-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathcifar_main.py
703 lines (629 loc) · 24.9 KB
/
cifar_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
"""Training and evaluation for CIFAR image classification."""
from __future__ import division
from __future__ import print_function
import argparse
import functools
import itertools
import os
import time
import cifar
import cifar_model
import cifar_utils
import data_utils
import numpy as np
import six
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO)
def dir2version(data_dir):
return data_dir.split('/')[-1].split('-')[1] # string, 10, 20 or 100
def learning_rate_schedule(current_epoch,
base_learning_rate,
lr_boundaries,
lr_multiplier):
"""Handles linear scaling rule, gradual warmup, and LR decay.
The learning rate starts at 0, then it increases linearly per epoch.
After 5 epochs we reach the base learning rate.
Args:
current_epoch: `Tensor` for current epoch.
base_learning_rate: initial learning rate after warmup.
lr_boundaries: a list of training epochs.
lr_multiplier: a list of learing rate multipliers.
Returns:
A scaled `Tensor` for current learning rate.
"""
staged_lr = [base_learning_rate * x for x in lr_multiplier]
decay_rate = (base_learning_rate * current_epoch / lr_boundaries[0])
for st_lr, start_epoch in zip(staged_lr, lr_boundaries):
decay_rate = tf.where(current_epoch < start_epoch,
decay_rate, st_lr)
return decay_rate
def get_model_fn(num_gpus, variable_strategy, num_workers):
"""Returns a function that will build the resnet model."""
def _resnet_model_fn(features, labels, mode, params):
"""Resnet model body.
Support single host, one or more GPU training. Parameter distribution can
be either one of the following scheme.
1. CPU is the parameter server and manages gradient updates.
2. Parameters are distributed evenly across all GPUs, and the first GPU
manages gradient updates.
Args:
features: a list of tensors, one for each tower
labels: a list of tensors, one for each tower
mode: ModeKeys.TRAIN or EVAL
params: Hyperparameters suitable for tuning
Returns:
A EstimatorSpec object.
"""
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
weight_decay = params.weight_decay
momentum = params.momentum
data_version = params.data_version
imb_factor = params.imb_factor
if num_gpus == 0:
num_devices = 1
device_type = 'cpu'
else:
num_devices = num_gpus
device_type = 'gpu'
tower_features = features
# for estimator mode =PREDICT
tower_labels = labels if labels is not None else [labels] * num_devices
tower_losses = []
reg_losses = []
tower_gradvars = []
tower_preds = []
# channels first (NCHW) is normally optimal on GPU and channels last (NHWC)
# on CPU. The exception is Intel MKL on CPU which is optimal with
# channels_last.
data_format = params.data_format
if not data_format:
if num_gpus == 0:
data_format = 'channels_last'
else:
data_format = 'channels_first'
for i in range(num_devices):
worker_device = '/{}:{}'.format(device_type, i)
if variable_strategy == 'CPU':
device_setter = cifar_utils.local_device_setter(
worker_device=worker_device)
elif variable_strategy == 'GPU':
device_setter = cifar_utils.local_device_setter(
ps_device_type='gpu',
worker_device=worker_device,
ps_strategy=tf.contrib.training.GreedyLoadBalancingStrategy(
num_gpus, tf.contrib.training.byte_size_load_fn))
with tf.variable_scope('resnet', reuse=bool(i != 0)):
with tf.name_scope('tower_%d' % i) as name_scope:
with tf.device(device_setter):
loss_list, gradvars, preds = _tower_fn(
is_training, weight_decay, tower_features[i], tower_labels[i],
data_version, data_format, params.num_layers,
params.batch_norm_decay, params.batch_norm_epsilon,
params.resnet_version, params.loss_type, params.gamma,
params.weights)
if mode != tf.estimator.ModeKeys.PREDICT:
tower_losses.append(loss_list[0])
reg_losses.append(loss_list[1])
tower_gradvars.append(gradvars)
tower_preds.append(preds)
if i == 0:
# Only trigger batch_norm moving mean and variance update from
# the 1st tower. Ideally, we should grab the updates from all
# towers but these stats accumulate extremely fast so we can
# ignore the other stats from the other towers without
# significant detriment.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
name_scope)
if mode != tf.estimator.ModeKeys.PREDICT:
# Now compute global loss and gradients.
gradvars = []
with tf.name_scope('gradient_averaging'):
all_grads = {}
for grad, var in itertools.chain(*tower_gradvars):
if grad is not None:
all_grads.setdefault(var, []).append(grad)
for var, grads in six.iteritems(all_grads):
# Average gradients on the same device as the variables
# to which they apply.
with tf.device(var.device):
if len(grads) == 1:
avg_grad = grads[0]
else:
avg_grad = tf.multiply(tf.add_n(grads), 1. / len(grads))
gradvars.append((avg_grad, var))
# Device that runs the ops to apply global gradient updates.
consolid_device = '/gpu:0' if variable_strategy == 'GPU' else '/cpu:0'
with tf.device(consolid_device):
num_train_examples = cifar.CifarDataSet.num_examples_per_epoch(
'train', imb_factor, data_version)
train_batch_size = params.train_batch_size * num_workers
num_per_batch = train_batch_size / num_train_examples
current_epoch = tf.cast(
tf.train.get_global_step(), tf.float32) * num_per_batch
boundaries = np.asarray(params.learning_rate_schedule, dtype=np.int64)
multipliers = np.asarray(
params.learning_rate_multiplier, dtype=np.float32)
# Linear scaling of base learning rate.
base_lr = params.learning_rate * train_batch_size / 128
learning_rate = learning_rate_schedule(
current_epoch, base_lr, boundaries, multipliers)
loss = tf.reduce_mean(tower_losses, name='loss')
reg_loss = tf.reduce_mean(reg_losses, name='regularization_loss')
optimizer = tf.train.MomentumOptimizer(
learning_rate=learning_rate, momentum=momentum)
if params.sync:
optimizer = tf.train.SyncReplicasOptimizer(
optimizer, replicas_to_aggregate=num_workers)
# Create single grouped train op
train_op = [
optimizer.apply_gradients(
gradvars, global_step=tf.train.get_global_step())
]
train_op.extend(update_ops)
train_op = tf.group(*train_op)
else:
train_op = None
loss = None
# train_hooks = None
predictions = {
'classes':
tf.concat([p['classes'] for p in tower_preds], axis=0),
'probabilities':
tf.concat([p['probabilities'] for p in tower_preds], axis=0),
'logits':
tf.concat([p['logits'] for p in tower_preds], axis=0),
}
if mode != tf.estimator.ModeKeys.PREDICT:
stacked_labels = tf.concat(labels, axis=0)
accuracy = tf.metrics.accuracy(stacked_labels, predictions['classes'])
metrics = {'accuracy': accuracy}
tf.summary.scalar('learning_rate', learning_rate)
tf.summary.scalar('regularization_loss', reg_loss)
tf.summary.scalar('network_loss', loss - reg_loss)
tf.summary.scalar('epoch', current_epoch)
else:
metrics = {}
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
# training_hooks=train_hooks,
eval_metric_ops=metrics)
return _resnet_model_fn
def focal_loss(labels, logits, alpha, gamma):
"""Compute the focal loss between `logits` and the ground truth `labels`.
Focal loss = -alpha_t * (1-pt)^gamma * log(pt)
where pt is the probability of being classified to the true class.
pt = p (if true class), otherwise pt = 1 - p. p = sigmoid(logit).
Args:
labels: A float32 tensor of size [batch, num_classes].
logits: A float32 tensor of size [batch, num_classes].
alpha: A float32 tensor of size [batch_size]
specifying per-example weight for balanced cross entropy.
gamma: A float32 scalar modulating loss from hard and easy examples.
Returns:
focal_loss: A float32 scalar representing normalized total loss.
"""
with tf.name_scope('focal_loss'):
logits = tf.cast(logits, dtype=tf.float32)
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(
labels=labels, logits=logits)
# positive_label_mask = tf.equal(labels, 1.0)
# probs = tf.sigmoid(logits)
# probs_gt = tf.where(positive_label_mask, probs, 1.0 - probs)
# # With gamma < 1, the implementation could produce NaN during back prop.
# modulator = tf.pow(1.0 - probs_gt, gamma)
# A numerically stable implementation of modulator.
if gamma == 0.0:
modulator = 1.0
else:
modulator = tf.exp(-gamma * labels * logits - gamma * tf.log1p(
tf.exp(-1.0 * logits)))
loss = modulator * cross_entropy
weighted_loss = alpha * loss
focal_loss = tf.reduce_sum(weighted_loss)
# Normalize by the total number of positive samples.
focal_loss /= tf.reduce_sum(labels)
return focal_loss
def _tower_fn(is_training, weight_decay, feature, label, data_version,
data_format, num_layers, batch_norm_decay, batch_norm_epsilon,
resnet_version, loss_type, gamma, weights):
"""Build computation tower (Resnet).
Args:
is_training: true if is training graph.
weight_decay: weight regularization strength, a float.
feature: a Tensor.
label: a Tensor.
data_version: a str, '10' or '100'
data_format: channels_last (NHWC) or channels_first (NCHW).
num_layers: number of layers, an int.
batch_norm_decay: decay for batch normalization, a float.
batch_norm_epsilon: epsilon for batch normalization, a float.
resnet_version: preactivation or postactivation
loss_type: Loss type ('softmax', 'sigmoid', 'focal').
gamma: gamma for focal loss.
weights: weights per class.
Returns:
A tuple with the loss for the tower, the gradients and parameters, and
predictions.
"""
num_classes = int(data_version)
model = cifar_model.ResNetCifar(
num_layers,
batch_norm_decay=batch_norm_decay,
batch_norm_epsilon=batch_norm_epsilon,
is_training=is_training,
version=resnet_version,
num_classes=num_classes,
data_format=data_format,
loss_type=loss_type)
logits = model.forward_pass(feature, input_data_format='channels_last')
if loss_type == 'softmax':
tower_pred = {
'classes': tf.argmax(input=logits, axis=1),
'probabilities': tf.nn.softmax(logits),
'logits': logits, # a tensor,
'labels': label,
}
elif loss_type == 'sigmoid' or loss_type == 'focal':
tower_pred = {
'classes': tf.argmax(input=logits, axis=1),
'probabilities': tf.sigmoid(logits),
'logits': logits, # a tensor,
'labels': label,
}
if label is None: # for classifier.predict
return None, None, tower_pred
one_hot_labels = tf.one_hot(label, num_classes)
weights = tf.cast(weights, dtype=tf.float32)
weights = tf.expand_dims(weights, 0)
weights = tf.tile(weights, [tf.shape(one_hot_labels)[0], 1]) * one_hot_labels
weights = tf.reduce_sum(weights, axis=1)
weights = tf.expand_dims(weights, 1)
weights = tf.tile(weights, [1, num_classes])
if loss_type == 'softmax':
tower_loss = tf.losses.softmax_cross_entropy(
one_hot_labels, logits, weights=tf.reduce_mean(weights, axis=1))
tower_loss = tf.reduce_mean(tower_loss)
elif loss_type == 'sigmoid':
tower_loss = weights * tf.nn.sigmoid_cross_entropy_with_logits(
labels=one_hot_labels, logits=logits)
# Normalize by the total number of positive samples.
tower_loss = tf.reduce_sum(tower_loss) / tf.reduce_sum(one_hot_labels)
elif loss_type == 'focal':
tower_loss = focal_loss(one_hot_labels, logits, weights, gamma)
model_params = tf.trainable_variables()
if loss_type == 'softmax':
reg_loss = weight_decay * tf.add_n(
[tf.nn.l2_loss(v) for v in model_params])
elif loss_type == 'sigmoid' or loss_type == 'focal':
# no regularization (weight decay) for last layer's bias.
reg_loss = weight_decay * tf.add_n(
[tf.nn.l2_loss(v) for v in model_params if 'dense/bias' not in v.name])
tower_loss += reg_loss
tower_grad = tf.gradients(tower_loss, model_params)
return [tower_loss, reg_loss], zip(tower_grad, model_params), tower_pred
def input_fn(data_dir,
subset,
imbalance_factor,
num_shards,
batch_size,
use_distortion_for_training=True):
"""Create input graph for model.
Args:
data_dir: Directory where TFRecords representing the dataset are located.
subset: one of 'train', 'validate' and 'eval'.
imbalance_factor: float, None if this dataset is not long tailed.
num_shards: num of towers participating in data-parallel training.
batch_size: total batch size for training to be divided by the number of
shards.
use_distortion_for_training: True to use distortions.
Returns:
two lists of tensors for features and labels, each of num_shards length.
"""
with tf.device('/cpu:0'):
use_distortion = subset == 'train' and use_distortion_for_training
dataset = cifar.CifarDataSet(
data_dir, dir2version(data_dir),
subset, imbalance_factor, use_distortion)
image_batch, label_batch = dataset.make_batch(batch_size)
if num_shards <= 1:
# No GPU available or only 1 GPU.
return [image_batch], [label_batch]
# Note that passing num=batch_size is safe here, even though
# dataset.batch(batch_size) can, in some cases, return fewer than batch_size
# examples. This is because it does so only when repeating for a limited
# number of epochs, but our dataset repeats forever.
image_batch = tf.unstack(image_batch, num=batch_size, axis=0)
label_batch = tf.unstack(label_batch, num=batch_size, axis=0)
feature_shards = [[] for i in range(num_shards)]
label_shards = [[] for i in range(num_shards)]
for i in xrange(batch_size):
idx = i % num_shards
feature_shards[idx].append(image_batch[i])
label_shards[idx].append(label_batch[i])
feature_shards = [tf.parallel_stack(x) for x in feature_shards]
label_shards = [tf.parallel_stack(x) for x in label_shards]
return feature_shards, label_shards
def main(job_dir, data_dir, num_gpus, variable_strategy,
use_distortion_for_training, log_device_placement, num_intra_threads,
**hparams):
# The env variable is on deprecation path, default is set to off.
os.environ['TF_SYNC_ON_FINISH'] = '0'
os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'
# Session configuration.
sess_config = tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=log_device_placement,
intra_op_parallelism_threads=num_intra_threads,
gpu_options=tf.GPUOptions(force_gpu_compatible=True, allow_growth=True)
)
config = cifar_utils.RunConfig(
session_config=sess_config,
model_dir=job_dir,
save_summary_steps=100)
# Normalized weights based on inverse number of effective data per class.
img_num_per_cls = data_utils.get_img_num_per_cls(
hparams['data_version'], hparams['imb_factor'])
effective_num = 1.0 - np.power(hparams['beta'], img_num_per_cls)
weights = (1.0 - hparams['beta']) / np.array(effective_num)
weights = weights / np.sum(weights) * int(hparams['data_version'])
hparams = tf.contrib.training.HParams(
is_chief=config.is_chief,
weights=weights,
**hparams)
train_input_fn = functools.partial(
input_fn,
data_dir,
subset='train',
imbalance_factor=hparams.imb_factor,
num_shards=num_gpus,
batch_size=hparams.train_batch_size,
use_distortion_for_training=use_distortion_for_training)
eval_input_fn = functools.partial(
input_fn,
data_dir,
subset='eval',
imbalance_factor=hparams.imb_factor,
batch_size=hparams.eval_batch_size,
num_shards=num_gpus)
num_eval_examples = cifar.CifarDataSet.num_examples_per_epoch('eval')
if num_eval_examples % hparams.eval_batch_size != 0:
raise ValueError(
'validation set size must be multiple of eval_batch_size')
num_workers = config.num_worker_replicas or 1
num_train_examples = cifar.CifarDataSet.num_examples_per_epoch(
'train', hparams.imb_factor, hparams.data_version)
train_batch_size = hparams.train_batch_size * num_workers
train_steps = num_train_examples * hparams.train_epochs // train_batch_size
eval_steps = num_eval_examples // hparams.eval_batch_size
classifier = tf.estimator.Estimator(
model_fn=get_model_fn(num_gpus, variable_strategy, num_workers),
model_dir=job_dir,
config=config,
params=hparams)
ckpt = tf.train.get_checkpoint_state(job_dir)
if ckpt is None:
current_step = 0
else:
current_step = int(
os.path.basename(ckpt.model_checkpoint_path).split('-')[1])
steps_per_eval = num_train_examples * hparams.eval_epochs // train_batch_size
tf.logging.info('Training for %d steps. Current step %d.',
train_steps,
current_step)
start_timestamp = time.time() # This time will include compilation time
while current_step < train_steps:
# Train for up to steps_per_eval number of steps.
# At the end of training, a checkpoint will be written to --job_dir.
next_checkpoint = min(current_step + steps_per_eval, train_steps)
classifier.train(
input_fn=train_input_fn, max_steps=next_checkpoint)
current_step = next_checkpoint
tf.logging.info('Finished training up to step %d. Elapsed seconds %d.',
next_checkpoint, int(time.time() - start_timestamp))
# Evaluate the model on the most recent model in --job_dir.
# Since evaluation happens in batches of --eval_batch_size, some images
# may be excluded modulo the batch size. As long as the batch size is
# consistent, the evaluated images are also consistent.
tf.logging.info('Starting to evaluate.')
eval_results = classifier.evaluate(
input_fn=eval_input_fn, steps=eval_steps)
tf.logging.info('Eval results at step %d: %s',
next_checkpoint, eval_results)
elapsed_time = int(time.time() - start_timestamp)
tf.logging.info('Finished training up to step %d. Elapsed seconds %d.',
train_steps, elapsed_time)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--data-dir',
type=str,
required=True,
help='The directory where the CIFAR-10 input data is stored.')
parser.add_argument(
'--job-dir',
type=str,
required=True,
help='The directory where the model will be stored.')
parser.add_argument(
'--data-version',
type=str,
default='10',
help='cifar dataset version, 10, 20 or 100')
parser.add_argument(
'--variable-strategy',
choices=['CPU', 'GPU'],
type=str,
default='GPU',
help='Where to locate variable operations')
parser.add_argument(
'--num-gpus',
type=int,
default=1,
help='The number of gpus used. Uses only CPU if set to 0.')
parser.add_argument(
'--num-layers',
type=int,
default=32,
help='The number of layers of the model.')
parser.add_argument(
'--resnet-version',
type=str,
default='v1',
help="""\
The version of resnet, \
v1 : use basic (non-bottleneck) block and ResNet V1 (post-activation). \
v2: Use basic (non-bottleneck) block and ResNet V2 (pre-activation). \
bv2: Use bottleneck block and ResNet V2 (pre-activation).\
""")
parser.add_argument(
'--train-epochs',
type=int,
default=200,
help='The number of epochs to use for training.')
parser.add_argument(
'--train-batch-size',
type=int,
default=128,
help='Batch size for training.')
parser.add_argument(
'--eval-batch-size',
type=int,
default=100,
help='Batch size for validation.')
parser.add_argument(
'--eval-epochs',
type=int,
default=2,
help='The number of epochs between evaluations.')
parser.add_argument(
'--momentum',
type=float,
default=0.9,
help='Momentum for MomentumOptimizer.')
parser.add_argument(
'--weight-decay',
type=float,
default=2e-4,
help='Weight decay for convolutions.')
parser.add_argument(
'--learning-rate',
type=float,
default=0.1,
help="""\
This is the inital learning rate value. The learning rate will decrease
during training. For more details check the model_fn implementation in
this file.\
""")
parser.add_argument(
'--learning-rate-schedule',
nargs='+',
type=int,
default=[5, 160, 180],
help='Schedule of learning rate decay')
parser.add_argument(
'--learning-rate-multiplier',
nargs='+',
type=float,
default=[1, 0.1, 0.01],
help='Schedule of learning rate decay')
parser.add_argument(
'--use-distortion-for-training',
type=bool,
default=True,
help='If doing image distortion for training.')
parser.add_argument(
'--sync',
action='store_true',
default=False,
help="""\
If present, running in a distributed environment will run on sync mode.\
""")
parser.add_argument(
'--num-intra-threads',
type=int,
default=0,
help="""\
Number of threads to use for intra-op parallelism. When training on CPU
set to 0 to have the system pick the appropriate number or alternatively
set it to the number of physical CPU cores.\
""")
parser.add_argument(
'--num-inter-threads',
type=int,
default=0,
help="""\
Number of threads to use for inter-op parallelism. If set to 0, the
system will pick an appropriate number.\
""")
parser.add_argument(
'--data-format',
type=str,
default=None,
help="""\
If not set, the data format best for the training device is used.
Allowed values: channels_first (NCHW) channels_last (NHWC).\
""")
parser.add_argument(
'--log-device-placement',
action='store_true',
default=False,
help='Whether to log device placement.')
parser.add_argument(
'--batch-norm-decay',
type=float,
default=0.9,
help='Decay for batch norm.')
parser.add_argument(
'--batch-norm-epsilon',
type=float,
default=1e-5,
help='Epsilon for batch norm.')
parser.add_argument(
'--imb-factor',
type=float,
default=None,
help='Imbalance factor, None if the dataset is default.')
parser.add_argument(
'--loss-type',
type=str,
default='softmax',
help="""\
Loss type for training the network ('softmax', 'sigmoid', 'focal').\
""")
parser.add_argument(
'--gamma',
type=float,
default=1.0,
help='Gamma for focal loss.')
parser.add_argument(
'--beta',
type=float,
default=0.0,
help='Beta for class balanced loss.')
args = parser.parse_args()
if args.num_gpus > 0:
assert tf.test.is_gpu_available(), "Requested GPUs but none found."
if args.num_gpus < 0:
raise ValueError(
'Invalid GPU count: \"--num-gpus\" must be 0 or a positive integer.')
if args.num_gpus == 0 and args.variable_strategy == 'GPU':
raise ValueError('num-gpus=0, CPU must be used as parameter server. Set'
'--variable-strategy=CPU.')
if (args.num_layers - 2) % 6 != 0:
raise ValueError('Invalid --num-layers parameter.')
if args.num_gpus != 0 and args.train_batch_size % args.num_gpus != 0:
raise ValueError('--train-batch-size must be multiple of --num-gpus.')
if args.num_gpus != 0 and args.eval_batch_size % args.num_gpus != 0:
raise ValueError('--eval-batch-size must be multiple of --num-gpus.')
if args.resnet_version not in ['v1', 'v2', 'bv2']:
raise ValueError('--resnet-version: must be one of v1, v2, bv2.')
if args.loss_type not in ['softmax', 'sigmoid', 'focal']:
raise ValueError('--loss-type must be one of softmax, sigmoid, focal.')
if len(args.learning_rate_schedule) != len(args.learning_rate_multiplier):
raise ValueError('The length of --learning-rate-multiplier and '
'--learning-rate-schedule must be same.')
main(**vars(args))