-
Notifications
You must be signed in to change notification settings - Fork 0
/
miller_robin_primility_test.cpp
139 lines (105 loc) · 3.13 KB
/
miller_robin_primility_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
// Miller–Rabin primality test
#include<iostream>
using namespace std;
typedef unsigned long long ULL;
ULL modular_mul(ULL a, ULL b, ULL modulus)
{
ULL result = 0;
a %= modulus;
while(b > 0) {
if(b & 1) {
result = (result + a) % modulus;
}
a = (a << 1) % modulus; // a = (a * 2) % modulus.
b >>= 1; // b /= 2.
}
return result % modulus;
}
ULL modular_pow(ULL base, ULL exponent, ULL modulus)
{
if(modulus == 1) return 0;
ULL result = 1;
base %= modulus;
while(exponent > 0) {
if(exponent & 1) {
result = modular_mul(result, base, modulus);
}
exponent >>= 1;
base = modular_mul(base, base, modulus);
}
return result;
}
bool isPrime(ULL n, int iteration)
{
if(n < 2) return false;
if(n <= 3) return true;
if(!(n & 1)) return false; // If n is even.
ULL d = n-1; // d * 2^r = n-1 where d is odd and r > 0.
while(!(d & 1))
d >>= 1;
while(iteration--) { // Witness loop.
ULL a = rand() % (n-1) + 1;
ULL x = modular_pow(a, d, n); // x = a^d % n
ULL d1 = d;
while(d1 != n-1 && x != 1 && x != n-1) {
x = modular_mul(x, x, n); // x = (x * x) % n.
d1 <<= 1;
}
if(x != n-1 && !(d1 & 1)) {
return false;
}
}
return true;
}
int main()
{
ULL n;
int t;
cin>>t;
while(t--)
{
ULL n;
cin>>n;
if( isPrime(n,5)){
cout<<"YES"<<endl;
}
else{
cout<<"NO"<<endl;
}
}
return 0;
}
// The above isPrime() can be replaced with the function below.
// The calculation is same but it is more verbose.
/*
bool isPrime(ULL n, int iteration)
{
if(n < 2) return false;
if(n <= 3) return true;
if(!(n & 1)) return false; // If n is even.
ULL d = n-1, r = 0;
while(!(d & 1)) { // Calculate d, r
d >>= 1; // Such that d * 2^r = n-1 where d is odd and r > 0.
++r;
}
while(iteration--) { // Witness loop.
ULL a = rand() % (n-3) + 2; // Random number [2, n-2]
ULL x = modular_pow(a, d, n); // x = a^d % n
if(x == 1 or x == n-1) continue; // So, after repeated square, a^(n-1) = 1 (mod n)
bool continue_witness_loop = false;
for(int i = 1; i < r; ++i) { // Loop r-1 times.
x = modular_mul(x, x, n); // x = (x * x) % n.
if(x == 1) {
return false; // Composite.
}
else if(x == n-1) {
continue_witness_loop = true; // So, after repeated square, a^(n-1) = 1 (mod n)
break;
}
}
if(continue_witness_loop) continue;
return false; // Composite.
}
return true; // Probably prime
}
*/