-
Notifications
You must be signed in to change notification settings - Fork 344
/
ikfast.h
600 lines (515 loc) · 22.2 KB
/
ikfast.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
// -*- coding: utf-8 -*-
// Copyright (C) 2012-2014 Rosen Diankov <rosen.diankov@gmail.com>
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/** \brief Header file for all ikfast c++ files/shared objects.
The ikfast inverse kinematics compiler is part of OpenRAVE.
The file is divided into two sections:
- <b>Common</b> - the abstract classes section that all ikfast share regardless of their settings
- <b>Library Specific</b> - the library-specific definitions, which depends on the precision/settings that the library was compiled with
The defines are as follows, they are also used for the ikfast C++ class:
- IKFAST_HEADER_COMMON - common classes
- IKFAST_HAS_LIBRARY - if defined, will include library-specific functions. by default this is off
- IKFAST_CLIBRARY - Define this linking statically or dynamically to get correct visibility.
- IKFAST_NO_MAIN - Remove the ``main`` function, usually used with IKFAST_CLIBRARY
- IKFAST_ASSERT - Define in order to get a custom assert called when NaNs, divides by zero, and other invalid conditions are detected.
- IKFAST_REAL - Use to force a custom real number type for IkReal.
- IKFAST_NAMESPACE - Enclose all functions and classes in this namespace, the ``main`` function is excluded.
*/
#include <algorithm>
#include <array>
#include <vector>
#include <list>
#include <stdexcept>
#include <cmath>
#include <iostream>
#include <iomanip>
#ifndef IKFAST_HEADER_COMMON
#define IKFAST_HEADER_COMMON
/// should be the same as ikfast.__version__
/// if 0x10000000 bit is set, then the iksolver assumes 6D transforms are done without the manipulator offset taken into account (allows to reuse IK when manipulator offset changes)
#define IKFAST_VERSION 0x1000004b
#define IKSINGLEDOFSOLUTIONBASE_INDICES_SIZE 5
namespace ikfast {
/// \brief holds the solution for a single dof
template <typename T>
class IkSingleDOFSolutionBase
{
public:
IkSingleDOFSolutionBase() {
indices.fill(0xFF);
}
T fmul = 0.0, foffset = 0.0; ///< joint value is fmul*sol[freeind]+foffset
signed char freeind = -1; ///< if >= 0, mimics another joint
unsigned char jointtype = 0x01; ///< joint type, 0x01 is revolute, 0x11 is slider
unsigned char maxsolutions = 0; ///< max possible indices, 0 if controlled by free index or a free joint itself
std::array<unsigned char, IKSINGLEDOFSOLUTIONBASE_INDICES_SIZE> indices; ///< unique index of the solution used to keep track on what part it came from. sometimes a solution can be repeated for different indices. store at least another repeated root
virtual void Print() const {
std::cout << "(" << ((jointtype == 0x01) ? "R" : "P") << ", "
<< (int)freeind << "), (" << foffset << ", "
<< fmul << "), " << (unsigned int) maxsolutions << " (";
for(unsigned int i = 0; i < indices.size(); i++) {
std::cout << (unsigned int) indices[i] << ", ";
}
std::cout << ") " << std::endl;
}
};
/// \brief The discrete solutions are returned in this structure.
///
/// Sometimes the joint axes of the robot can align allowing an infinite number of solutions.
/// Stores all these solutions in the form of free variables that the user has to set when querying the solution. Its prototype is:
template <typename T>
class IkSolutionBase
{
public:
virtual ~IkSolutionBase() {
}
/// \brief gets a concrete solution
///
/// \param[out] solution the result
/// \param[in] freevalues values for the free parameters \se GetFree
virtual void GetSolution(T* solution, const T* freevalues) const = 0;
/// \brief std::vector version of \ref GetSolution
virtual void GetSolution(std::vector<T>& solution, const std::vector<T>& freevalues) const {
solution.resize(GetDOF());
GetSolution(&solution.at(0), freevalues.size() > 0 ? &freevalues.at(0) : NULL);
}
/// \brief Gets the indices of the configuration space that have to be preset before a full solution can be returned
///
/// 0 always points to the first value accepted by the ik function.
/// \return vector of indices indicating the free parameters
virtual const std::vector<int>& GetFree() const = 0;
/// \brief the dof of the solution
virtual const int GetDOF() const = 0;
};
/// \brief manages all the solutions
template <typename T>
class IkSolutionListBase
{
public:
virtual ~IkSolutionListBase() {
}
/// \brief add one solution and return its index for later retrieval
///
/// \param vinfos Solution data for each degree of freedom of the manipulator
/// \param vfree If the solution represents an infinite space, holds free parameters of the solution that users can freely set. The indices are of the configuration that the IK solver accepts rather than the entire robot, ie 0 points to the first value accepted.
virtual size_t AddSolution(const std::vector<IkSingleDOFSolutionBase<T> >& vinfos, const std::vector<int>& vfree) = 0;
/// \brief returns the solution pointer
virtual const IkSolutionBase<T>& GetSolution(size_t index) const = 0;
/// \brief returns the number of solutions stored
virtual size_t GetNumSolutions() const = 0;
/// \brief clears all current solutions, note that any memory addresses returned from \ref GetSolution will be invalidated.
virtual void Clear() = 0;
virtual void Print() const = 0;
};
/// \brief holds function pointers for all the exported functions of ikfast
template <typename T>
class IkFastFunctions
{
public:
IkFastFunctions() : _ComputeIk(NULL), _ComputeIk2(NULL), _ComputeFk(NULL), _GetNumFreeParameters(NULL), _GetFreeIndices(NULL), _GetNumJoints(NULL), _GetIkRealSize(NULL), _GetIkFastVersion(NULL), _GetIkType(NULL), _GetKinematicsHash(NULL) {
}
virtual ~IkFastFunctions() {
}
typedef bool (*ComputeIkFn)(const T*, const T*, const T*, IkSolutionListBase<T>&);
ComputeIkFn _ComputeIk;
typedef bool (*ComputeIk2Fn)(const T*, const T*, const T*, IkSolutionListBase<T>&, void*);
ComputeIk2Fn _ComputeIk2;
typedef void (*ComputeFkFn)(const T*, T*, T*);
ComputeFkFn _ComputeFk;
typedef int (*GetNumFreeParametersFn)();
GetNumFreeParametersFn _GetNumFreeParameters;
typedef const int* (*GetFreeIndicesFn)();
GetFreeIndicesFn _GetFreeIndices;
typedef int (*GetNumJointsFn)();
GetNumJointsFn _GetNumJoints;
typedef int (*GetIkRealSizeFn)();
GetIkRealSizeFn _GetIkRealSize;
typedef const char* (*GetIkFastVersionFn)();
GetIkFastVersionFn _GetIkFastVersion;
typedef int (*GetIkTypeFn)();
GetIkTypeFn _GetIkType;
typedef const char* (*GetKinematicsHashFn)();
GetKinematicsHashFn _GetKinematicsHash;
};
template <typename T>
inline void ikfastfmodtwopi(T& c) {
// put back to (-PI, PI]
while (c > 3.1415926535897932384626) {
c -= 6.2831853071795864769252;
}
while (c <= -3.1415926535897932384626) {
c += 6.2831853071795864769252;
}
}
// Implementations of the abstract classes, user doesn't need to use them
/// \brief Default implementation of \ref IkSolutionBase
template <typename T>
class IkSolution : public IkSolutionBase<T>
{
public:
IkSolution(const std::vector<IkSingleDOFSolutionBase<T> >& vinfos, const std::vector<int>& vfree) {
_vbasesol = vinfos;
_vfree = vfree;
}
IkSolution() {
}
// IkSolution(const std::vector<T>& v, uint32_t nvars) {
// this->SetSolution(v, nvars);
// }
void SetSolution(const T v[], uint32_t nvars) {
_vbasesol.clear();
_vbasesol.resize(nvars);
for(uint32_t i = 0; i < nvars; i++) {
_vbasesol[i].foffset = v[i];
}
}
virtual void GetSolution(T* solution, const T* freevalues) const {
for(std::size_t i = 0; i < _vbasesol.size(); ++i) {
if( _vbasesol[i].freeind < 0 )
solution[i] = _vbasesol[i].foffset;
else {
solution[i] = freevalues[_vbasesol[i].freeind]*_vbasesol[i].fmul + _vbasesol[i].foffset;
ikfastfmodtwopi(solution[i]);
}
}
}
virtual void GetSolution(std::vector<T>& solution, const std::vector<T>& freevalues) const {
solution.resize(GetDOF());
GetSolution(&solution.at(0), freevalues.size() > 0 ? &freevalues.at(0) : NULL);
}
virtual const std::vector<int>& GetFree() const {
return _vfree;
}
virtual const int GetDOF() const {
return static_cast<int>(_vbasesol.size());
}
virtual void Validate() const {
for(size_t i = 0; i < _vbasesol.size(); ++i) {
if( _vbasesol[i].maxsolutions == (unsigned char)-1) {
throw std::runtime_error("max solutions for joint " + std::to_string(i) + "not initialized");
}
if( _vbasesol[i].maxsolutions > 0 ) {
if( _vbasesol[i].indices[0] >= _vbasesol[i].maxsolutions ) {
throw std::runtime_error("index >= max solutions for joint " + std::to_string(i));
}
if( _vbasesol[i].indices[1] != (unsigned char)-1 && _vbasesol[i].indices[1] >= _vbasesol[i].maxsolutions ) {
throw std::runtime_error("2nd index >= max solutions for joint " + std::to_string(i));
}
}
if( !std::isfinite(_vbasesol[i].foffset) ) {
throw std::runtime_error("foffset for joint " + std::to_string(i) + " was not finite");
}
}
}
virtual void GetSolutionIndices(std::vector<unsigned int>& v) const {
v.resize(0);
v.push_back(0);
for(int i = (int)_vbasesol.size()-1; i >= 0; --i) {
if( _vbasesol[i].maxsolutions != (unsigned char)-1 && _vbasesol[i].maxsolutions > 1 ) {
for(size_t j = 0; j < v.size(); ++j) {
v[j] *= _vbasesol[i].maxsolutions;
}
size_t orgsize=v.size();
if( _vbasesol[i].indices[1] != (unsigned char)-1 ) {
for(size_t j = 0; j < orgsize; ++j) {
v.push_back(v[j]+_vbasesol[i].indices[1]);
}
}
if( _vbasesol[i].indices[0] != (unsigned char)-1 ) {
for(size_t j = 0; j < orgsize; ++j) {
v[j] += _vbasesol[i].indices[0];
}
}
}
}
}
IkSingleDOFSolutionBase<T>& operator[](size_t i) {
// assert(i < _vbasesol.size());
return _vbasesol[i];
}
const IkSingleDOFSolutionBase<T>& get(size_t i) const {
// assert(i < _vbasesol.size());
return _vbasesol[i];
}
void SetFree(std::vector<int> vfree) {
_vfree = std::move(vfree);
}
bool HasFreeIndices() const {
return !_vfree.empty();
}
void ResetFreeIndices() {
for (size_t i = 0; i < _vbasesol.size(); ++i) {
_vbasesol[i].freeind = _vbasesol[i].indices[4] = -1;
}
}
virtual void Print() const {
std::cout << std::setprecision(16);
for (size_t i = 0; i < _vbasesol.size(); ++i) {
std::cout << i << ": ";
_vbasesol[i].Print();
}
if(!_vfree.empty())
{
std::cout << "vfree = ";
for (size_t i = 0; i < _vfree.size(); ++i) {
std::cout << _vfree[i] << ", ";
}
std::cout << std::endl;
}
}
std::vector< IkSingleDOFSolutionBase<T> > _vbasesol; ///< solution and their offsets if joints are mimiced
std::vector<int> _vfree;
};
/// \brief Default implementation of \ref IkSolutionListBase
template <typename T>
class IkSolutionList : public IkSolutionListBase<T>
{
public:
virtual size_t AddSolution(const std::vector<IkSingleDOFSolutionBase<T> >& vinfos, const std::vector<int>& vfree)
{
size_t index = _listsolutions.size();
_listsolutions.push_back(IkSolution<T>(vinfos,vfree));
return index;
}
virtual const IkSolutionBase<T>& GetSolution(size_t index) const
{
if( index >= _listsolutions.size() ) {
throw std::runtime_error("GetSolution index is invalid");
}
typename std::list< IkSolution<T> >::const_iterator it = _listsolutions.begin();
std::advance(it,index);
return *it;
}
virtual size_t GetNumSolutions() const {
return _listsolutions.size();
}
virtual void Clear() {
_listsolutions.clear();
}
IkSolution<T>& operator[](size_t i) {
// assert(i < _listsolutions.size());
return _listsolutions[i];
}
void SetSolutions(std::vector<IkSolution<T> > &vecsols) {
_listsolutions.clear();
std::move( std::make_move_iterator(vecsols.begin()),
std::make_move_iterator(vecsols.end()),
std::back_inserter(_listsolutions)
);
}
virtual void Print() const {
unsigned int i = 0;
for (typename std::list<IkSolution<T> >::const_iterator it=_listsolutions.cbegin();
it != _listsolutions.cend(); ++it) {
std::cout << "Solution " << i++ << ":" << std::endl;
std::cout << "===========" << std::endl;
it->Print();
}
}
protected:
std::list< IkSolution<T> > _listsolutions;
};
/// \brief Contains information of a solution where two axes align.
///
/// \param freejoint Index of the free joint jy in SolutionArray = std::array<T, N>.
/// \param mimicjoint Index of the mimic joint jx in SolutionArray.
/// \param solutionindex Index of the IK solution in std::vector<SolutionArray>.
/// This is NOT the solution index associated with each joint in one IK solution.
/// \param bxpy If true, then jx + jy is the constant jxpy; otherwise jx - jy is the constant jxmy.
/// We store this constant in the foffset field of jx, and store 0 in that of jy.
///
/// In an aligned case, jy = c = 0.0 + 1.0*c, and
/// jx = jxpy - c = jxpy + (-1.0) * c (when bxpy is true), or
/// jx = jxmy + c = jxmy + 1.0 * c (when bxpy is false).
struct AlignedSolution {
uint32_t freejoint = 0; // jy
uint32_t mimicjoint = 0; // jx
uint32_t solutionindex = 0;
bool bxpy = true; // jxpy = jx + jy
// false means jxmy = jx - jy
AlignedSolution(uint32_t freejoint_in,
uint32_t mimicjoint_in,
uint32_t solutionindex_in,
bool bxpy_in) {
freejoint = freejoint_in;
mimicjoint = mimicjoint_in;
solutionindex = solutionindex_in;
bxpy = bxpy_in;
}
template <typename T>
void SetIkSolution(ikfast::IkSolution<T>& solnobj, const T v[]) {
const uint32_t dof = solnobj.GetDOF();
// assert(freejoint < dof && mimicjoint < dof);
ikfast::IkSingleDOFSolutionBase<T>& freejointsoln = solnobj[freejoint],
&mimicjointsoln = solnobj[mimicjoint];
// update _vbasesol
freejointsoln.fmul = 1.0;
freejointsoln.foffset = 0.0;
freejointsoln.freeind = 0;
freejointsoln.maxsolutions = 0;
freejointsoln.indices[0] = (unsigned char) -1;
mimicjointsoln.fmul = bxpy ? (-1.0) : (1.0);
mimicjointsoln.foffset = v[mimicjoint] - v[freejoint] * mimicjointsoln.fmul;
mimicjointsoln.freeind = 0;
mimicjointsoln.maxsolutions = 0;
mimicjointsoln.indices[0] = (unsigned char) -1;
// update _vfree
solnobj.SetFree({(int) freejoint});
}
};
template <typename T, long unsigned int N>
struct IndicesCompare
{
IndicesCompare(
const std::vector<ikfast::IkSolution<T> >& vecsols,
const std::array<uint32_t, N>& jointorder)
: _vecsols(vecsols),
_jointorder(jointorder) {}
bool operator ()(uint32_t inda, uint32_t indb)
{
const ikfast::IkSolution<T> &sola = _vecsols[inda],
&solb = _vecsols[indb];
for (size_t i = 0; i < _jointorder.size(); ++i) {
const T x = sola.get(_jointorder[i]).foffset,
y = solb.get(_jointorder[i]).foffset;
if (x != y) { return x < y; }
}
return false;
}
const std::vector<ikfast::IkSolution<T> >& _vecsols;
const std::array<uint32_t, N>& _jointorder;
};
template <typename T, long unsigned int N>
void DeriveSolutionIndices(std::vector<ikfast::IkSolution<T> >& vecsols,
const std::array<uint32_t, N>& jointorder) {
if( vecsols.empty() ) {
return;
}
const uint32_t nallvars = vecsols[0].GetDOF(), numsolns = vecsols.size();
// assert(N <= nallvars);
// for(ikfast::IkSolution<T>& vecsol : vecsols) {
// assert(vecsol.GetDOF() == nallvars);
// }
std::vector<uint32_t> vindices(numsolns);
for (uint32_t i = 0; i < numsolns; i++) {
vindices[i] = i;
}
std::sort(vindices.begin(), vindices.end(), IndicesCompare<T, N>(vecsols, jointorder));
// initialize
for (uint32_t i = 0; i < N; i++) {
vecsols[vindices[0]][jointorder[i]].indices[0] = (unsigned char) 0;
}
std::array<uint32_t, N> count;
count.fill(0);
// derive solution indices for each joint and maxsolutions
for(uint32_t si = 1; si < numsolns; si++) {
bool index_determined = false;
const ikfast::IkSolution<T> &prevsol = vecsols[vindices[si-1]];
ikfast::IkSolution<T> &cursol = vecsols[vindices[si]];
for (uint32_t varindex = 0; varindex < N; varindex++) {
const uint32_t jointindex = jointorder[varindex];
const uint32_t lastindex = prevsol.get(jointindex).indices[0];
if( index_determined ) {
const uint32_t oldsi = count[varindex], maxsolni = lastindex + 1;
count[varindex] = si;
cursol[jointindex].indices[0] = (unsigned char) 0;
for(uint32_t sii = oldsi; sii < si; sii++) {
vecsols[vindices[sii]][jointindex].maxsolutions = (unsigned char) maxsolni;
}
}
else if ( cursol[jointindex].foffset > prevsol.get(jointindex).foffset ) {
cursol[jointindex].indices[0] = (unsigned char) (lastindex + 1);
index_determined = true;
}
else {
cursol[jointindex].indices[0] = (unsigned char) lastindex;
}
}
}
// last round of deriving maxsolutions
const ikfast::IkSolution<T> &cursol = vecsols[vindices[numsolns-1]];
for (uint32_t varindex = 0; varindex < N; varindex++) {
const uint32_t jointindex = jointorder[varindex],
oldsi = count[varindex],
maxsolni = cursol.get(jointindex).indices[0] + 1;
for(uint32_t sii = oldsi; sii < numsolns; sii++) {
vecsols[vindices[sii]][jointindex].maxsolutions = (unsigned char) maxsolni;
}
}
// set free & mimic joints to have 0 maxsolutions and index -1
for (size_t a = 0; a < vecsols.size(); ++a) {
ikfast::IkSolution<T>& vecsol = vecsols[a];
if(!vecsol._vfree.empty()) {
for(uint32_t i = 0; i < nallvars; i++) {
if(vecsol[i].freeind != (signed char) -1) {
vecsol[i].indices[0] = (unsigned char) -1;
vecsol[i].maxsolutions = 0;
}
}
}
}
}
} // namespace ikfast
#endif // OPENRAVE_IKFAST_HEADER
// The following code is dependent on the C++ library linking with.
#ifdef IKFAST_HAS_LIBRARY
// defined when creating a shared object/dll
#ifdef IKFAST_CLIBRARY
#ifdef _MSC_VER
#define IKFAST_API extern "C" __declspec(dllexport)
#else
#define IKFAST_API extern "C"
#endif
#else
#define IKFAST_API
#endif
#ifdef IKFAST_NAMESPACE
namespace IKFAST_NAMESPACE {
#endif
#ifdef IKFAST_REAL
typedef IKFAST_REAL IkReal;
#else
typedef double IkReal;
#endif
/** \brief Computes all IK solutions given a end effector coordinates and the free joints.
- ``eetrans`` - 3 translation values. For iktype **TranslationXYOrientation3D**, the z-axis is the orientation.
- ``eerot``
- For **Transform6D** it is 9 values for the 3x3 rotation matrix.
- For **Direction3D**, **Ray4D**, and **TranslationDirection5D**, the first 3 values represent the target direction.
- For **TranslationXAxisAngle4D**, **TranslationYAxisAngle4D**, and **TranslationZAxisAngle4D** the first value represents the angle.
- For **TranslationLocalGlobal6D**, the diagonal elements ([0],[4],[8]) are the local translation inside the end effector coordinate system.
*/
IKFAST_API bool ComputeIk(const IkReal* eetrans, const IkReal* eerot, const IkReal* pfree, ikfast::IkSolutionListBase<IkReal>& solutions);
/** \brief Similar to ComputeIk except takes OpenRAVE boost::shared_ptr<RobotBase::Manipulator>*
*/
IKFAST_API bool ComputeIk2(const IkReal* eetrans, const IkReal* eerot, const IkReal* pfree, ikfast::IkSolutionListBase<IkReal>& solutions, void* pOpenRAVEManip);
/// \brief Computes the end effector coordinates given the joint values. This function is used to double check ik.
IKFAST_API void ComputeFk(const IkReal* joints, IkReal* eetrans, IkReal* eerot);
/// \brief returns the number of free parameters users has to set apriori
IKFAST_API int GetNumFreeParameters();
/// \brief the indices of the free parameters indexed by the chain joints
IKFAST_API const int* GetFreeIndices();
/// \brief the total number of indices of the chain
IKFAST_API int GetNumJoints();
/// \brief the size in bytes of the configured number type
IKFAST_API int GetIkRealSize();
/// \brief the ikfast version used to generate this file
IKFAST_API const char* GetIkFastVersion();
/// \brief the ik type ID
IKFAST_API int GetIkType();
/// \brief a hash of all the chain values used for double checking that the correct IK is used.
IKFAST_API const char* GetKinematicsHash();
#ifdef IKFAST_NAMESPACE
}
#endif
#endif // IKFAST_HAS_LIBRARY