-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproj_zon.py
70 lines (60 loc) · 1.84 KB
/
proj_zon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import numpy as np
# from numpy.linalg import norm
# from scipy.sparse import issparse, csr_matrix
# from scipy.sparse.linalg import LinearOperator, lsmr
# from scipy.optimize import OptimizeResult
from scipy.optimize import lsq_linear
""" MY CODE:
Implementation of the Frank-Wolfe Algorithm for projecting
a point outside of a zonotope back into the zonotope. This
problem has the form:
Inputs:
A: matrix representation of the zonotope centered at origin
b: center of zonotope in R^n
k: point to project into zonotope
max_iter: maximum number of iterations of FW
tol: delta tolerance to terminate loop
callback: TODO
"""
def zon_proj(A, b, k, max_iter=100, tol=1e-64, callback=None):
eps = np.zeros((A.shape[1], 1))
iter = 0
for t in range(max_iter):
iter = iter + 1
A_eval = A*eps + b - k
#print(A_eval)
A_eval = np.resize(A_eval, (2,))
s_t = getSt(A, A_eval)
nu_t = getNu(t)
eps_prev = eps
eps = ((1 - nu_t)*eps + nu_t*s_t).T
print("eps", eps.shape)
if norm(eps - eps_prev) <= tol:
break
print(iter)
return eps
def getNu(time, flag=0):
if flag == 0:
return 2/(2+time)
else:
raise Exception
def getSt(A, b):
ones = np.asarray(np.ones(A.shape[1], ))
neg_ones = -1 * ones
s_t = lsq_linear(A, b, bounds=(neg_ones, ones), lsq_solver='lsmr', lsmr_tol=1e-13, verbose=0).x
print("size", s_t.shape)
return s_t
A = np.matrix("-4 0 2 3 ; -2 1 0 -1")
b = np.matrix("20 ; 10")
k = np.matrix("30 ; 10")
# A = np.matrix("1 0 ; 0 1")
# b = np.matrix("0 ; 0")
# k = np.matrix("2 ; 0")
A_eval = k - b
#A_eval = np.resize(A_eval, (2,))
A_eval = np.squeeze(np.asarray(A_eval))
eps = getSt(A, A_eval)
print("A", A)
print("eps", eps)
print("Ae", np.matmul(A, eps))
print("end", np.add(np.matmul(A, eps).T, b))