diff --git a/pyproject.toml b/pyproject.toml index 60ff92e..5d9227b 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "jaxspec" -version = "0.0.3" +version = "0.0.4" description = "jaxspec is a bayesian spectral fitting library for X-ray astronomy." authors = ["sdupourque "] license = "MIT" @@ -17,7 +17,7 @@ numpyro = ">=0.13.2,<0.15.0" dm-haiku = ">=0.0.11,<0.0.13" networkx = "^3.1" matplotlib = "^3.8.0" -arviz = "^0.17.0" +arviz = "^0.17.1" chainconsumer = "^1.0.0" simpleeval = "^0.9.13" cmasher = "^1.6.3" @@ -27,6 +27,7 @@ tinygp = "^0.3.0" seaborn = "^0.13.1" mkdocstrings = "^0.24.0" sparse = "^0.15.1" +scipy = "<1.13" [tool.poetry.group.docs.dependencies] diff --git a/src/jaxspec/data/obsconf.py b/src/jaxspec/data/obsconf.py index af1660d..9f4bf7e 100644 --- a/src/jaxspec/data/obsconf.py +++ b/src/jaxspec/data/obsconf.py @@ -1,14 +1,11 @@ import numpy as np import xarray as xr import sparse +import scipy from .instrument import Instrument from .observation import Observation -def densify_xarray(xarray): - return xr.DataArray(xarray.data.todense(), dims=xarray.dims, coords=xarray.coords, attrs=xarray.attrs, name=xarray.name) - - class ObsConfiguration(xr.Dataset): """ Class to store the data of a folding model, which is the link between the unfolded and folded spectra. @@ -56,8 +53,8 @@ def out_energies(self): out_energies = np.stack( ( - np.asarray(self.coords["e_min_folded"].data.todense(), dtype=np.float64), - np.asarray(self.coords["e_max_folded"].data.todense(), dtype=np.float64), + np.asarray(self.coords["e_min_folded"].data, dtype=np.float64), + np.asarray(self.coords["e_max_folded"].data, dtype=np.float64), ) ) @@ -67,34 +64,16 @@ def out_energies(self): def from_pha_file( cls, pha_path, rmf_path=None, arf_path=None, bkg_path=None, low_energy: float = 1e-20, high_energy: float = 1e20 ): - from .util import data_loader + from .util import data_path_finder - pha, arf, rmf, bkg, metadata = data_loader(pha_path, arf_path=arf_path, rmf_path=rmf_path, bkg_path=bkg_path) + arf_path_default, rmf_path_default, bkg_path_default = data_path_finder(pha_path) - instrument = Instrument.from_matrix( - rmf.sparse_matrix, - arf.specresp if arf is not None else np.ones_like(rmf.energ_lo), - rmf.energ_lo, - rmf.energ_hi, - rmf.e_min, - rmf.e_max, - ) + arf_path = arf_path_default if arf_path is None else arf_path + rmf_path = rmf_path_default if rmf_path is None else rmf_path + bkg_path = bkg_path_default if bkg_path is None else bkg_path - if bkg is not None: - backratio = np.where(bkg.backscal > 0.0, pha.backscal / np.where(bkg.backscal > 0, bkg.backscal, 1.0), 0.0) - else: - backratio = np.ones_like(pha.counts) - - observation = Observation.from_matrix( - pha.counts, - pha.grouping, - pha.channel, - pha.quality, - pha.exposure, - background=bkg.counts if bkg is not None else None, - backratio=backratio, - attributes=metadata, - ) + instrument = Instrument.from_ogip_file(rmf_path, arf_path=arf_path) + observation = Observation.from_pha_file(pha_path, bkg_path=bkg_path) return cls.from_instrument(instrument, observation, low_energy=low_energy, high_energy=high_energy) @@ -102,57 +81,108 @@ def from_pha_file( def from_instrument( cls, instrument: Instrument, observation: Observation, low_energy: float = 1e-20, high_energy: float = 1e20 ): - # Exclude the bins flagged with bad quality - quality_filter = observation.quality == 0 - grouping = observation.grouping * quality_filter + # First we unpack all the xarray data to classical np array for efficiency + # We also exclude the bins that are flagged with bad quality on the instrument + quality_filter = observation.quality.data == 0 + grouping = scipy.sparse.csr_array(observation.grouping.data.to_scipy_sparse()) * quality_filter + e_min_channel = instrument.coords["e_min_channel"].data + e_max_channel = instrument.coords["e_max_channel"].data + e_min_unfolded = instrument.coords["e_min_unfolded"].data + e_max_unfolded = instrument.coords["e_max_unfolded"].data + redistribution = scipy.sparse.csr_array(instrument.redistribution.data.to_scipy_sparse()) + area = instrument.area.data + exposure = observation.exposure.data # Computing the lower and upper energies of the bins after grouping # This is just a trick to compute it without 10 lines of code - e_min = (xr.where(grouping > 0, grouping, np.nan) * instrument.coords["e_min_channel"]).min( - skipna=True, dim="instrument_channel" - ) + grouping_nan = observation.grouping.data * quality_filter + grouping_nan.fill_value = np.nan + e_min = sparse.nanmin(grouping_nan * e_min_channel, axis=1).todense() + e_max = sparse.nanmax(grouping_nan * e_max_channel, axis=1).todense() - e_max = (xr.where(grouping > 0, grouping, np.nan) * instrument.coords["e_max_channel"]).max( - skipna=True, dim="instrument_channel" - ) - - transfer_matrix = grouping @ (instrument.redistribution * instrument.area * observation.exposure) - transfer_matrix = transfer_matrix.assign_coords({"e_min_folded": e_min, "e_max_folded": e_max}) + # Compute the transfer matrix + transfer_matrix = grouping @ (redistribution * area * exposure) # Exclude bins out of the considered energy range, and bins without contribution from the RMF - row_idx = densify_xarray(((e_min > low_energy) & (e_max < high_energy)) * (grouping.sum(dim="instrument_channel") > 0)) - - col_idx = densify_xarray( - (instrument.coords["e_min_unfolded"] > 0) * (instrument.redistribution.sum(dim="instrument_channel") > 0) - ) - # The transfer matrix is converted locally to csr format to allow FAST slicing - transfer_matrix_scipy = transfer_matrix.data.to_scipy_sparse().tocsr() - transfer_matrix_reduced = transfer_matrix_scipy[row_idx.data][:, col_idx.data] - transfer_matrix_reduced = sparse.COO.from_scipy_sparse(transfer_matrix_reduced) + row_idx = (e_min > low_energy) & (e_max < high_energy) & (grouping.sum(axis=1) > 0) + col_idx = (e_min_unfolded > 0) & (redistribution.sum(axis=0) > 0) - # A dummy zero matrix is put so that the slicing in xarray is fast - transfer_matrix.data = sparse.zeros_like(transfer_matrix.data) - transfer_matrix = transfer_matrix[row_idx][:, col_idx] - - # The reduced transfer matrix is put back in the xarray - transfer_matrix.data = transfer_matrix_reduced - - folded_counts = observation.folded_counts.copy().where(row_idx, drop=True) + # Apply this reduction to all the relevant arrays + transfer_matrix = sparse.COO.from_scipy_sparse(transfer_matrix[row_idx][:, col_idx]) + folded_counts = observation.folded_counts.data[row_idx] + folded_backratio = observation.folded_backratio.data[row_idx] + area = instrument.area.data[col_idx] + e_min_folded = e_min[row_idx] + e_max_folded = e_max[row_idx] + e_min_unfolded = e_min_unfolded[col_idx] + e_max_unfolded = e_max_unfolded[col_idx] if observation.folded_background is not None: - folded_background = observation.folded_background.copy().where(row_idx, drop=True) - + folded_background = observation.folded_background.data[row_idx] else: - folded_background = None + folded_background = np.zeros_like(folded_counts) + + data_dict = { + "transfer_matrix": ( + ["folded_channel", "unfolded_channel"], + transfer_matrix, + { + "description": "Transfer matrix to use to fold the incoming spectrum. It is built and restricted using the grouping, redistribution matrix, effective area, quality flags and energy bands defined by the user." + }, + ), + "area": ( + ["unfolded_channel"], + area, + {"description": "Effective area with the same restrictions as the transfer matrix.", "units": "cm^2"}, + ), + "exposure": ([], exposure, {"description": "Total exposure", "unit": "s"}), + "folded_counts": ( + ["folded_channel"], + folded_counts, + { + "description": "Folded counts after grouping, with the same restrictions as the transfer matrix.", + "unit": "photons", + }, + ), + "folded_backratio": ( + ["folded_channel"], + folded_backratio, + {"description": "Background scaling after grouping, with the same restrictions as the transfer matrix."}, + ), + "folded_background": ( + ["folded_channel"], + folded_background, + { + "description": "Folded background counts after grouping, with the same restrictions as the transfer matrix.", + "unit": "photons", + }, + ), + } return cls( - { - "transfer_matrix": transfer_matrix, - "area": instrument.area.copy().where(col_idx, drop=True), - "exposure": observation.exposure, - "folded_backratio": observation.folded_backratio.copy().where(row_idx, drop=True), - "folded_counts": folded_counts, - "folded_background": folded_background, - } + data_dict, + coords={ + "e_min_folded": ( + ["folded_channel"], + e_min_folded, + {"description": "Low energy of folded channel"}, + ), + "e_max_folded": ( + ["folded_channel"], + e_max_folded, + {"description": "High energy of folded channel"}, + ), + "e_min_unfolded": ( + ["unfolded_channel"], + e_min_unfolded, + {"description": "Low energy of unfolded channel"}, + ), + "e_max_unfolded": ( + ["unfolded_channel"], + e_max_unfolded, + {"description": "High energy of unfolded channel"}, + ), + }, + attrs=observation.attrs | instrument.attrs, ) diff --git a/src/jaxspec/data/observation.py b/src/jaxspec/data/observation.py index 6fc8c8b..0be6cb1 100644 --- a/src/jaxspec/data/observation.py +++ b/src/jaxspec/data/observation.py @@ -1,6 +1,6 @@ -import os import numpy as np import xarray as xr +from .ogip import DataPHA class Observation(xr.Dataset): @@ -95,11 +95,7 @@ def from_matrix( ) @classmethod - def from_pha_file(cls, pha_file: str | os.PathLike, **kwargs): - from .util import data_loader - - pha, arf, rmf, bkg, metadata = data_loader(pha_file) - + def from_ogip_container(cls, pha: DataPHA, bkg: DataPHA | None = None, **metadata): if bkg is not None: backratio = np.nan_to_num((pha.backscal * pha.exposure * pha.areascal) / (bkg.backscal * bkg.exposure * bkg.areascal)) else: @@ -116,6 +112,28 @@ def from_pha_file(cls, pha_file: str | os.PathLike, **kwargs): attributes=metadata, ) + @classmethod + def from_pha_file(cls, pha_path: str, bkg_path: str | None = None, **metadata): + from .util import data_path_finder + + arf_path, rmf_path, bkg_path_default = data_path_finder(pha_path) + bkg_path = bkg_path_default if bkg_path is None else bkg_path + + pha = DataPHA.from_file(pha_path) + bkg = DataPHA.from_file(bkg_path) if bkg_path is not None else None + + if metadata is None: + metadata = {} + + metadata.update( + observation_file=pha_path, + background_file=bkg_path, + response_matrix_file=rmf_path, + ancillary_response_file=arf_path, + ) + + return cls.from_ogip_container(pha, bkg=bkg, **metadata) + def plot_counts(self, **kwargs): """ Plot the counts diff --git a/src/jaxspec/data/util.py b/src/jaxspec/data/util.py index 4cf118f..301dab6 100644 --- a/src/jaxspec/data/util.py +++ b/src/jaxspec/data/util.py @@ -6,9 +6,9 @@ from pathlib import Path from numpy.typing import ArrayLike from collections.abc import Mapping -from typing import TypeVar +from typing import TypeVar, Tuple +from astropy.io import fits -from .ogip import DataPHA, DataARF, DataRMF from . import Observation, Instrument, ObsConfiguration from ..model.abc import SpectralModel from ..fit import CountForwardModel @@ -201,46 +201,32 @@ def obs_model(p): return fakeits[0] if len(fakeits) == 1 else fakeits -def data_loader(pha_path: str, arf_path=None, rmf_path=None, bkg_path=None): +def data_path_finder(pha_path: str) -> Tuple[str | None, str | None, str | None]: """ - This function is a convenience function that allows to load PHA, ARF and RMF data - from a given PHA file, using either the ARF/RMF/BKG filenames in the header or the - specified filenames overwritten by the user. - + This function tries its best to find the ARF, RMF and BKG files associated with a given PHA file. Parameters: pha_path: The PHA file path. + + Returns: arf_path: The ARF file path. rmf_path: The RMF file path. bkg_path: The BKG file path. """ - pha = DataPHA.from_file(pha_path) - directory = str(Path(pha_path).parent) - - if arf_path is None: - if pha.ancrfile != "none" and pha.ancrfile != "": - arf_path = find_file_or_compressed_in_dir(pha.ancrfile, directory) - - if rmf_path is None: - if pha.respfile != "none" and pha.respfile != "": - rmf_path = find_file_or_compressed_in_dir(pha.respfile, directory) - - if bkg_path is None: - if pha.backfile.lower() != "none" and pha.backfile != "": - bkg_path = find_file_or_compressed_in_dir(pha.backfile, directory) + def find_path(file_name: str, directory: str) -> str | None: + if file_name.lower() != "none" and file_name != "": + return find_file_or_compressed_in_dir(file_name, directory) + else: + return None - arf = DataARF.from_file(arf_path) if arf_path is not None else None - rmf = DataRMF.from_file(rmf_path) if rmf_path is not None else None - bkg = DataPHA.from_file(bkg_path) if bkg_path is not None else None + header = fits.getheader(pha_path, "SPECTRUM") + directory = str(Path(pha_path).parent) - metadata = { - "observation_file": pha_path, - "background_file": bkg_path, - "response_matrix_file": rmf_path, - "ancillary_response_file": arf_path, - } + arf_path = find_path(header.get("ANCRFILE", "none"), directory) + rmf_path = find_path(header.get("RESPFILE", "none"), directory) + bkg_path = find_path(header.get("BACKFILE", "none"), directory) - return pha, arf, rmf, bkg, metadata + return arf_path, rmf_path, bkg_path def find_file_or_compressed_in_dir(path: str | Path, directory: str | Path) -> str: diff --git a/src/jaxspec/model/additive.py b/src/jaxspec/model/additive.py index 1dac1b9..8872643 100644 --- a/src/jaxspec/model/additive.py +++ b/src/jaxspec/model/additive.py @@ -364,18 +364,17 @@ class Diskbb(AdditiveComponent): `Diskpbb` with $p=0.75$ ??? abstract "Parameters" + * $T_{\text{in}}$ : Temperature at inner disk radius $\left[ \mathrm{keV}\right]$ * $\text{norm}$ : $\cos i(r_{\text{in}}/d)^{2}$, where $r_{\text{in}}$ is "an apparent" inner disk radius $\left[\text{km}\right]$, - * $d$ the distance to the source in units of $10 \text{kpc}$, - * $i$ the angle of the disk ($i=0$ is face-on) - * $T_{\text{in}}$ : Temperature at inner disk radius $\left[ \mathrm{keV}\right]$ + $d$ the distance to the source in units of $10 \text{kpc}$, $i$ the angle of the disk ($i=0$ is face-on) """ def continuum(self, energy): - norm = hk.get_parameter("norm", [], init=HaikuConstant(1)) p = 0.75 - tin = hk.get_parameter("Tin", [], init=HaikuConstant(1)) tout = 0.0 + tin = hk.get_parameter("Tin", [], init=HaikuConstant(1)) + norm = hk.get_parameter("norm", [], init=HaikuConstant(1)) # Tout is set to 0 as it is evaluated at R=infinity def integrand(kT, e, tin, p): diff --git a/tests/test_instruments.py b/tests/test_instruments.py index 74ca636..647cf6b 100644 --- a/tests/test_instruments.py +++ b/tests/test_instruments.py @@ -132,6 +132,9 @@ def test_plot_exemple_observations(observations: List[Observation]): def file_with_no_grouping(tmp_path): file_path = tmp_path / "no_grouping.fits" shutil.copyfile(data_directory / "XMM-Newton/EPIC-PN/PN_spectrum_grp20.fits", file_path) + shutil.copyfile(data_directory / "XMM-Newton/EPIC-PN/PN.arf", tmp_path / "PN.arf") + shutil.copyfile(data_directory / "XMM-Newton/EPIC-PN/PN.rmf", tmp_path / "PN.rmf") + shutil.copyfile(data_directory / "XMM-Newton/EPIC-PN/PNbackground_spectrum.fits", tmp_path / "PNbackground_spectrum.fits") with fits.open(file_path) as hdul: hdul[1].columns.del_col("GROUPING") @@ -149,6 +152,9 @@ def test_loading_file_with_no_grouping(file_with_no_grouping): def file_with_no_backscal(tmp_path): file_path = tmp_path / "no_backscal.fits" shutil.copyfile(data_directory / "XMM-Newton/EPIC-PN/PN_spectrum_grp20.fits", file_path) + shutil.copyfile(data_directory / "XMM-Newton/EPIC-PN/PN.arf", tmp_path / "PN.arf") + shutil.copyfile(data_directory / "XMM-Newton/EPIC-PN/PN.rmf", tmp_path / "PN.rmf") + shutil.copyfile(data_directory / "XMM-Newton/EPIC-PN/PNbackground_spectrum.fits", tmp_path / "PNbackground_spectrum.fits") with fits.open(file_path) as hdul: del hdul[1].header["BACKSCAL"] @@ -166,6 +172,9 @@ def test_loading_file_with_no_backscal(file_with_no_backscal): def file_with_no_areascal(tmp_path): file_path = tmp_path / "no_areascal.fits" shutil.copyfile(data_directory / "XMM-Newton/EPIC-PN/PN_spectrum_grp20.fits", file_path) + shutil.copyfile(data_directory / "XMM-Newton/EPIC-PN/PN.arf", tmp_path / "PN.arf") + shutil.copyfile(data_directory / "XMM-Newton/EPIC-PN/PN.rmf", tmp_path / "PN.rmf") + shutil.copyfile(data_directory / "XMM-Newton/EPIC-PN/PNbackground_spectrum.fits", tmp_path / "PNbackground_spectrum.fits") with fits.open(file_path) as hdul: del hdul[1].header["AREASCAL"]