-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcensus_income_2dshapley.py
265 lines (199 loc) · 7.52 KB
/
census_income_2dshapley.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import matplotlib.pyplot as plt
from pathlib import Path
import pandas as pd
import numpy as np
from numpy import random
from math import factorial
import time
from sklearn.datasets import load_iris
from itertools import product
import pickle
import multiprocessing
import argparse
import pandas as pd
from pandas.plotting import scatter_matrix
import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.preprocessing import LabelEncoder,OneHotEncoder
import os
import numpy as np
from copy import deepcopy
from pathlib import Path
parser = argparse.ArgumentParser()
# add_dataset_model_arguments(parser)
# parser.add_argument('--cnum', type=int, required=True,
# help='number of cuda in the server')
parser.add_argument('--procs', type=int, required=True,
help='number of processors')
parser.add_argument('--pfrom', type=int, required=True,
help='permutation starting from')
parser.add_argument('--pto', type=int, required=True,
help='permutation until to')
arg = parser.parse_args() # args conflict with other argument
# print(f"args cnum {arg.cnum}")
print(f"procs cnum {arg.procs}")
print(f"pfrom {arg.pfrom}")
print(f"pto {arg.pto}")
values_folder = "census_2d_vals/"
data_folder = "data/"
Path(data_folder).mkdir(parents=True, exist_ok=True)
print("end")
train_path = Path(data_folder + 'adult_train.csv')
test_path = Path(data_folder + 'adult_test.csv')
train = pd.read_csv(train_path)
test = pd.read_csv(test_path)
test = test[1:]
test.dropna(how="all",inplace=True)
le= LabelEncoder()
for col in train.columns:
if train[col].dtypes=='object':
train[col]= le.fit_transform(train[col])
for col in test.columns:
if test[col].dtypes=='object':
test[col]= le.fit_transform(test[col])
train = train.drop(columns=['fnlwgt'])
test = test.drop(columns=['fnlwgt'])
train = train.rename(columns={'Age': 0,
'Workclass': 1,
'Education': 2,
'Education_Num': 3,
'Martial_Status': 4,
'Occupation': 5,
'Relationship': 6,
'Race': 7,
'Sex': 8,
'Capital_Gain': 9,
'Capital_Loss': 10,
'Hours_per_week': 11,
'Country': 12,
'Target': 13})
test = test.rename(columns={'Age': 0,
'Workclass': 1,
'Education': 2,
'Education_Num': 3,
'Martial_Status': 4,
'Occupation': 5,
'Relationship': 6,
'Race': 7,
'Sex': 8,
'Capital_Gain': 9,
'Capital_Loss': 10,
'Hours_per_week': 11,
'Country': 12,
'Target': 13})
categories = ['Age', 'Workclass', 'Education','Education_Num','Martial_Status', 'Occupation','Relationship','Race','Sex','Capital_Gain','Capital_Loss','Hours_per_week','Country','Target']
train_len = len(train)
feat_len = train.shape[1]-1
nums = 10
def calc_perf(pos, feat_len, train, test, data_perm, feat_perm):
#print(pos)
if pos % 10000 == 0:
print(pos)
i = int(pos / feat_len)
j = int(pos % feat_len)
data_i = data_perm[i] # curr data \n",
subset_data_i = data_perm[:i+1] # data indices including i\n",
# get data including i\n",
sub_train_i = deepcopy(train).iloc[subset_data_i,:]
feat_j = feat_perm[j] # curr feature\n",
# feature indices including j (= removing features after j)\n",
subset_feat_j = feat_perm[:j+1]
## i and j\n",
sub_train_i_j = deepcopy(sub_train_i).iloc[:,subset_feat_j] # we do modify \n",
DC = DecisionTreeClassifier()
acc_i_j = 0
for i in range(nums):
DC.fit(sub_train_i_j, sub_train_i.iloc[:,feat_len]) # sub_train_i.iloc[:,feat_len] - labels
pred = DC.predict(test.iloc[:,subset_feat_j])
acc_i_j += accuracy_score(test.iloc[:,feat_len],pred)
acc_i_j /= nums
return acc_i_j
train_arr = np.arange(len(train))
feat_arr = np.arange(train.shape[1]-1)
# values of cells in the matrix, initialized to 0\n",
# will keep a 2D array for faster changes rather than a 2D dictionary\n",
cells = np.zeros((len(train_arr), len(feat_arr)))
verbose = False
# perm_num = 15
pfrom = arg.pfrom
print(f"p from {pfrom}")
pto = arg.pto
print(f"p to {pto}")
perms = range(pfrom, pto)
print(f"perms: {perms}")
for p in perms:
# if p % 100000 == 0:
print("p: ", p)
# get a data permutation\n",
data_perm_time = time.time()
data_perm = random.permutation(train_arr)
data_perm_time = time.time() - data_perm_time
# get a feature permutation\n",
feat_perm_time = time.time()
feat_perm = random.permutation(feat_arr)
feat_perm_time = time.time() - feat_perm_time
# for each cell in matrix, we measure update values (just from top to bottom is fine)\n",
# when not considering a certain feature, we change value to -1, (since 0 is still related to some value)\n",
# this is straighforward\n",
# example will remove later\n",
# a b c d ...\n",
# e f g h ...\n",
# i j k l ...\n",
# we go through row by row\n",
# we need to save calculations from last row, so that we don't retrain the model (faster)\n",
# a - calc (0,0)\n",
# b - calc (0,0) (reuse) + calc (0,1) \n",
# c - calc (0,1) (reuse) + calc (0,2)\n",
# d - calc (0,2) (reuse) + calc (0,3)\n",
# ...\n",
# e - calc (1,0)\n",
# will need to calculate all cells each one time (retraining) \n",
# then just resuing all values\n",
# make a map/array that keeps 3 previous calculations\n",
# we instead have an array/map that keeps all m (all features) previous calculations \n",
# and we have one more variable that keeps the previous calculation (except for the last column)\n",
# key is only category\n",
# we only save data = the number of categories, no need for older values, we don't use them\n",
saved_values = np.zeros(feat_len)
last_value = 0
pool = multiprocessing.Pool(arg.procs)
start_time = time.perf_counter()
processes = [pool.apply_async(calc_perf, args=(pos, feat_len, train, test, data_perm, feat_perm,)) for pos in range(0, train_len * feat_len)]
result = [p.get() for p in processes]
finish_time = time.perf_counter()
print(f"Program finished in {finish_time-start_time} seconds")
model_perfs = np.zeros((train_len, feat_len))
for i in range(len(result)):
model_perfs[int(i/feat_len)][i%feat_len] = result[i]
vals_1 = np.zeros((train_len, feat_len))
for position in range(len(result)):
i = int(position / feat_len)
j = int(position % feat_len)
# val00 val01
# val10 val11:cur_val
val00 = 0
val01 = 0
val10 = 0
if i > 0:
val01 = model_perfs[i-1][j]
if j > 0:
val00 = model_perfs[i-1][j-1]
if j > 0:
val10 = model_perfs[i][j-1]
val11 = model_perfs[i][j]
cur_perf = model_perfs[i][j] + val00 - val01 - val10
data_i = data_perm[i] # curr data
feat_j = feat_perm[j] # curr feature
vals_1[data_i][feat_j] = cur_perf
to_save = [vals_1]
pickle.dump(to_save, open(values_folder + "census_2d_values_permutation_" + str(p) + ".txt", "wb") )
print("finished ", p, " permutations")