forked from ttrftech/NanoVNA
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfft.h
90 lines (81 loc) · 2.91 KB
/
fft.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/*
* fft.h is Based on
* Free FFT and convolution (C)
*
* Copyright (c) 2019 Project Nayuki. (MIT License)
* https://www.nayuki.io/page/free-small-fft-in-multiple-languages
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
* - The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
* - The Software is provided "as is", without warranty of any kind, express or
* implied, including but not limited to the warranties of merchantability,
* fitness for a particular purpose and noninfringement. In no event shall the
* authors or copyright holders be liable for any claim, damages or other
* liability, whether in an action of contract, tort or otherwise, arising from,
* out of or in connection with the Software or the use or other dealings in the
* Software.
*/
#include <math.h>
#include <stdint.h>
static uint16_t reverse_bits(uint16_t x, int n) {
uint16_t result = 0;
int i;
for (i = 0; i < n; i++, x >>= 1)
result = (result << 1) | (x & 1U);
return result;
}
/***
* dir = forward: 0, inverse: 1
* https://www.nayuki.io/res/free-small-fft-in-multiple-languages/fft.c
*/
static void fft256(float array[][2], const uint8_t dir) {
const uint16_t n = 256;
const uint8_t levels = 8; // log2(n)
const uint8_t real = dir & 1;
const uint8_t imag = ~real & 1;
uint16_t i;
uint16_t size;
for (i = 0; i < n; i++) {
uint16_t j = reverse_bits(i, levels);
if (j > i) {
float temp = array[i][real];
array[i][real] = array[j][real];
array[j][real] = temp;
temp = array[i][imag];
array[i][imag] = array[j][imag];
array[j][imag] = temp;
}
}
// Cooley-Tukey decimation-in-time radix-2 FFT
for (size = 2; size <= n; size *= 2) {
uint16_t halfsize = size / 2;
uint16_t tablestep = n / size;
uint16_t i;
for (i = 0; i < n; i += size) {
uint16_t j, k;
for (j = i, k = 0; j < i + halfsize; j++, k += tablestep) {
uint16_t l = j + halfsize;
float tpre = array[l][real] * cos(2 * M_PI * k / 256) + array[l][imag] * sin(2 * M_PI * k / 256);
float tpim = -array[l][real] * sin(2 * M_PI * k / 256) + array[l][imag] * cos(2 * M_PI * k / 256);
array[l][real] = array[j][real] - tpre;
array[l][imag] = array[j][imag] - tpim;
array[j][real] += tpre;
array[j][imag] += tpim;
}
}
if (size == n) // Prevent overflow in 'size *= 2'
break;
}
}
static inline void fft256_forward(float array[][2]) {
fft256(array, 0);
}
static inline void fft256_inverse(float array[][2]) {
fft256(array, 1);
}