forked from irfu/irfu-matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathirfdemo.m
254 lines (213 loc) · 8.97 KB
/
irfdemo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
%% Examples of IRFU-MATLAB usage
% IRFU-MATLAB helps:
% 1. To maximize time spent on science.
% 2. To make data analysis simple and natural.
% 3. To combine all spacecraft/instrument data in the same plot.
% 4. To create publishing quality figures.
%
% This is simple demo.
% For more advanced examples: https://sites.google.com/site/irfumatlab/
%
% To execute demo run irf('demo') or
% > echodemo irfdemo
%
% To open the example file and jump to some specific example execute
% > edit irfdemo
% You should enable code folding in the editor!
%
% For running examples we disable showing additional log information
irf.log('off')
% Enable it afterwards by choosing log level, e.g.
% > irf.log('critical')
% Other levels are 'warning','notice','debug'
%% Some basic routines and basic usage
% To see general help execute:
% > irf
% > help irfu-matlab
%
% To see different examples of usage
% > irfnotes
%
% To obtain different plasma parameters
% > irf_plasma_calc
%
% To see handy estimates
% > help irf_plasma_calc
%
% Try yourself!
%% Cold plasma wave dispersion relation
% This program allows you to visualize plasma wave dispersion
% surfaces for a cold plasma consisting of electrons and ions
%
% If you want to visualize waves you can rputine
% > irf_plasma_wave_visualization
% > irf_plasma_wave_visualization('demo','alfven_shear45');
irf_disp_surf
%% Example 1 Plot artificial data
% Lets generate 5samples/s time series in interval 2008-03-01 10:00-11:00 UT,
% create exponentially growing wave and plot. It is good idead to get used
% to using axis handles (variable 'h' in example), as matlab is much faster
% if you use those.
t=irf_time([2008 03 01 10 0 0]):.2:irf_time([2008 03 01 11 0 0]);
t=t(:); % make time column vector
y=exp(0.001*(t-t(1))).*sin(2*pi*t/180); % create y(t)=exp(0.001(t-to))*sin(t)
data1=[t y]; % define data matrix data = [time data_col1]
h=irf_plot(1,'newfigure'); % generate new figure with 1 panel
irf_plot(h,data1); % plot data
%% Example 2 Plot multicomponent data
% Generate data with two components and plot in the same figure.
% Add legend text in lower left corner
% As you notice irfu-matlab interprets some common names for variables,
% i.e. B2 is assumed to be magnetic field measurement by Cluster 2
z=exp(0.001*(t-t(1))).*cos(2*pi*t/180); % z(t)=exp(0.001(t-to))*cos(t)
B2=[t y z]; % B2 has two components, y & z
irf_plot(h,B2) % plot in the same axis
irf_legend({'X','Y'},[0.02 0.02]) % add legend text with the same colors as lines
%% Example 3 Work with data, zoom in plots.
% Generate second data set that is a function of first.
% Plot both data sets in separate panels.
% Zoom in to smaller 30min time interval .
h = irf_plot(2,'newfigure'); % empty figure with 2 panels
Bnew = irf_tappl(B2,'*1.2+2'); % Bnew = B2*1.2 + 2
irf_plot(h(1),B2);
irf_legend(h(1),{'X','Y'},[0.02 0.98],'fontsize',20)
irf_plot(h(2),Bnew);
ylabel(h(2),'B_{new} = B2 * 1.2 +2 [nT]');
tint_zoom = irf_time([2008 03 01 10 20 00]) + [0 1800]; % 10 min interval
irf_zoom(h,'x',tint_zoom);
irf_zoom(h,'y');
%% Example 4 Compare two data
% Compare component-wise two datasets.
% Add one more label row with hours from the beginning of time interval
h=irf_plot({B2,Bnew},'comp');
ylabel(h(1),'B_X');
title(h(1),irf_time(B2(1,1),'epoch>yyyy-mm-dd'));
ylabel(h(2),'B_Y');
irf_legend(h(1),{'B2','Bnew=B2*1.2+2 '},[0.02 0.98],'fontsize',20)
hours=[t (t-t(1))/3600]; % hours from beginning of time interval
irf_timeaxis(h(2),t(1),hours,{'hours'})
irf_timeaxis(h(end),'nodate');
%% Example 5 Plot, different markers, mark intervals
% Plot using different markers or just some components of data.
% irf_plot accepts all the parameters as normal matlab plot routine
% Mark some interesting time interval.
tint2=[irf_time([2008 03 01 10 11 0]) irf_time([2008 03 01 10 15 0])];
h=irf_plot(2,'newfigure');
irf_plot(h(1),B2);
irf_plot(h(2),B2(:,1:2),'r.','markersize',12);
ylabel(h(2),'B [nT]?sc2');
irf_zoom(h,'y');
irf_pl_mark(h(2),tint2);
irf_legend(0,'Some additional info',[0,1],'color','r')
%% Example 6 Get Cluster Active Archive data
% This example requires that you are connected to internet!
% Get some real data from Cluster Active Archive.
% First list what products are available having FGM_SPIN in name for given time
% interval
tmpDir = tempname;
mkdir(tmpDir);
cd(tmpDir);
tint=[irf_time([2003 02 04 18 0 0]) irf_time([2003 02 04 20 0 0])];
caa_download(tint,'list:*FGM_SPIN*')
%% Example 6 cont.
% Data exist from all 4 s/c, both in ISR2 and GSE reference frame.
% Download C1_CP_FGM_SPIN that has B in GSE reference frame.
% Data are saved as cdf files in subdirectories under ./CAA directory.
% You can see what data have been downloaded from CAA and load those into memory
% using caa_load command. When data are loaded into the memory they are in dataobj
% form that includes all the metadata information within cdf file. Just enter
% the databoj name to see the variables within it. To get other meta information
% you can try
% > C1_CP_FGM_SPIN.GlobalAttributes
% > C1_CP_FGM_SPIN.VariableAttributes
caa_download(tint,'C1_CP_FGM_SPIN');
caa_load list;
caa_load C1_CP_FGM_SPIN
C1_CP_FGM_SPIN
%% Example 6 cont.
% If you just want to see some variable you can directly plot it knowing its
% name. If you want to manipulate variables, you will need to extract them from
% dataobject. In example they are extracted in matlab format, first column time
% and other components are vector components.
% If vector magnitude is missing, you can fast calculate it and add as last
% comoponent using irf_abs.
irf_plot('B_vec_xyz_gse__C1_CP_FGM_SPIN');
B1 = c_caa_var_get('B_vec_xyz_gse__C1_CP_FGM_SPIN','mat');
B1 = irf_abs(B1);
h=irf_plot(1,'newfigure');
irf_plot(h,B1);
irf_legend(h,{'Bx','By','Bz','B'},[0.02 0.98])
%% Example 7 Cluster location
% Cluster location. The position is downloaded from internet, isdat server in
% Uppsala. If you want to use position also offline, you have to download it
% from CAA. Command below would download position files for all 4 s/c
%
% > caa_download(tint,'C?_CP_AUX_POSGSE_1M');
%
% Please note that under Menu 'Options' there are different ways how
% the satellite configuration can be visualized.
c_pl_sc_conf_xyz
%% Example 8 Both B-field and particle data (spectra)
% Example that plot both magnetic field and ions spectrogram.
% First download ion data. You can list different data using
% > caa_download(tint,'list:*CIS*')
caa_download(tint,'*CODIF_O1_1D*PEF')
h=irf_plot(2,'newfigure');
irf_plot(h(1),'B_vec_xyz_gse__C1_CP_FGM_SPIN');
irf_plot(h(2),'flux__C1_CP_CIS_CODIF_O1_1D_PEF')
set(h(2),'yscale','log')
irf_zoom(h,'x',tint)
irf_plot_axis_align(h) % align X-limits of axes boxes
%% Example 8 cont. (particle moments)
% Download also moments. Use different colorscale for spectra.
caa_download(tint,'*CODIF*O*MOMENTS*')
clf;
h=irf_plot(3);
irf_plot(h(1),'B_vec_xyz_gse__C1_CP_FGM_SPIN');
irf_plot(h(2),'flux__C1_CP_CIS_CODIF_O1_1D_PEF')
irf_colormap(h(2),'space')
irf_plot(h(3),'velocity__C1_CP_CIS_CODIF_HS_O1_MOMENTS')
irf_zoom(h(3),'y',[-300 300]);
set(h(2),'yscale','log')
irf_zoom(h,'x',tint);
irf_plot_axis_align(h)
irf_legend(h(3),{'VX','VY','VZ'},[0.02 0.05])
%% Example 9 Printing
set(gcf,'paperpositionmode','auto') % to get the same on paper as on screen
% to get bitmap file
print -dpng delme.png
% to get pdf file with no white margins pint to eps and convert after
print -depsc2 -painters delme.eps
% to convert to pdf on the system command line execute some of
% ps2pdf -dEPSFitPage -dEPSCrop delme.eps
%% Example 10 MVAR Minimum Variance Analysis
% Get the data from file and run minimum variance analysis.
% You select interval by clicking with mouse (red selection shows whether you
% have to select the beginning or end of time interval).
% Calculate MVA by pressing menu "Recalculate"
%
% Data files are downloaded from CAA in Example 6
B1 = c_caa_var_get('B_vec_xyz_gse__C1_CP_FGM_SPIN','mat');
B1 = irf_abs(B1);
irf_minvar_gui(B1)
%% Example 11 Multispacecraft timing analysis
% Run interactive timing analysis that allows you to estimate phase velocity of
% boundaries from time of boundary crossings. When working with all 4 spacecraft
% data very useful is routine c_eval, that allows to execute commands on list of
% satellites (default 1..4), see the help.
% You will need to be connected to internet to get sc position, unless you have
% downloaded the position data before as described in Example 7.
%
% Once window is open you can click menu "Click times" and by pointer mark the
% boundaries that you want to time. You can express the result in distance
% clicking menu "Distance". Reference satellite is not time shifted.
%
% You can also enter manually either time offsets or boundary speeds.
%
% Download data for example magnetopause crossing
tint=[irf_time([2002 03 14 00 20 0]) irf_time([2002 03 14 00 25 0])];
caa_download(tint,'C*_CP_FGM_SPIN','overwrite');
% C* to download all sc data, 'overwrite' to remove previous data
c_eval('B?=c_caa_var_get(''B_vec_xyz_gse__C?_CP_FGM_SPIN'',''mat'',''file'');');
c_eval('B?=irf_abs(B?);');
c_4_v_gui('B?')