-
Notifications
You must be signed in to change notification settings - Fork 52
/
FVM_1D_Diffusion_Dirichlet_BC.py
222 lines (155 loc) · 5.91 KB
/
FVM_1D_Diffusion_Dirichlet_BC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import numpy
import matplotlib.pyplot as plt
print("\n")
print("Finite Volume Method\n")
print("Solving 1D Heat Diffusion Equation with Dirichlet Boundary Condition\n")
print("Discretization for Diffusion Term: Central Difference Scheme\n")
cond = 100
print("Conductivity of the Material:",cond,'W/m-K')
area = 0.1
print("Cross Section Area of Rod:",area,'m2')
barLength = 5
print("\nLength of the rod:",barLength,'m')
#Dirichlet BC
tempLeft = 100
tempRight = 200
print("Temperature at the Left End of the Rod:",tempLeft,'C')
print("Temperature at the Right End of the Rod:",tempRight,'C')
heatSourcePerVol = 1000
print("Heat Source in the Rod:",heatSourcePerVol,'W/m3')
print("\n")
nCells = int(input('Enter the number of Cells for Meshing the Rod: ')) #Number of Cells
#create mesh
print ('------------------------------------------------')
print (' Creating Mesh')
print ('------------------------------------------------')
#cell coordinates
xFace = numpy.linspace(0, barLength, nCells+1)
#cell centroids
xCentroid = 0.5*(xFace[1:] + xFace[0:-1])
#cell length
cellLength = xFace[1:] - xFace[:-1]
#distance between cell centroids
dCentroid = xCentroid[1:] - xCentroid[:-1]
# For the boundary cell on the left, the distance is double the distance
# from the cell centroid to the boundary face
dLeft = 2*(xCentroid[0] - xFace[0])
# For the boundary cell on the right, the distance is double the distance
#from the cell centroid to the boundary cell face
dRight = 2*(xFace[-1] - xCentroid[-1])
# Append these to the vector of distances
dCentroid = numpy.hstack([dLeft, dCentroid, dRight])
#cellvolume
cellVolume = cellLength*area
#Calculate the Matrix Coefficients
print ('------------------------------------------------')
print (' Calculating Matrix Coefficients')
print ('------------------------------------------------')
#diffusive flux per unit area
DA = area*numpy.divide(cond, dCentroid)
#source term Sp
Sp = numpy.zeros(nCells)
#Sp is not zero in left and right bounndaries
Sp[0] = -2*numpy.copy(DA[0])
Sp[-1] = -2*numpy.copy(DA[-1])
#souce term Su
Su = heatSourcePerVol*cellVolume
#source term on left & right boundary
Su[0] = Su[0] + 2*tempLeft*numpy.copy(DA[0])
Su[-1] = Su[-1] + 2*tempRight*numpy.copy(DA[-1])
#left coefficient aL
aL = numpy.copy(DA[0:-1])
#right coefficient aR
aR = numpy.copy(DA[0:-1])
aL[0] = 0
aR[-1] = 0
#central coeff Ap
aP = numpy.copy(aL) + numpy.copy(aR) - numpy.copy(Sp)
#creat matrix
print ('------------------------------------------------')
print (' Assembling Matrices')
print ('------------------------------------------------')
# creat empty matrix A & empty vector B
Amatrix = numpy.zeros([nCells, nCells])
BVector = numpy.zeros(nCells)
for i in range(nCells):
#left boundary
if i == 0:
Amatrix[i,i] = aP[i]
Amatrix[i,i+1] = -1*aR[i]
#right boundary
elif i == nCells - 1:
Amatrix[i,i-1] = -1*aL[i]
Amatrix[i,i] = aP[i]
#interior cells
else:
Amatrix[i,i-1] = -1*aL[i]
Amatrix[i,i] = aP[i]
Amatrix[i,i+1] = -1*aR[i]
BVector[i] = Su[i]
#Print the setup
print('aL:',aL)
print('aR:',aR)
print('aP:',aP)
print('Sp:',Sp)
print('\nSu:',Su)
print('\nAmatrix:')
print(Amatrix)
print('\nBVector:',numpy.around(BVector,decimals=2))
print('\n')
print ('------------------------------------------------')
print ('Printing Cell Summary..')
print ('------------------------------------------------')
print(' aL aR Sp Su aP')
for i in range(nCells):
print('Cell%2i %5.1f %5.1f %5.1f %7.1f %5.1f' %(i+1, aL[i], aR[i], Sp[i], Su[i], aP[i]))
#Solve the matrices
print ('------------------------------------------------')
print (' Solving ...')
print ('------------------------------------------------')
# Use the built-in python solution module
Tvector = numpy.linalg.solve(Amatrix, BVector)
print ('------------------------------------------------')
print (' Equations Solved')
print ('------------------------------------------------')
#print the result
print ('------------------------------------------------')
print (' Solution: Temperature Field')
Tvector = numpy.around(Tvector, decimals = 2)
print(Tvector)
#plot result
print ('------------------------------------------------')
print (' Plotting ...')
print ('------------------------------------------------')
#append the boundary temperature & interior temperature
#plot the solution
xPlotting = numpy.hstack([xFace[0], numpy.copy(xCentroid), xFace[-1]])
tempPlotting = numpy.hstack([tempLeft, numpy.copy(Tvector), tempRight])
#assemble analytical solution for comparison
xAnalytical = numpy.linspace(0, barLength, 100)
tempAnalytical = (tempLeft + ((tempRight-tempLeft)*(xAnalytical/barLength)) +
(heatSourcePerVol/(2*cond))*xAnalytical*(barLength*numpy.ones(len(xAnalytical)) - xAnalytical))
#Configure the plot to look how you want
tickPad = 8
tickPad2 = 16
labelPadY = 1
labelPadX = 2
boxPad = 5
darkBlue = (0.0,0.129,0.2784)
darkRed = (0.7176, 0.0705, 0.207)
plt.rc('font', family='serif')
plt.rcParams["figure.figsize"] = (6.2,4.2)
plt.rcParams['axes.linewidth'] = 2
fig1 = plt.figure()
ax = fig1.add_subplot()
fig1.tight_layout(pad=boxPad)
ax.plot(xPlotting , tempPlotting, 'bo',linewidth = 2, label='CFD', color=darkRed)
ax.plot(xAnalytical, tempAnalytical, 'k--',linewidth = 2, label = 'Analytical', color=darkBlue)
plt.xlabel(r'$x$ [m]', fontsize=14, labelpad = labelPadX)
plt.ylabel(r'$T$ [$^{\circ}$C]', fontsize=14, labelpad = labelPadY)
plt.yticks(fontsize = 14)
plt.xticks(fontsize = 14)
plt.xlim([xFace[0], xFace[-1]])
leg = plt.legend(fontsize = 14, loc='best', edgecolor = 'r')
leg.get_frame().set_linewidth(2)
plt.show()