-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsignature.py
249 lines (198 loc) · 9.36 KB
/
signature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
###############################################################################
# Copyright 2019 StarkWare Industries Ltd. #
# #
# Licensed under the Apache License, Version 2.0 (the "License"). #
# You may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# https://www.starkware.co/open-source-license/ #
# #
# Unless required by applicable law or agreed to in writing, #
# software distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions #
# and limitations under the License. #
###############################################################################
import hashlib
import json
import math
import os
import random
from typing import Optional, Tuple, Union
from ecdsa.rfc6979 import generate_k
from .math_utils import ECPoint, div_mod, ec_add, ec_double, ec_mult, is_quad_residue, sqrt_mod
PEDERSEN_HASH_POINT_FILENAME = os.path.join(
os.path.dirname(__file__), 'pedersen_params.json')
PEDERSEN_PARAMS = json.load(open(PEDERSEN_HASH_POINT_FILENAME))
FIELD_PRIME = PEDERSEN_PARAMS['FIELD_PRIME']
FIELD_GEN = PEDERSEN_PARAMS['FIELD_GEN']
ALPHA = PEDERSEN_PARAMS['ALPHA']
BETA = PEDERSEN_PARAMS['BETA']
EC_ORDER = PEDERSEN_PARAMS['EC_ORDER']
CONSTANT_POINTS = PEDERSEN_PARAMS['CONSTANT_POINTS']
N_ELEMENT_BITS_ECDSA = math.floor(math.log(FIELD_PRIME, 2))
assert N_ELEMENT_BITS_ECDSA == 251
N_ELEMENT_BITS_HASH = FIELD_PRIME.bit_length()
assert N_ELEMENT_BITS_HASH == 252
# Elliptic curve parameters.
assert 2**N_ELEMENT_BITS_ECDSA < EC_ORDER < FIELD_PRIME
SHIFT_POINT = CONSTANT_POINTS[0]
MINUS_SHIFT_POINT = (SHIFT_POINT[0], FIELD_PRIME - SHIFT_POINT[1])
EC_GEN = CONSTANT_POINTS[1]
assert SHIFT_POINT == [0x49ee3eba8c1600700ee1b87eb599f16716b0b1022947733551fde4050ca6804,
0x3ca0cfe4b3bc6ddf346d49d06ea0ed34e621062c0e056c1d0405d266e10268a]
assert EC_GEN == [0x1ef15c18599971b7beced415a40f0c7deacfd9b0d1819e03d723d8bc943cfca,
0x5668060aa49730b7be4801df46ec62de53ecd11abe43a32873000c36e8dc1f]
#########
# ECDSA #
#########
# A type for the digital signature.
ECSignature = Tuple[int, int]
class InvalidPublicKeyError(Exception):
def __init__(self):
super().__init__('Given x coordinate does not represent any point on the elliptic curve.')
def get_y_coordinate(stark_key_x_coordinate: int) -> int:
"""
Given the x coordinate of a stark_key, returns a possible y coordinate such that together the
point (x,y) is on the curve.
Note that the real y coordinate is either y or -y.
If x is invalid stark_key it throws an error.
"""
x = stark_key_x_coordinate
y_squared = (x * x * x + ALPHA * x + BETA) % FIELD_PRIME
if not is_quad_residue(y_squared, FIELD_PRIME):
raise InvalidPublicKeyError()
return sqrt_mod(y_squared, FIELD_PRIME)
def get_random_private_key() -> int:
# NOTE: It is IMPORTANT to use a strong random function here.
return random.randint(1, EC_ORDER - 1)
def private_key_to_ec_point_on_stark_curve(priv_key: int) -> ECPoint:
assert 0 < priv_key < EC_ORDER
return ec_mult(priv_key, EC_GEN, ALPHA, FIELD_PRIME)
def private_to_stark_key(priv_key: int) -> int:
return private_key_to_ec_point_on_stark_curve(priv_key)[0]
def inv_mod_curve_size(x: int) -> int:
return div_mod(1, x, EC_ORDER)
def generate_k_rfc6979(msg_hash: int, priv_key: int, seed: Optional[int] = None) -> int:
# Pad the message hash, for consistency with the elliptic.js library.
if 1 <= msg_hash.bit_length() % 8 <= 4 and msg_hash.bit_length() >= 248:
# Only if we are one-nibble short:
msg_hash *= 16
if seed is None:
extra_entropy = b''
else:
extra_entropy = seed.to_bytes(math.ceil(seed.bit_length() / 8), 'big')
return generate_k(EC_ORDER, priv_key, hashlib.sha256,
msg_hash.to_bytes(math.ceil(msg_hash.bit_length() / 8), 'big'),
extra_entropy=extra_entropy)
def sign(msg_hash: int, priv_key: int, seed: Optional[int] = None) -> ECSignature:
# Note: msg_hash must be smaller than 2**N_ELEMENT_BITS_ECDSA.
# Message whose hash is >= 2**N_ELEMENT_BITS_ECDSA cannot be signed.
# This happens with a very small probability.
assert 0 <= msg_hash < 2**N_ELEMENT_BITS_ECDSA, 'Message not signable.'
# Choose a valid k. In our version of ECDSA not every k value is valid,
# and there is a negligible probability a drawn k cannot be used for signing.
# This is why we have this loop.
while True:
k = generate_k_rfc6979(msg_hash, priv_key, seed)
# Update seed for next iteration in case the value of k is bad.
if seed is None:
seed = 1
else:
seed += 1
# Cannot fail because 0 < k < EC_ORDER and EC_ORDER is prime.
x = ec_mult(k, EC_GEN, ALPHA, FIELD_PRIME)[0]
# DIFF: in classic ECDSA, we take int(x) % n.
r = int(x)
if not (1 <= r < 2**N_ELEMENT_BITS_ECDSA):
# Bad value. This fails with negligible probability.
continue
if (msg_hash + r * priv_key) % EC_ORDER == 0:
# Bad value. This fails with negligible probability.
continue
w = div_mod(k, msg_hash + r * priv_key, EC_ORDER)
if not (1 <= w < 2**N_ELEMENT_BITS_ECDSA):
# Bad value. This fails with negligible probability.
continue
s = inv_mod_curve_size(w)
return r, s
def mimic_ec_mult_air(m: int, point: ECPoint, shift_point: ECPoint) -> ECPoint:
"""
Computes m * point + shift_point using the same steps like the AIR and throws an exception if
and only if the AIR errors.
"""
assert 0 < m < 2**N_ELEMENT_BITS_ECDSA
partial_sum = shift_point
for _ in range(N_ELEMENT_BITS_ECDSA):
assert partial_sum[0] != point[0]
if m & 1:
partial_sum = ec_add(partial_sum, point, FIELD_PRIME)
point = ec_double(point, ALPHA, FIELD_PRIME)
m >>= 1
assert m == 0
return partial_sum
def verify(msg_hash: int, r: int, s: int, public_key: Union[int, ECPoint]) -> bool:
# Compute w = s^-1 (mod EC_ORDER).
assert 1 <= s < EC_ORDER, 's = %s' % s
w = inv_mod_curve_size(s)
# Preassumptions:
# DIFF: in classic ECDSA, we assert 1 <= r, w <= EC_ORDER-1.
# Since r, w < 2**N_ELEMENT_BITS_ECDSA < EC_ORDER, we only need to verify r, w != 0.
assert 1 <= r < 2**N_ELEMENT_BITS_ECDSA, 'r = %s' % r
assert 1 <= w < 2**N_ELEMENT_BITS_ECDSA, 'w = %s' % w
assert 0 <= msg_hash < 2**N_ELEMENT_BITS_ECDSA, 'msg_hash = %s' % msg_hash
if isinstance(public_key, int):
# Only the x coordinate of the point is given, check the two possibilities for the y
# coordinate.
try:
y = get_y_coordinate(public_key)
except InvalidPublicKeyError:
return False
assert pow(y, 2, FIELD_PRIME) == (
pow(public_key, 3, FIELD_PRIME) + ALPHA * public_key + BETA) % FIELD_PRIME
return verify(msg_hash, r, s, (public_key, y)) or \
verify(msg_hash, r, s, (public_key, (-y) % FIELD_PRIME))
else:
# The public key is provided as a point.
# Verify it is on the curve.
assert (public_key[1]**2 - (public_key[0]**3 + ALPHA *
public_key[0] + BETA)) % FIELD_PRIME == 0
# Signature validation.
# DIFF: original formula is:
# x = (w*msg_hash)*EC_GEN + (w*r)*public_key
# While what we implement is:
# x = w*(msg_hash*EC_GEN + r*public_key).
# While both mathematically equivalent, one might error while the other doesn't,
# given the current implementation.
# This formula ensures that if the verification errors in our AIR, it errors here as well.
try:
zG = mimic_ec_mult_air(msg_hash, EC_GEN, MINUS_SHIFT_POINT)
rQ = mimic_ec_mult_air(r, public_key, SHIFT_POINT)
wB = mimic_ec_mult_air(w, ec_add(zG, rQ, FIELD_PRIME), SHIFT_POINT)
x = ec_add(wB, MINUS_SHIFT_POINT, FIELD_PRIME)[0]
except AssertionError:
return False
# DIFF: Here we drop the mod n from classic ECDSA.
return r == x
#################
# Pedersen hash #
#################
def pedersen_hash(*elements: int) -> int:
return pedersen_hash_as_point(*elements)[0]
def pedersen_hash_as_point(*elements: int) -> ECPoint:
"""
Similar to pedersen_hash but also returns the y coordinate of the resulting EC point.
This function is used for testing.
"""
point = SHIFT_POINT
for i, x in enumerate(elements):
assert 0 <= x < FIELD_PRIME
point_list = CONSTANT_POINTS[2 + i * N_ELEMENT_BITS_HASH:2 + (i + 1) * N_ELEMENT_BITS_HASH]
assert len(point_list) == N_ELEMENT_BITS_HASH
for pt in point_list:
assert point[0] != pt[0], 'Unhashable input.'
if x & 1:
point = ec_add(point, pt, FIELD_PRIME)
x >>= 1
assert x == 0
return point