-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
64 lines (58 loc) · 2.69 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os
from keras import backend as K
from keras import objectives
from keras.models import Sequential, model_from_yaml
from keras.layers import Dense
from keras.layers import Activation
from keras.layers import Flatten
from keras.layers import Convolution2D
from keras.utils.generic_utils import Progbar
from layers import OSBayesian, OSBayesianConvolution2D
import objectives
def get_newest_file(path):
return max([os.path.join(path, f) for f in os.listdir(path)], key=os.path.getctime)
def create_model(args, game_config):
input_shape = game_config['state_shape']
output_dim = len(game_config['actions'])
model = Sequential()
if args.model == 'maximum-likelihood':
model.add(Convolution2D(32, 8, 8, border_mode='same', subsample=[4, 4],
input_shape=input_shape))
model.add(Activation('relu'))
model.add(Convolution2D(64, 4, 4, border_mode='same', subsample=[2, 2]))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3, border_mode='same', subsample=[1, 1]))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dense(output_dim, activation='linear'))
loss = 'mse'
elif args.model == 'onesample-bayesian':
mean_prior = 0.0
std_prior = 0.05
model.add(OSBayesianConvolution2D(mean_prior, std_prior, 32, 8, 8,
border_mode='same', subsample=[4, 4],
input_shape=input_shape))
model.add(Activation('relu'))
model.add(OSBayesianConvolution2D(mean_prior, std_prior, 64, 4, 4,
border_mode='same', subsample=[2, 2]))
model.add(Activation('relu'))
model.add(OSBayesianConvolution2D(mean_prior, std_prior, 64, 3, 3,
border_mode='same', subsample=[1, 1]))
model.add(Activation('relu'))
model.add(Flatten())
model.add(OSBayesian(512, mean_prior, std_prior))
model.add(Activation('relu'))
model.add(OSBayesian(output_dim, mean_prior, std_prior))
loss = objectives.explicit_bayesian_loss(model, mean_prior, std_prior,
batch_size, nb_batch)
else:
raise Exception('Unknown model type: {0}'.format(args.model))
model.compile(loss=loss, optimizer='adam')
if args.weights_file is not None:
model.load_weights(args.weights_file)
elif args.resume:
f = 'weights/{0}/{1}'.format(args.game, args.model)
model.load_weights(get_newest_file(f))
return model