forked from wilsonlau-uw/Activity-Classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMain.py
497 lines (414 loc) · 23.4 KB
/
Main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import os.path
import warnings
import csv
import numpy as np
import pickle
import pandas as pd
from sklearn.utils import resample
from config import *
import argparse
pd.options.mode.chained_assignment = None
import sys
from os import listdir
from os.path import join
from googletrans import Translator
translator = Translator()
import ML
if os.path.exists('lang2EngTextMap.pickle'):
lang2EngTextMap = pickle.load(open('lang2EngTextMap.pickle', "rb"))
else:
lang2EngTextMap={'fr':{},'sp':{}}
def loadData(args,dataFile,inFile,columns=None,testData=False):
dataDict={}
data=[]
with open(inFile,encoding="ISO-8859-1") as inputFile:
reader = csv.DictReader(inputFile)
for line in reader:
processSuccess=True
if (not (columns is None)):
cols=columns
else:
cols = list(line.keys())
cols.sort()
row={}
for c in cols:
if(c not in dataDict):
dataDict[c] = []
if(testData):
if (float(line[CONFIDENCE_LANG])>=0.97 and float(line[CONFIDENCE_TRANSLATED])>=0.97 and \
line[PRED_MODULE_LANG]==line[PRED_MODULE_TRANSLATED] and line[PRED_INTERVENTION_LANG] == line[PRED_INTERVENTION_TRANSLATED]):
if(c == CORRECT_MODULE):
dataDict[c].append(line[PRED_MODULE_TRANSLATED])
row[c] = line[PRED_MODULE_TRANSLATED]
elif(c == CORRECT_INTERVENTION):
dataDict[c].append(line[PRED_INTERVENTION_TRANSLATED])
row[c] = line[PRED_INTERVENTION_TRANSLATED]
else:
dataDict[c].append(line[c])
row[c] = line[c]
else:
processSuccess=False
break
else:
dataDict[c].append(line[c])
row[c] = line[c]
if processSuccess:
data.append(row)
if args.cache >0:
pickle.dump((dataDict,data,cols), open(dataFile, "wb"))
return dataDict ,data,cols
def doTranslate(text):
if(text in lang2EngTextMap):
return lang2EngTextMap[text]
else:
# print(text)
translated2 = translator.translate(text)
lang2EngTextMap[text] = translated2.text
return translated2.text
def outputSummary(df,data,dataDict,cols):
with open('processed.csv', 'w') as csvfile:
writer = csv.DictWriter(csvfile, cols)
writer.writeheader()
writer.writerows(data)
totalItems = set(dataDict[CORRECT_MODULE])
print('total items : ', totalItems.__len__())
ptable = pd.pivot_table(df, values=TEXTCOL2, index=[ CORRECT_MODULE, CORRECT_INTERVENTION, LANGCOL],
aggfunc=np.count_nonzero, fill_value=0)
writer = pd.ExcelWriter('output_categories.xlsx')
ptable.to_excel(writer)
writer.save()
def pickleExt(args):
return '_c'+ args.classifier+ '_d'+str(args.degree)+ '_w'+str(args.window)+'_b'+str(args.balance)+'_g'+str(args.generator)+ '.pickle'
def prepareforML(df,disease,lang,translate):
sanityCheck={}
if(translate):
df = df[df[LANGCOL].str.startswith(disease)]
mlData = df[[CORRECT_MODULE, CORRECT_INTERVENTION, TEXTCOL1, TEXTCOL2, GF_MODULE, GF_INTERVENTION, MODULE, INTERVENTION,LANGCOL,BUDGET]]
mlData['label'] = mlData[CORRECT_MODULE] + DELIMIT + mlData[CORRECT_INTERVENTION]
texts=[]
raws=[]
for i,row in mlData.iterrows():
raws.append('***' + row[GF_MODULE].replace(' ','_') + ' ' +
'***' + row[GF_INTERVENTION].replace(' ','_') + ' ' +
'***' + row[MODULE].replace(' ','_') + ' ' +
'***' + row[INTERVENTION].replace(' ','_') + ' ' +
'***' + row[TEXTCOL1].split()[0] + ' ' + row[TEXTCOL2].lower())
if(not row['disease_lang_concat'].endswith('eng')):
translatedTxt=doTranslate(row[TEXTCOL2])
texts.append( '***'+ row[GF_MODULE].replace(' ','_') + ' ' +
'***' + row[GF_INTERVENTION].replace(' ','_') + ' ' +
'***' + row[MODULE].replace(' ','_') + ' ' +
'***' + row[INTERVENTION].replace(' ','_') + ' ' +
'***' +row[TEXTCOL1].split()[0] + ' ' + translatedTxt.lower() )
else:
texts.append( '***'+ row[GF_MODULE].replace(' ','_') + ' ' +
'***' + row[GF_INTERVENTION].replace(' ','_') + ' ' +
'***' + row[MODULE].replace(' ','_') + ' ' +
'***' + row[INTERVENTION].replace(' ','_') + ' ' +
'***' + row[TEXTCOL1].split()[0] + ' ' + row[TEXTCOL2].lower() )
mlData['text']=texts
mlData['raw']=raws
pickle.dump(lang2EngTextMap, open('lang2EngTextMap.pickle', "wb"))
else:
df = df[df['disease_lang_concat'].str.endswith(disease+lang)]
mlData = df[[CORRECT_MODULE, CORRECT_INTERVENTION, TEXTCOL1, TEXTCOL2, GF_MODULE, GF_INTERVENTION, MODULE, INTERVENTION,LANGCOL,BUDGET]]
mlData['label'] = mlData[CORRECT_MODULE] + DELIMIT + mlData[CORRECT_INTERVENTION]
mlData['text'] = [ '***'+ v[GF_MODULE].replace(' ','_') + ' ' +
'***' + v[GF_INTERVENTION].replace(' ','_') + ' ' +
'***' + v[MODULE].replace(' ','_') + ' ' +
'***' + v[INTERVENTION].replace(' ','_') + ' ' +
'***' + v[TEXTCOL1].split()[0]+ ' ' for i,v in mlData.iterrows()] + mlData[TEXTCOL2]
mlData = mlData.sample(n=len(mlData), random_state=3)
for i,d in mlData.iterrows():
if(d['text'] not in sanityCheck ):
s=set()
s.add(d['label'])
sanityCheck[d['text']] = s
else:
sanityCheck[d['text']].add(d['label'])
print('sanityCheck ' + '*'*20)
failedCheck = [s for s in sanityCheck if len(sanityCheck[s])>1]
for s in failedCheck:
print(s)
print('-->\n'+str('\n'.join([l for l in sanityCheck[s]] )))
return mlData,df
def prepareTraining(df,disease,lang,translate):
mlData,df_train = prepareforML(df, disease,lang,translate)
return mlData
def createNGram(args,mlData,disease,lang):
if (args.cache > 0):
dataFile = 'nGramModel'+'_'+disease+lang + pickleExt(args)
if not os.path.exists(dataFile):
nGramModel = ML.Ngram(args.classifier, mlData, args.generator, args.degree, args.remove, args.balance,
args.cluster)
pickle.dump(nGramModel, open(dataFile, "wb"))
nGramModel = pickle.load(open(dataFile, "rb"))
else:
nGramModel = ML.Ngram(args.classifier, mlData, args.generator, args.degree, args.remove, args.balance, args.cluster)
return nGramModel
def trainModel(df, disease, lang,args):
mlData=prepareTraining(df,disease,lang,args.translate>0)
nGramModel = createNGram(args, mlData, disease, lang)
print('number of ngrams in '+disease+' '+lang+':', str(len(nGramModel.getAllNgrams())))
train_set = list(
((nGramModel.featurize1(data.text, index), data.label)) for index, data in nGramModel.dataset.iterrows())
if (args.balance > 0):
train_data = nGramModel.balance(train_set, args.balance )
else:
train_data = train_set
nGramModel.train(train_data)
return nGramModel
def testModel(trainModel,df,disease,lang,args):
mlData,df_test = prepareforML(df, disease,lang,args.translate>0)
test_set = list(
((trainModel.featurize2(data.text), data.label)) for index, data in mlData.iterrows())
test_classified = trainModel.classify_many(test_set)
return test_classified,mlData
def testModels(trainModels,trainModels_translated, df,disease):
mlData,df_test = prepareforML(df, disease,'',translate=True)
test_set = list(
((trainModels_translated.featurize2(data.text),
trainModels[data.disease_lang_concat[len(disease):]].featurize2(data.raw),
data.label, data.disease_lang_concat)) for index, data in mlData.iterrows())
test_classified ={'translate':[],'lang':[]}
for (d1,d2,l, d3) in test_set:
test_classified['translate'].append( trainModels_translated.classify_predict(d1))
test_classified['lang'].append( trainModels[d3[len(disease):]].classify_predict(d2))
return test_classified,mlData
def createTestParams(classifier,degree,balance,remove,translate):
parser = argparse.ArgumentParser()
parser.add_argument('--classifier', default=classifier)
parser.add_argument('--degree', default=degree)
parser.add_argument("--window", default=0, type=int,
help='sentence window (default: 0, all ngrams)')
parser.add_argument("--balance", default=balance)
parser.add_argument("--generator", default=0, type=int,
help='using generator function (default: 0)')
parser.add_argument("--cluster", default=0, type=int,
help='using clusters (default: 1)')
parser.add_argument("--remove", default=remove, type=int )
parser.add_argument("--cache", default=0, type=int,
help='save and load cached data [1: Yes | 0: No] (default: 0)')
parser.add_argument("--cv", default=1, type=int,
help='cross validate [1: Yes | 0: No] (default: 0)')
parser.add_argument("--verbose", default=0, type=int,
help='debug message [1: Yes | 0: No] (default: 0)')
parser.add_argument("--translate", default=translate, type=int )
return parser.parse_args()
def runAllTests(df_train, translate):
all_results={}
argsList=[
createTestParams(classifier='P', degree=[1,2,3,4], balance=0, remove=0, translate=translate),
createTestParams(classifier='P', degree=[1], balance=0, remove=0, translate=translate),
createTestParams(classifier='S', degree=[1], balance=0, remove=0, translate=translate),
createTestParams(classifier='P', degree=[1], balance=1, remove=0, translate=translate),
createTestParams(classifier='P', degree=[1], balance=0, remove=0, translate=translate),
createTestParams(classifier='P', degree=[1], balance=3, remove=0, translate=translate),
createTestParams(classifier='P', degree=[1], balance=4, remove=0, translate=translate),
createTestParams(classifier='P', degree=[1], balance=3, remove=1, translate=translate),
createTestParams(classifier='P', degree=[1], balance=4, remove=1, translate=translate),
createTestParams(classifier='P', degree=[1], balance=3, remove=3, translate=translate),
createTestParams(classifier='P', degree=[1], balance=4, remove=3, translate=translate),
createTestParams(classifier='P-Select', degree=[1], balance=3, remove=1, translate=translate),
createTestParams(classifier='P-Select', degree=[1], balance=4, remove=1, translate=translate),
createTestParams(classifier='P-KBest', degree=[1], balance=3, remove=1, translate=translate),
createTestParams(classifier='P-KBest', degree=[1], balance=4, remove=1, translate=translate),
createTestParams(classifier='RF', degree=[1], balance=4, remove=1, translate=translate),
]
for args in argsList:
print(args)
mlData = prepareTraining(df_train, 'malaria', 'fr', args.translate > 0)
allLabels = sorted(list(set(mlData['label'])))
nGramModel_train = createNGram(args, mlData, 'malaria', 'fr')
warnings.filterwarnings('ignore')
results, classifiers = nGramModel_train.cross_validate(10, args.verbose)
results["features"] = len(nGramModel_train.all_ngrams)
# print("##################################### Summary ##############################################")
label_result = {}
for i,label in enumerate(allLabels):
label_result[label]={'accuracy': results["average"]["accuracy"][i],
'precision': results["average"]["precision"][i],
'recall': results["average"]["recall"][i],
'f1': results["average"]["f1"][i]}
# print(allLabels[i])
# print("Accuracy: {:10.2f}".format(results["average"]["accuracy"][i]))
# print("Precision: {:10.2f}".format(results["average"]["precision"][i]))
# print("Recall: {:10.2f}".format(results["average"]["recall"][i]))
# print("F1: {:10.2f}".format(results["average"]["f1"][i]))
#
# print('')
all_results[str(args)]=label_result
sys.stdout.flush()
accuracies={}
precisions={}
recalls={}
f1s={}
for args in argsList:
print(args)
res=all_results[str(args)]
for i, label in enumerate(allLabels):
if(label not in accuracies):
accuracies[label]=[]
precisions[label]=[]
recalls[label]=[]
f1s[label]=[]
accuracies[label].append(res[label]["accuracy"])
precisions[label].append(res[label]["precision"] )
recalls[label].append(res[label]["recall"] )
f1s[label].append(res[label]["f1"] )
with open('testresults_alltests.csv' if translate ==0 else 'testresults_alltests_translated.csv', 'w') as test_results:
writer = csv.writer(test_results)
writer.writerow(['test case']+ [str(a) for a in argsList])
for i, label in enumerate(allLabels):
writer.writerow(['']+[label]*len(argsList))
writer.writerow(['precision:']+[a for a in precisions[label] ])
writer.writerow(['recall:']+[a for a in recalls[label] ])
writer.writerow(['f1:']+[a for a in f1s[label] ])
writer.writerow('')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--classifier',default='P-Select',
help='classifier (N/S/LS/L/M/P/P-Select/P-KBest/RF)')
parser.add_argument('--degree',default=[1],type=int,
help='list of degree of ngram (list)')
parser.add_argument("--window", default=0,type=int,
help='sentence window (default: 0, all ngrams)')
parser.add_argument("--balance", default=3, type=int,
help='balance with resample [0: None | 1: Upsample | 2: downSample | 3: RandomOverSample | 4: SMOTE] (default: 0)')
parser.add_argument("--generator", default=0, type=int,
help='using generator function (default: 0)')
parser.add_argument("--cluster", default=0, type=int,
help='using clusters (default: 1)')
parser.add_argument("--remove", default=1, type=int,
help='remove ngram with frequency <= this threshold (default: 0)')
parser.add_argument("--cache", default=0, type=int,
help='save and load cached data [1: Yes | 0: No] (default: 0)')
parser.add_argument("--use", default=2, type=int,
help='cross validate/single test/full run [0: C.V. | 1: Single Test | 2: Full] (default: 0)')
parser.add_argument("--verbose", default=0, type=int,
help='debug message [1: Yes | 0: No] (default: 0)')
parser.add_argument("--translate", default=1, type=int,
help='translate to English [1: Yes | 0: No] (default: 0)')
parser.add_argument("--iterations", default='all',
help='list of validated files from iterations (default: all)')
parser.add_argument("--semisupervised", default='iterations/iteration3/test_output.csv',
help='self-training using past predicted data (default: None)')
args = parser.parse_args()
print(args)
dataFile= 'data'+ pickleExt(args)
trainingFile = 'nlp_training_sample.csv'
if(args.cache>0):
if not os.path.exists(dataFile):
dataDict, data, cols = loadData(args,dataFile,trainingFile)
(dataDict, data, cols) = pickle.load(open(dataFile, "rb"))
else:
dataDict, data, cols = loadData(args, dataFile,trainingFile)
if(not (args.iterations is None)):
iterationFiles = []
if(args.iterations =='all'):
iterFolders = [join('./iterations', f) for f in listdir('./iterations') if f.startswith('iteration')]
for f in iterFolders:
iterationFiles.extend([join(f, f1) for f1 in listdir(f) if f1.startswith('iteration') and f1.endswith('.csv')])
elif len(args.iterations)>0:
iterationFiles = args.iterations
for file in iterationFiles:
validatedDataDict, validatedData, validatedCols = loadData(args, dataFile, file, columns=dataDict.keys())
data.extend(validatedData)
for c in dataDict.keys():
dataDict[c].extend(validatedDataDict[c])
if (args.semisupervised is not None):
testDataDict, testData, testCols = loadData(args, dataFile, args.semisupervised, columns=dataDict.keys(),testData=True)
data.extend(testData)
for c in dataDict.keys():
dataDict[c].extend(testDataDict[c])
df_train = pd.DataFrame.from_dict(dataDict)
outputSummary(df_train,data,dataDict,cols)
if (args.use == 0): # CV all tests
runAllTests(df_train,0)
runAllTests(df_train, 1)
pickle.dump(lang2EngTextMap, open(TRANSLATED_DATA_FILE, "wb"))
elif (args.use == 1):
testFile = 'nlp_test_sample.csv'
testdataDict, testdata, testcols = loadData(args, dataFile, testFile)
df_test = pd.DataFrame.from_dict(testdataDict)
args.translate=0
nGramModel_malaria_translated = trainModel(df_train, 'malaria', 'fr', args)
test_classified, df_test_model = testModel(nGramModel_malaria_translated, df_test, 'malaria', 'fr', args)
pickle.dump(lang2EngTextMap, open(TRANSLATED_DATA_FILE, "wb"))
# output results
with open('test_ouput_lang.csv', encoding="ISO-8859-1", mode='w') as test_output:
writer = csv.writer(test_output)
writer.writerow(
[GF_MODULE, GF_INTERVENTION, MODULE, INTERVENTION, TEXTCOL1, TEXTCOL2, BUDGET, LANGCOL, PRED_MODULE_LANG,
PRED_INTERVENTION_LANG, CONFIDENCE_LANG])
j = 0
for i, item in df_test_model.iterrows():
row = [item[GF_MODULE], item[GF_INTERVENTION], item[MODULE], item[INTERVENTION], item[TEXTCOL1],
item[TEXTCOL2], item[BUDGET], item[LANGCOL] \
, test_classified[j].split(DELIMIT)[0], test_classified[j].split(DELIMIT)[1],
nGramModel_malaria_translated.predictProbs[j].max()]
writer.writerow(row)
j = j + 1
else:
testFile = 'nlp_test_sample.csv' # 73386 records
testdataDict, testdata, testcols = loadData(args, dataFile, testFile)
df_test = pd.DataFrame.from_dict(testdataDict)
DISEASES = ['malaria','hiv','tb']
LANGS=['eng','fr','esp']
args.translate=1
nGramModels_translated=dict.fromkeys(DISEASES)
for disease in DISEASES:
nGramModels_translated[disease]=trainModel(df_train, disease, '',args)
args.translate = 0
nGramModels=dict(zip(dict.fromkeys(DISEASES),[dict.fromkeys(LANGS),dict.fromkeys(LANGS),dict.fromkeys(LANGS)] ))
df_test_models = dict(zip(dict.fromkeys(DISEASES),[dict.fromkeys(LANGS),dict.fromkeys(LANGS) ,dict.fromkeys(LANGS)] ))
tests_classified=dict.fromkeys(DISEASES)
for disease in DISEASES:
for lang in LANGS:
disease_lang = disease + lang
if(disease_lang in [d for d in df_train[LANGCOL]]):
nGramModels[disease][lang]=trainModel(df_train,disease,lang,args)
for disease in DISEASES:
tests_classified[disease], df_test_models[disease]= testModels(nGramModels[disease],
nGramModels_translated[disease],
df_test[df_test.disease_lang_concat.str.startswith(disease)],
disease)
pickle.dump((tests_classified,df_test_models), open('tmp.pickle', "wb"))
(tests_classified, df_test_models) = pickle.load(open('tmp.pickle','rb'))
# output results
with open('test_output.csv',encoding="utf-8", mode='w') as test_output:
writer = csv.writer(test_output)
writer.writerow([ GF_MODULE,GF_INTERVENTION,MODULE,INTERVENTION,TEXTCOL1,TEXTCOL2,TRANSLATED,BUDGET,LANGCOL,
PRED_MODULE_TRANSLATED,PRED_INTERVENTION_TRANSLATED,CONFIDENCE_TRANSLATED,
PRED_2_MODULE_TRANSLATED, PRED_2_INTERVENTION_TRANSLATED, CONFIDENCE_2_TRANSLATED,
PRED_3_MODULE_TRANSLATED, PRED_3_INTERVENTION_TRANSLATED, CONFIDENCE_3_TRANSLATED,
PRED_MODULE_LANG,PRED_INTERVENTION_LANG,CONFIDENCE_LANG,
PRED_2_MODULE_LANG, PRED_2_INTERVENTION_LANG, CONFIDENCE_2_LANG,
PRED_3_MODULE_LANG, PRED_3_INTERVENTION_LANG, CONFIDENCE_3_LANG
])
for disease in DISEASES:
j = 0
for i, item in df_test_models[disease].iterrows():
row = [item[GF_MODULE], item[GF_INTERVENTION], item[MODULE], item[INTERVENTION], item[TEXTCOL1],item[TEXTCOL2], doTranslate(item[TEXTCOL2]) if not item[LANGCOL].endswith('eng') else '', item[BUDGET],item[LANGCOL] \
, tests_classified[disease]['translate'][j][0][0].split(DELIMIT)[0],
tests_classified[disease]['translate'][j][0][0].split(DELIMIT)[1],
tests_classified[disease]['translate'][j][0][1]
, tests_classified[disease]['translate'][j][1][0].split(DELIMIT)[0],
tests_classified[disease]['translate'][j][1][0].split(DELIMIT)[1],
tests_classified[disease]['translate'][j][1][1]
, tests_classified[disease]['translate'][j][2][0].split(DELIMIT)[0],
tests_classified[disease]['translate'][j][2][0].split(DELIMIT)[1],
tests_classified[disease]['translate'][j][2][1]
, tests_classified[disease]['lang'][j][0][0].split(DELIMIT)[0],
tests_classified[disease]['lang'][j][0][0].split(DELIMIT)[1],
tests_classified[disease]['lang'][j][0][1]
, tests_classified[disease]['lang'][j][1][0].split(DELIMIT)[0],
tests_classified[disease]['lang'][j][1][0].split(DELIMIT)[1],
tests_classified[disease]['lang'][j][1][1]
, tests_classified[disease]['lang'][j][2][0].split(DELIMIT)[0],
tests_classified[disease]['lang'][j][2][0].split(DELIMIT)[1],
tests_classified[disease]['lang'][j][2][1]
]
writer.writerow(row)
j=j+1
pickle.dump(lang2EngTextMap, open(TRANSLATED_DATA_FILE, "wb"))