * dims = mxGetDimensions(in);
size_t rows = dims[0];
size_t cols = dims[1];
if (self->rows() != rows || self->columns() != cols)
{
self->resize(rows, cols);
mexWarnMsgIdAndTxt("iDynTree:Core:perfomance", "Resizing iDynTree vector to (%d,%d)", rows, cols);
}
if (mxIsSparse(in))
{
mwIndex* ir = mxGetIr(in);
mwIndex* jc = mxGetJc(in);
double *data = mxGetPr(in);
const mwSize * dims = mxGetDimensions(in);
mwIndex nnz = jc[dims[1]];
iDynTree::Triplets triplets;
triplets.reserve(nnz);
//fill triplets
for (size_t col = 0; col < cols; ++col) {
//iterate over the rows nz
for (int innerIndex = jc[col]; innerIndex < jc[col + 1]; ++innerIndex) {
triplets.pushTriplet(iDynTree::Triplet(ir[innerIndex], col, data[innerIndex]));
}
}
self->setFromTriplets(triplets);
} else {
double* d = static_cast<double*>(mxGetData(in));
iDynTree::Triplets triplets;
triplets.reserve(rows * cols);
for (size_t row = 0; row < rows; row++)
{
for (size_t col = 0; col < cols; col++)
{
// probably this should be substituted with a check to eps
if (d[col * rows + row] == 0) continue;
triplets.pushTriplet(iDynTree::Triplet(row, col, d[col * rows + row]));
}
}
self->setFromTriplets(triplets);
return;
}
}
}
}