diff --git a/src/caffe/layers/smooth_L1_loss_layer.cpp b/src/caffe/layers/smooth_L1_loss_layer.cpp index aebf915b..355c58da 100644 --- a/src/caffe/layers/smooth_L1_loss_layer.cpp +++ b/src/caffe/layers/smooth_L1_loss_layer.cpp @@ -12,7 +12,13 @@ namespace caffe { template void SmoothL1LossLayer::LayerSetUp( const vector*>& bottom, const vector*>& top) { - has_weights_ = (bottom.size() == 3); + SmoothL1LossParameter loss_param = this->layer_param_.smooth_l1_loss_param(); + sigma2_ = loss_param.sigma() * loss_param.sigma(); + has_weights_ = (bottom.size() >= 3); + if (has_weights_) { + CHECK_EQ(bottom.size(), 4) << "If weights are used, must specify both " + "inside and outside weights"; + } } template @@ -26,23 +32,107 @@ void SmoothL1LossLayer::Reshape( CHECK_EQ(bottom[0]->channels(), bottom[2]->channels()); CHECK_EQ(bottom[0]->height(), bottom[2]->height()); CHECK_EQ(bottom[0]->width(), bottom[2]->width()); + CHECK_EQ(bottom[0]->channels(), bottom[3]->channels()); + CHECK_EQ(bottom[0]->height(), bottom[3]->height()); + CHECK_EQ(bottom[0]->width(), bottom[3]->width()); } diff_.Reshape(bottom[0]->num(), bottom[0]->channels(), bottom[0]->height(), bottom[0]->width()); errors_.Reshape(bottom[0]->num(), bottom[0]->channels(), bottom[0]->height(), bottom[0]->width()); + // vector of ones used to sum + ones_.Reshape(bottom[0]->num(), bottom[0]->channels(), + bottom[0]->height(), bottom[0]->width()); + for (int i = 0; i < bottom[0]->count(); ++i) { + ones_.mutable_cpu_data()[i] = Dtype(1); + } } template -void SmoothL1LossLayer::Forward_cpu(const vector*>& bottom, - const vector*>& top) { - NOT_IMPLEMENTED; +void SmoothL1LossLayer::Forward_cpu(const vector*>& bottom, const vector*>& top) +{ + int count = bottom[0]->count(); + caffe_sub(count, bottom[0]->cpu_data(), bottom[1]->cpu_data(), diff_.mutable_cpu_data()); // d := b0 - b1 + if (has_weights_) + { + // apply "inside" weights + caffe_mul(count, bottom[2]->cpu_data(), diff_.cpu_data(), diff_.mutable_cpu_data()); // d := w_in * (b0 - b1) + } + for(int index =0; indexcpu_data(), errors_.cpu_data(), errors_.mutable_cpu_data()); // d := w_out * SmoothL1(w_in * (b0 - b1)) + } + + Dtype loss = caffe_cpu_dot(count, ones_.cpu_data(), errors_.cpu_data()); + top[0]->mutable_cpu_data()[0] = loss / bottom[0]->num(); } + + template -void SmoothL1LossLayer::Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom) { - NOT_IMPLEMENTED; +void SmoothL1LossLayer::Backward_cpu(const vector*>& top, const vector& propagate_down, const vector*>& bottom) +{ + // after forwards, diff_ holds w_in * (b0 - b1) + int count = diff_.count(); + + for(int index=0; index < count; index++) + { + // f'(x) = sigma * sigma * x if |x| < 1 / sigma / sigma + // = sign(x) otherwise + Dtype val = diff_.cpu_data()[index]; + Dtype abs_val = abs(val); + if (abs_val < 1.0 / sigma2_) + { + diff_.mutable_cpu_data()[index] = sigma2_ * val; + } + else + { + diff_.mutable_cpu_data()[index] = (Dtype(0) < val) - (val < Dtype(0)); + } + } + for (int i = 0; i < 2; ++i) + { + if (propagate_down[i]) + { + const Dtype sign = (i == 0) ? 1 : -1; + const Dtype alpha = sign * top[0]->cpu_diff()[0] / bottom[i]->num(); + caffe_cpu_axpby( + count, // count + alpha, // alpha + diff_.cpu_data(), // x + Dtype(0), // beta + bottom[i]->mutable_cpu_diff()); // y + if (has_weights_) + { + // Scale by "inside" weight + caffe_mul( + count, + bottom[2]->cpu_data(), + bottom[i]->cpu_diff(), + bottom[i]->mutable_cpu_diff()); + // Scale by "outside" weight + caffe_mul( + count, + bottom[3]->cpu_data(), + bottom[i]->cpu_diff(), + bottom[i]->mutable_cpu_diff()); + } + } + } } #ifdef CPU_ONLY