-
Notifications
You must be signed in to change notification settings - Fork 143
/
Copy pathvgg16-cifar10.py
271 lines (214 loc) · 7.87 KB
/
vgg16-cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#!/usr/bin/env python
# coding: utf-8
import argparse
import os
import random
import time
import numpy as np
import torch
import torchvision
from torch.utils.data import DataLoader
from torch.utils.data import SubsetRandomSampler
from torchvision import datasets, transforms
def set_all_seeds(seed):
os.environ["PL_GLOBAL_SEED"] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def compute_accuracy(model, data_loader, device):
model.eval()
with torch.no_grad():
correct_pred, num_examples = 0, 0
for i, (features, targets) in enumerate(data_loader):
features = features.to(device)
targets = targets.to(device)
logits = model(features)
_, predicted_labels = torch.max(logits, 1)
num_examples += targets.size(0)
correct_pred += (predicted_labels.cpu() == targets.cpu()).sum()
return correct_pred.float() / num_examples * 100
def train_classifier_simple_v2(
model,
num_epochs,
train_loader,
valid_loader,
test_loader,
optimizer,
device,
logging_interval=50,
best_model_save_path=None,
scheduler=None,
skip_train_acc=False,
scheduler_on="valid_acc",
):
start_time = time.time()
minibatch_loss_list, train_acc_list, valid_acc_list = [], [], []
best_valid_acc, best_epoch = -float("inf"), 0
for epoch in range(num_epochs):
epoch_start_time = time.time()
model.train()
for batch_idx, (features, targets) in enumerate(train_loader):
features = features.to(device)
targets = targets.to(device)
# ## FORWARD AND BACK PROP
logits = model(features)
loss = torch.nn.functional.cross_entropy(logits, targets)
optimizer.zero_grad()
loss.backward()
# ## UPDATE MODEL PARAMETERS
optimizer.step()
# ## LOGGING
minibatch_loss_list.append(loss.item())
if not batch_idx % logging_interval:
print(
f"Epoch: {epoch+1:03d}/{num_epochs:03d} "
f"| Batch {batch_idx:04d}/{len(train_loader):04d} "
f"| Loss: {loss:.4f}"
)
model.eval()
elapsed = (time.time() - epoch_start_time) / 60
print(f"Time / epoch without evaluation: {elapsed:.2f} min")
with torch.no_grad(): # save memory during inference
if not skip_train_acc:
train_acc = compute_accuracy(model, train_loader, device=device).item()
else:
train_acc = float("nan")
valid_acc = compute_accuracy(model, valid_loader, device=device).item()
train_acc_list.append(train_acc)
valid_acc_list.append(valid_acc)
if valid_acc > best_valid_acc:
best_valid_acc, best_epoch = valid_acc, epoch + 1
if best_model_save_path:
torch.save(model.state_dict(), best_model_save_path)
print(
f"Epoch: {epoch+1:03d}/{num_epochs:03d} "
f"| Train: {train_acc :.2f}% "
f"| Validation: {valid_acc :.2f}% "
f"| Best Validation "
f"(Ep. {best_epoch:03d}): {best_valid_acc :.2f}%"
)
elapsed = (time.time() - start_time) / 60
print(f"Time elapsed: {elapsed:.2f} min")
if scheduler is not None:
if scheduler_on == "valid_acc":
scheduler.step(valid_acc_list[-1])
elif scheduler_on == "minibatch_loss":
scheduler.step(minibatch_loss_list[-1])
else:
raise ValueError("Invalid `scheduler_on` choice.")
elapsed = (time.time() - start_time) / 60
print(f"Total Training Time: {elapsed:.2f} min")
test_acc = compute_accuracy(model, test_loader, device=device)
print(f"Test accuracy {test_acc :.2f}%")
elapsed = (time.time() - start_time) / 60
print(f"Total Time: {elapsed:.2f} min")
return minibatch_loss_list, train_acc_list, valid_acc_list
def get_dataloaders_cifar10(
batch_size,
num_workers=0,
validation_fraction=None,
train_transforms=None,
test_transforms=None,
):
if train_transforms is None:
train_transforms = transforms.ToTensor()
if test_transforms is None:
test_transforms = transforms.ToTensor()
train_dataset = datasets.CIFAR10(
root="data", train=True, transform=train_transforms, download=True
)
valid_dataset = datasets.CIFAR10(root="data", train=True, transform=test_transforms)
test_dataset = datasets.CIFAR10(root="data", train=False, transform=test_transforms)
if validation_fraction is not None:
num = int(validation_fraction * 50000)
train_indices = torch.arange(0, 50000 - num)
valid_indices = torch.arange(50000 - num, 50000)
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(valid_indices)
valid_loader = DataLoader(
dataset=valid_dataset,
batch_size=batch_size,
num_workers=num_workers,
sampler=valid_sampler,
)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
num_workers=num_workers,
drop_last=True,
sampler=train_sampler,
)
else:
train_loader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
num_workers=num_workers,
drop_last=True,
shuffle=True,
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=batch_size,
num_workers=num_workers,
shuffle=False,
)
if validation_fraction is None:
return train_loader, test_loader
else:
return train_loader, valid_loader, test_loader
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--device", type=str, required=True, help="Which GPU device to use."
)
args = parser.parse_args()
RANDOM_SEED = 123
BATCH_SIZE = 32
NUM_EPOCHS = 1
DEVICE = torch.device(args.device)
print('torch', torch.__version__)
print('device', DEVICE)
train_transforms = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((256, 256)),
torchvision.transforms.RandomCrop((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
test_transforms = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((256, 256)),
torchvision.transforms.CenterCrop((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
train_loader, valid_loader, test_loader = get_dataloaders_cifar10(
batch_size=BATCH_SIZE,
validation_fraction=0.1,
train_transforms=train_transforms,
test_transforms=test_transforms,
num_workers=2,
)
model = torch.hub.load(
"pytorch/vision:v0.11.0", "vgg16_bn", pretrained=False
)
model.classifier[-1] = torch.nn.Linear(
in_features=4096, out_features=10 # as in original
) # number of class labels in Cifar-10)
model = model.to(DEVICE)
optimizer = torch.optim.Adam(model.parameters(), lr=0.0005)
minibatch_loss_list, train_acc_list, valid_acc_list = train_classifier_simple_v2(
model=model,
num_epochs=NUM_EPOCHS,
train_loader=train_loader,
valid_loader=valid_loader,
test_loader=test_loader,
optimizer=optimizer,
best_model_save_path=None,
device=DEVICE,
scheduler_on="valid_acc",
logging_interval=100,
)