Skip to content

Latest commit

 

History

History
184 lines (140 loc) · 9.35 KB

README.md

File metadata and controls

184 lines (140 loc) · 9.35 KB

Anaconda-Server Badge

BERTax: Taxonomic Classification of DNA sequences

This is the repository to the preprint-paper BERTax: taxonomic classification of DNA sequences with Deep Neural Networks and the published paper: Taxonomic classification of DNA sequences beyond sequence similarity using deep neural networks respectively.

The used data can be found under DOI 10.17605/OSF.IO/QG6MV or https://osf.io/qg6mv/

Run Bertax

We provide a Docker container to run BERTax. Pull and run with:

docker run -t --rm -v /path/to/input/files:/in fkre/bertax:latest /in/sequences.fa

The docker container can also be run with GPU-support, likely resulting in much faster predictions. For this, the nvidia-container-toolkit has to be installed, the bertax image has to be run with the flag --gpus all.

The image can be built locally (after cloning -- see below) with

docker build -t bertax bertax

Alternative local installation

Prepare conda

Install in new conda environment

conda create -n bertax -c fkretschmer bertax

Activate environment and install necessary pip-dependencies

conda activate bertax
pip install keras-bert==0.86.0

Local pip-only installation

First clone this repository

git clone https://github.com/rnajena/bertax.git

Then download the (big) model file into the resources subfolder.

Finally, install with pip

pip install -e bertax

Usage

The script takes a (multi)fasta as input and outputs a list of predicted classes to the console:

bertax sequences.fasta

Options:

parameterexplanation
-o --output_filewrite output to specified file (tab-separated format) instead of to the output stream (console)
--conf_matrix_fileoutput confidences for all classes of all ranks to JSON file
--sequence_splithow to handle sequences sequence longer than the maximum (window) size: split into equal chunks (equal_chunks, default) or use random sequence window (window)
-C --maximum_sequence_chunksmaximum number of chunks to use per (long) sequence
--running_windowif enabled, a running window approach is chosen to go over each sequence to make predictions
--running_window_stridestride for running window (default: 1)
--custom_window_sizeallows specifying a custom, smaller window size
--chunk_predictionsoutput predictions per chunk, otherwise (by default) chunk predictions are averaged
--output_ranksspecify which ranks to include in output (default: superkingdom phylum genus)
--no_confidenceif set, do not include confidence scores in output
--batch_sizebatch size (i.e., how many sequence chunks to predict at the same time); can be lowered to decrease memory usage and increased for better performance (default: 32)
-t --nr_threadsset the number of threads used (default: determine automatically)

Note, that "unknown" is a special placeholder class for each prediction rank, meaning the sequence's taxonomy is predicted to be unlike any possible output class.

Examples

Default mode, sequences longer than 1500 nt are split into equal chunks, one prediction (average) per sequence

bertax sequences.fa

Only use one random chunk per sequence (for sequences longer than 1500 nt)

bertax --sequence_split window sequences.fa

Only output the superkingdom

bertax sequences.fa --output_ranks superkingdom

Predict with a running window in 300 nt steps and output predictions for all chunks (no threshold for the number of chunks per sequence)

bertax -C -1 --running_window --running_window_stride 300 --chunk_predictions sequences.fa

Confusion Matrices

In the directory confusion_matrices you can find confusion matrices from the publication's results which indicate the classification quality. These matrices could not be included directly in the paper due to the vast amount and size of them.

Visualization

It is possible to get a visualization of the underlying BERT model, based on bertviz for a specific DNA sequence. For this, additional dependencies have to be installed:

  • torch
  • transformers
  • bertviz==1.0.0

An HTML file with interactive visualization can be created with:

bertax-visualize sequence.fa

As visualization is quite performance-intensive for big sequences, parameters can be set to only visualize a specific part (-a $start -n $size). Both an attention-head view and model-view are available, set with the parameter --mode {head|model}.

Training BERTax models

The repository with the code used in the development of BERTax is located at https://github.com/rnajena/bertax_training. Custom models trained with these scripts can be used in BERTax with the parameter --custom_model_file.

Compatible phyla and genera

Due to the limited amount of samples that can be used for training, we could not train all known phyla and genera. Therefore, we present here the list of compatible phyla and genera. Note: If the taxon of your sample is not included in this list, there is a high probability that phylum/genus will be predicted as "unknown". If you want you can train your own model, that includes the taxa of interest to you.

Note: We recommend using BERTax only for super kingdom and phylum prediction, but genera are possible. For more details see: our paper at pnas.org

phylum

'Actinobacteria', 'Apicomplexa', 'Aquificae',
'Arthropoda', 'Artverviricota', 'Ascomycota', 'Bacillariophyta', 'Bacteroidetes',
'Basidiomycota', 'Candidatus Thermoplasmatota', 'Chlamydiae', 'Chlorobi',
'Chloroflexi', 'Chlorophyta', 'Chordata', 'Crenarchaeota', 'Cyanobacteria',
'Deinococcus-Thermus', 'Euglenozoa', 'Euryarchaeota', 'Evosea', 'Firmicutes',
'Fusobacteria', 'Gemmatimonadetes', 'Kitrinoviricota', 'Lentisphaerae', 'Mollusca',
'Negarnaviricota', 'Nematoda', 'Nitrospirae', 'Peploviricota', 'Pisuviricota',
'Planctomycetes', 'Platyhelminthes', 'Proteobacteria', 'Rhodophyta', 'Spirochaetes',
'Streptophyta', 'Tenericutes', 'Thaumarchaeota', 'Thermotogae', 'Uroviricota',
'Verrucomicrobia'

genus

'Acidilobus', 'Acidithiobacillus',
'Actinomyces', 'Actinopolyspora', 'Acyrthosiphon', 'Aeromonas', 'Akkermansia', 'Anas',
'Apis', 'Aquila', 'Archaeoglobus', 'Asparagus', 'Aspergillus', 'Astyanax', 'Aythya',
'Bdellovibrio', 'Beta', 'Betta', 'Bifidobacterium', 'Botrytis', 'Brachyspira',
'Bradymonas', 'Brassica', 'Caenorhabditis', 'Calypte', 'Candidatus Kuenenia',
'Candidatus Nitrosocaldus', 'Candidatus Promineofilum', 'Carassius', 'Cercospora',
'Chanos', 'Chlamydia', 'Chrysemys', 'Ciona', 'Citrus', 'Clupea', 'Coffea',
'Colletotrichum', 'Cottoperca', 'Crassostrea', 'Cryptococcus', 'Cucumis', 'Cucurbita',
'Cyanidioschyzon', 'Cynara', 'Cynoglossus', 'Daucus', 'Deinococcus', 'Denticeps',
'Desulfovibrio', 'Dictyostelium', 'Drosophila', 'Echeneis', 'Egibacter', 'Egicoccus',
'Elaeis', 'Equus', 'Erpetoichthys', 'Esox', 'Euzebya', 'Fervidicoccus', 'Frankia',
'Fusarium', 'Gadus', 'Gallus', 'Gemmata', 'Gopherus', 'Gossypium', 'Gouania',
'Helianthus', 'Ictalurus', 'Ktedonosporobacter', 'Legionella', 'Leishmania',
'Lepisosteus', 'Leptospira', 'Limnochorda', 'Malassezia', 'Manihot', 'Mariprofundus',
'Methanobacterium', 'Methanobrevibacter', 'Methanocaldococcus', 'Methanocella',
'Methanopyrus', 'Methanosarcina', 'Microcaecilia', 'Modestobacter', 'Monodelphis',
'Mus', 'Musa', 'Myripristis', 'Neisseria', 'Nitrosopumilus', 'Nitrososphaera',
'Nitrospira', 'Nymphaea', 'Octopus', 'Olea', 'Oncorhynchus', 'Ooceraea',
'Ornithorhynchus', 'Oryctolagus', 'Oryzias', 'Ostreococcus', 'Papaver', 'Perca',
'Phaeodactylum', 'Phyllostomus', 'Physcomitrium', 'Plasmodium', 'Podarcis', 'Pomacea',
'Populus', 'Prosthecochloris', 'Pseudomonas', 'Punica', 'Pyricularia', 'Pyrobaculum',
'Quercus', 'Rhinatrema', 'Rhopalosiphum', 'Roseiflexus', 'Rubrobacter', 'Rudivirus',
'Salarias', 'Salinisphaera', 'Sarcophilus', 'Schistosoma', 'Scleropages',
'Sedimentisphaera', 'Sesamum', 'Solanum', 'Sparus', 'Sphaeramia', 'Spodoptera',
'Sporisorium', 'Stanieria', 'Streptomyces', 'Strigops', 'Synechococcus', 'Takifugu',
'Thalassiosira', 'Theileria', 'Thermococcus', 'Thermogutta', 'Thermus', 'Tribolium',
'Trichoplusia', 'Ustilago', 'Vibrio', 'Vitis', 'Xenopus', 'Xiphophorus',
'Zymoseptoria'