-
Notifications
You must be signed in to change notification settings - Fork 554
/
her_sac_gym_fetch_reach.py
129 lines (122 loc) · 4.04 KB
/
her_sac_gym_fetch_reach.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gym
import rlkit.torch.pytorch_util as ptu
from rlkit.data_management.obs_dict_replay_buffer import ObsDictRelabelingBuffer
from rlkit.launchers.launcher_util import setup_logger
from rlkit.samplers.data_collector import GoalConditionedPathCollector
from rlkit.torch.her.her import HERTrainer
from rlkit.torch.networks import ConcatMlp
from rlkit.torch.sac.policies import MakeDeterministic, TanhGaussianPolicy
from rlkit.torch.sac.sac import SACTrainer
from rlkit.torch.torch_rl_algorithm import TorchBatchRLAlgorithm
def experiment(variant):
# unwrap the TimeLimitEnv wrapper since we manually termiante after 50 steps
eval_env = gym.make('FetchReach-v1').env
expl_env = gym.make('FetchReach-v1').env
observation_key = 'observation'
desired_goal_key = 'desired_goal'
achieved_goal_key = desired_goal_key.replace("desired", "achieved")
replay_buffer = ObsDictRelabelingBuffer(
env=eval_env,
observation_key=observation_key,
desired_goal_key=desired_goal_key,
achieved_goal_key=achieved_goal_key,
**variant['replay_buffer_kwargs']
)
obs_dim = eval_env.observation_space.spaces['observation'].low.size
action_dim = eval_env.action_space.low.size
goal_dim = eval_env.observation_space.spaces['desired_goal'].low.size
qf1 = ConcatMlp(
input_size=obs_dim + action_dim + goal_dim,
output_size=1,
**variant['qf_kwargs']
)
qf2 = ConcatMlp(
input_size=obs_dim + action_dim + goal_dim,
output_size=1,
**variant['qf_kwargs']
)
target_qf1 = ConcatMlp(
input_size=obs_dim + action_dim + goal_dim,
output_size=1,
**variant['qf_kwargs']
)
target_qf2 = ConcatMlp(
input_size=obs_dim + action_dim + goal_dim,
output_size=1,
**variant['qf_kwargs']
)
policy = TanhGaussianPolicy(
obs_dim=obs_dim + goal_dim,
action_dim=action_dim,
**variant['policy_kwargs']
)
eval_policy = MakeDeterministic(policy)
trainer = SACTrainer(
env=eval_env,
policy=policy,
qf1=qf1,
qf2=qf2,
target_qf1=target_qf1,
target_qf2=target_qf2,
**variant['sac_trainer_kwargs']
)
trainer = HERTrainer(trainer)
eval_path_collector = GoalConditionedPathCollector(
eval_env,
eval_policy,
observation_key=observation_key,
desired_goal_key=desired_goal_key,
)
expl_path_collector = GoalConditionedPathCollector(
expl_env,
policy,
observation_key=observation_key,
desired_goal_key=desired_goal_key,
)
algorithm = TorchBatchRLAlgorithm(
trainer=trainer,
exploration_env=expl_env,
evaluation_env=eval_env,
exploration_data_collector=expl_path_collector,
evaluation_data_collector=eval_path_collector,
replay_buffer=replay_buffer,
**variant['algo_kwargs']
)
algorithm.to(ptu.device)
algorithm.train()
if __name__ == "__main__":
variant = dict(
algorithm='HER-SAC',
version='normal',
algo_kwargs=dict(
batch_size=128,
num_epochs=100,
num_eval_steps_per_epoch=5000,
num_expl_steps_per_train_loop=1000,
num_trains_per_train_loop=1000,
min_num_steps_before_training=1000,
max_path_length=50,
),
sac_trainer_kwargs=dict(
discount=0.99,
soft_target_tau=5e-3,
target_update_period=1,
policy_lr=3E-4,
qf_lr=3E-4,
reward_scale=1,
use_automatic_entropy_tuning=True,
),
replay_buffer_kwargs=dict(
max_size=int(1E6),
fraction_goals_rollout_goals=0.2, # equal to k = 4 in HER paper
fraction_goals_env_goals=0,
),
qf_kwargs=dict(
hidden_sizes=[400, 300],
),
policy_kwargs=dict(
hidden_sizes=[400, 300],
),
)
setup_logger('her-sac-fetch-experiment', variant=variant)
experiment(variant)