-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtemp.py
55 lines (37 loc) · 1.53 KB
/
temp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import ssl
from notifly import tf_notifier
import tensorflow as tf
from dotenv import load_dotenv
import os
load_dotenv()
ssl._create_default_https_context = ssl._create_unverified_context
token = os.getenv('TOKEN')
notifier = tf_notifier.TfNotifier(token=token, platform='discord')
class TestCallback(tf.keras.callbacks.Callback):
@notifier.notify_on_epoch_begin(epoch_interval=1, graph_interval=10)
def on_epoch_begin(self, epoch, logs=None):
pass
@notifier.notify_on_epoch_end(epoch_interval=1, graph_interval=10)
def on_epoch_end(self, epoch, logs=None):
pass
@notifier.notify_on_train_begin()
def on_train_begin(self, logs=None):
pass
@notifier.notify_on_train_end()
def on_train_end(self, logs=None):
pass
fashion_mnist = tf.keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(5, activation='relu'),
tf.keras.layers.Dense(10)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5, callbacks=[TestCallback()])
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print('\nTest accuracy:', test_acc)