-
Notifications
You must be signed in to change notification settings - Fork 978
/
Copy pathrcnn_feature_stats.m
50 lines (40 loc) · 1.47 KB
/
rcnn_feature_stats.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
function [mean_norm, stdd] = rcnn_feature_stats(imdb, layer, rcnn_model)
% AUTORIGHTS
% ---------------------------------------------------------
% Copyright (c) 2014, Ross Girshick
%
% This file is part of the R-CNN code and is available
% under the terms of the Simplified BSD License provided in
% LICENSE. Please retain this notice and LICENSE if you use
% this file (or any portion of it) in your project.
% ---------------------------------------------------------
conf = rcnn_config('sub_dir', imdb.name);
save_file = sprintf('%s/feature_stats_%s_layer_%d_%s.mat', ...
conf.cache_dir, imdb.name, layer, rcnn_model.cache_name);
try
ld = load(save_file);
mean_norm = ld.mean_norm;
stdd = ld.stdd;
clear ld;
catch
% fix the random seed for repeatability
prev_rng = seed_rand();
image_ids = imdb.image_ids;
num_images = min(length(image_ids), 200);
boxes_per_image = 200;
image_ids = image_ids(randperm(length(image_ids), num_images));
ns = [];
for i = 1:length(image_ids)
tic_toc_print('feature stats: %d/%d\n', i, length(image_ids));
d = rcnn_load_cached_pool5_features(rcnn_model.cache_name, ...
imdb.name, image_ids{i});
X = d.feat(randperm(size(d.feat,1), min(boxes_per_image, size(d.feat,1))), :);
X = rcnn_pool5_to_fcX(X, layer, rcnn_model);
ns = cat(1, ns, sqrt(sum(X.^2, 2)));
end
mean_norm = mean(ns);
stdd = std(ns);
save(save_file, 'mean_norm', 'stdd');
% restore previous rng
rng(prev_rng);
end