-
Notifications
You must be signed in to change notification settings - Fork 1
/
AdjMat Generator.nb
3066 lines (3049 loc) · 168 KB
/
AdjMat Generator.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 168348, 3058]
NotebookOptionsPosition[ 167298, 3034]
NotebookOutlinePosition[ 167639, 3049]
CellTagsIndexPosition[ 167596, 3046]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
RowBox[{
RowBox[{"SetDirectory", "[",
RowBox[{"NotebookDirectory", "[", "]"}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"v", " ", "=", " ", "4"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"G", " ", "=", " ",
RowBox[{"RandomGraph", "[",
RowBox[{
RowBox[{"{",
RowBox[{"v", ",", "v"}], "}"}], ",",
RowBox[{"VertexLabels", "\[Rule]", " ", "\"\<Name\>\""}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"A", " ", "=", " ",
RowBox[{"AdjacencyMatrix", "[", "G", "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"K", " ", "=", " ",
RowBox[{"KirchhoffMatrix", "[", "G", "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"A", "//", "MatrixForm"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Export", "[",
RowBox[{"\"\<adjmat.txt\>\"", ",", "A", ",", "\"\<Table\>\""}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"l", " ", "=", " ",
RowBox[{"Length", "[", "A", "]"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.7719614171201735`*^9, 3.771961460973276*^9},
3.772394593318761*^9, {3.7723956301397867`*^9, 3.7723956445832896`*^9}, {
3.772395714247851*^9, 3.7723957353083563`*^9}, {3.772395789850225*^9,
3.7723958439628515`*^9}, {3.772395888760607*^9, 3.7723959600227604`*^9}, {
3.7723960467431374`*^9, 3.7723960468303676`*^9}, {3.772396081980948*^9,
3.772396082069181*^9}, {3.7723961260582533`*^9, 3.772396126124422*^9}, {
3.7723962382462754`*^9, 3.772396239010293*^9}, {3.7723962920645547`*^9,
3.7723963037907887`*^9}, {3.772396505215189*^9, 3.7723965376150923`*^9}, {
3.772478541178279*^9, 3.772478541468173*^9}, {3.772479976335828*^9,
3.772479976422556*^9}, {3.7724803540870714`*^9, 3.772480379783392*^9}, {
3.7725549414469213`*^9, 3.7725549415276566`*^9}, {3.7725550590401115`*^9,
3.7725550742218723`*^9}, {3.7725623147863445`*^9, 3.772562329118145*^9}, {
3.7725624757175355`*^9, 3.7725624772677064`*^9}, {3.772562533092642*^9,
3.772562533944886*^9}, {3.772904656788952*^9, 3.772904671887727*^9}, {
3.772904735949177*^9, 3.7729047708223944`*^9}, {3.7729050289499655`*^9,
3.772905062616933*^9}, {3.772905094718278*^9, 3.772905107053969*^9}, {
3.7729051780235014`*^9, 3.772905213996274*^9}, {3.7729052955992575`*^9,
3.7729053419247503`*^9}, {3.772982919005809*^9, 3.7729829246733007`*^9}, {
3.7729830016937914`*^9, 3.7729830098827114`*^9}, {3.773161886025588*^9,
3.773161899724922*^9}, {3.773162103189489*^9, 3.7731621262743597`*^9}, {
3.7731622493359623`*^9, 3.7731622515190344`*^9}, {3.7731623060606613`*^9,
3.773162338757436*^9}, {3.7731624557640915`*^9, 3.773162538693906*^9}, {
3.7731799581824474`*^9, 3.7731799854489317`*^9}, {3.773180374206315*^9,
3.7731803744328046`*^9}, {3.7731835925558777`*^9, 3.7731836194445314`*^9},
3.773183810753713*^9, 3.773183867514587*^9, {3.7731872593895187`*^9,
3.7731872595950875`*^9}, {3.773187705712353*^9, 3.773187705799585*^9}},
CellLabel->
"In[129]:=",ExpressionUUID->"59681004-b22b-4880-9a32-1fd054829988"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"start", " ", "=", " ", "0"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"end", " ", "=", " ", "10"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"step", " ", "=", " ", "0.01"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Psi]0", " ", "=", " ",
RowBox[{"UnitVector", "[",
RowBox[{"l", ",", "1"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Psi]1", "[", "t_", "]"}], " ", ":=", " ",
RowBox[{"MatrixExp", "[",
RowBox[{
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "A", " ", "t"}], ",", "\[Psi]0"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"Graph", "[",
RowBox[{"G", ",",
RowBox[{"VertexSize", "\[Rule]", "0.3"}], ",",
RowBox[{"EdgeStyle", "\[Rule]", " ",
RowBox[{"{",
RowBox[{"Thickness", "[", ".01", "]"}], "}"}]}], ",",
RowBox[{"VertexLabels", "\[Rule]", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"i", "\[Rule]",
RowBox[{"Placed", "[",
RowBox[{
RowBox[{"Text", "[",
RowBox[{"i", ",",
RowBox[{"BaseStyle", "\[Rule]", " ",
RowBox[{"{", "Large", "}"}]}]}], "]"}], ",", "Center"}], "]"}]}],
",",
RowBox[{"{",
RowBox[{"i", ",", "l"}], "}"}]}], "]"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"Export", "[",
RowBox[{"\"\<2qwalk_graph.png\>\"", ",", "%"}],
"]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Transpose", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Table", "[",
RowBox[{"t", ",",
RowBox[{"{",
RowBox[{"t", ",", "start", ",", "end", ",", "step"}], "}"}]}],
"]"}], ",",
RowBox[{"Table", "[",
RowBox[{
SuperscriptBox[
RowBox[{"Norm", "[",
RowBox[{
RowBox[{"\[Psi]1", "[", "t", "]"}], "[",
RowBox[{"[", "i", "]"}], "]"}], "]"}], "2"], ",",
RowBox[{"{",
RowBox[{"t", ",", "start", ",", "end", ",", "step"}], "}"}]}],
"]"}]}], "}"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "l"}], "}"}]}], "]"}], ",",
RowBox[{"PlotLabel", "\[Rule]",
RowBox[{"Style", "[",
RowBox[{
RowBox[{"\"\<Quantum Walk, \>\"", "<>",
RowBox[{"ToString", "[", "v", "]"}], "<>", "\"\< vertices\>\""}], ",",
"14", ",", "Bold"}], "]"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}], ",",
RowBox[{"PlotRange", "\[Rule]", "Full"}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"Placed", "[",
RowBox[{"Automatic", ",",
RowBox[{"{",
RowBox[{"0.9", ",", "0.8"}], "}"}]}], "]"}]}]}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{"Labeled", "[",
RowBox[{"%", ",",
RowBox[{"{",
RowBox[{"\"\<Time (seconds)\>\"", ",", "\"\<Probability\>\""}], "}"}],
",",
RowBox[{"{",
RowBox[{"Bottom", ",", "Left"}], "}"}], ",",
RowBox[{"RotateLabel", "\[Rule]", "True"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"Export", "[",
RowBox[{"\"\<2qwalk_mat.png\>\"", ",", "%"}], "]"}]}], "Input",
CellChangeTimes->{{3.7719614171201735`*^9, 3.771961460973276*^9},
3.772394593318761*^9, {3.7723956301397867`*^9, 3.7723956445832896`*^9}, {
3.772395714247851*^9, 3.7723957353083563`*^9}, {3.772395789850225*^9,
3.7723958439628515`*^9}, {3.772395888760607*^9, 3.7723959600227604`*^9}, {
3.7723960467431374`*^9, 3.7723960468303676`*^9}, {3.772396081980948*^9,
3.772396082069181*^9}, {3.7723961260582533`*^9, 3.772396126124422*^9}, {
3.7723962382462754`*^9, 3.772396239010293*^9}, {3.7723962920645547`*^9,
3.7723963037907887`*^9}, {3.772396505215189*^9, 3.7723965376150923`*^9}, {
3.772478541178279*^9, 3.772478541468173*^9}, {3.772479976335828*^9,
3.772479976422556*^9}, {3.7724803540870714`*^9, 3.772480379783392*^9}, {
3.7725549414469213`*^9, 3.7725549415276566`*^9}, {3.7725550590401115`*^9,
3.7725550742218723`*^9}, {3.7725623147863445`*^9, 3.772562329118145*^9}, {
3.7725624757175355`*^9, 3.7725624772677064`*^9}, {3.772562533092642*^9,
3.772562533944886*^9}, {3.772904656788952*^9, 3.772904671887727*^9}, {
3.772904735949177*^9, 3.7729047708223944`*^9}, {3.7729050289499655`*^9,
3.772905062616933*^9}, {3.772905094718278*^9, 3.772905107053969*^9}, {
3.7729051780235014`*^9, 3.772905213996274*^9}, {3.7729052955992575`*^9,
3.7729053419247503`*^9}, {3.772982919005809*^9, 3.7729829246733007`*^9}, {
3.7729830016937914`*^9, 3.7729830098827114`*^9}, {3.773161886025588*^9,
3.773161899724922*^9}, {3.773162103189489*^9, 3.7731621262743597`*^9}, {
3.7731622493359623`*^9, 3.7731622515190344`*^9}, {3.7731623060606613`*^9,
3.773162338757436*^9}, {3.7731624557640915`*^9, 3.773162538693906*^9}, {
3.7731799581824474`*^9, 3.7731799854489317`*^9}, {3.773180374206315*^9,
3.7731803744328046`*^9}, {3.7731835925558777`*^9, 3.7731836194445314`*^9},
3.773183810753713*^9, {3.773183880161646*^9, 3.7731839395399513`*^9}, {
3.7731839911868324`*^9, 3.7731839991003804`*^9}, {3.773187216132084*^9,
3.7731872176922045`*^9}, {3.7731879952077675`*^9, 3.773188036740226*^9}},
CellLabel->
"In[137]:=",ExpressionUUID->"7a19c436-6019-4738-a350-f86aa40b2143"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4}, {Null,
SparseArray[
Automatic, {4, 4}, 0, {
1, {{0, 3, 5, 6, 8}, {{2}, {3}, {4}, {1}, {4}, {1}, {1}, {2}}},
Pattern}]}, {EdgeStyle -> {
Thickness[0.01]}, GraphLayout -> {"Dimension" -> 2}, ImageSize ->
Large, VertexLabels -> {"Name", 3 -> Placed[
Text[3, BaseStyle -> {Large}], Center], 4 -> Placed[
Text[4, BaseStyle -> {Large}], Center], 2 -> Placed[
Text[2, BaseStyle -> {Large}], Center], 1 -> Placed[
Text[1, BaseStyle -> {Large}], Center]}, VertexSize -> {0.3}}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Thickness[0.01], Opacity[0.7],
LineBox[{{{1.1141060919809997`, 0.42373938770793124`}, {
2.031093212295816, 0.}}, {{1.1141060919809997`,
0.42373938770793124`}, {0., 0.42364103879064774`}}, {{
1.1141060919809997`, 0.42373938770793124`}, {2.031481386203642,
0.8470830608194897}}, {{2.031093212295816, 0.}, {2.031481386203642,
0.8470830608194897}}}]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {
DiskBox[{1.1141060919809997, 0.42373938770793124},
0.12706247246390928], InsetBox[
InterpretationBox[Cell[BoxData[
FormBox[
StyleBox["1",
StripOnInput->False,
FontSize->Large], TextForm]], "InlineText",ExpressionUUID->
"94606fc9-bd43-4451-9141-e5fa084caa17"],
Text[
Style[1, Large]]], {1.1141060919809997, 0.42373938770793124},
BaseStyle->"Graphics"]}, {
DiskBox[{2.031093212295816, 0.}, 0.12706247246390928], InsetBox[
InterpretationBox[Cell[BoxData[
FormBox[
StyleBox["2",
StripOnInput->False,
FontSize->Large], TextForm]], "InlineText",ExpressionUUID->
"f8a8a90d-aee9-4d53-a94a-40c00bb41da7"],
Text[
Style[2, Large]]], {2.031093212295816, 0.},
BaseStyle->"Graphics"]}, {
DiskBox[{0., 0.42364103879064774}, 0.12706247246390928], InsetBox[
InterpretationBox[Cell[BoxData[
FormBox[
StyleBox["3",
StripOnInput->False,
FontSize->Large], TextForm]], "InlineText",ExpressionUUID->
"d6bcfa93-8ccb-45ed-9b0c-cb630f42dfe7"],
Text[
Style[3, Large]]], {0., 0.42364103879064774},
BaseStyle->"Graphics"]}, {
DiskBox[{2.031481386203642, 0.8470830608194897},
0.12706247246390928], InsetBox[
InterpretationBox[Cell[BoxData[
FormBox[
StyleBox["4",
StripOnInput->False,
FontSize->Large], TextForm]], "InlineText",ExpressionUUID->
"09fc29e5-b964-491f-894b-4aaa93618740"],
Text[
Style[4, Large]]], {2.031481386203642, 0.8470830608194897},
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None,
ImageSize->Large]], "Output",
CellChangeTimes->{{3.772562324371126*^9, 3.7725623298360357`*^9}, {
3.7725624781687183`*^9, 3.7725625345992002`*^9}, 3.772813846014616*^9,
3.772822882594812*^9, 3.7729037860820675`*^9, {3.7729047392380595`*^9,
3.7729047713086815`*^9}, 3.772905220016885*^9, 3.7729052997436695`*^9,
3.7729053456862197`*^9, 3.7729776127598696`*^9, 3.772982925439325*^9, {
3.772982970786832*^9, 3.7729830103329*^9}, 3.7731606639560766`*^9, {
3.7731618902373595`*^9, 3.7731619011758404`*^9}, {3.7731621070302377`*^9,
3.7731621387211056`*^9}, {3.7731624567717886`*^9,
3.7731625389565954`*^9}, {3.773180352852681*^9, 3.7731803753976*^9},
3.7731836230099626`*^9, {3.773183871919276*^9, 3.7731838840375404`*^9},
3.7731839404154196`*^9, {3.7731839918961782`*^9, 3.773183999445385*^9},
3.7731877135679474`*^9, {3.773187834905012*^9, 3.773187845481941*^9}, {
3.773188037408971*^9, 3.7731880752556167`*^9}, 3.7736734038265653`*^9,
3.7743552809379835`*^9, {3.7743632067945614`*^9, 3.7743632374676275`*^9}, {
3.774364008725354*^9, 3.7743640139226894`*^9}, 3.7743641222210827`*^9},
CellLabel->
"Out[142]=",ExpressionUUID->"ba4f230a-8dc4-4b8e-9298-b2685efd0971"],
Cell[BoxData["\<\"2qwalk_graph.png\"\>"], "Output",
CellChangeTimes->{{3.772562324371126*^9, 3.7725623298360357`*^9}, {
3.7725624781687183`*^9, 3.7725625345992002`*^9}, 3.772813846014616*^9,
3.772822882594812*^9, 3.7729037860820675`*^9, {3.7729047392380595`*^9,
3.7729047713086815`*^9}, 3.772905220016885*^9, 3.7729052997436695`*^9,
3.7729053456862197`*^9, 3.7729776127598696`*^9, 3.772982925439325*^9, {
3.772982970786832*^9, 3.7729830103329*^9}, 3.7731606639560766`*^9, {
3.7731618902373595`*^9, 3.7731619011758404`*^9}, {3.7731621070302377`*^9,
3.7731621387211056`*^9}, {3.7731624567717886`*^9,
3.7731625389565954`*^9}, {3.773180352852681*^9, 3.7731803753976*^9},
3.7731836230099626`*^9, {3.773183871919276*^9, 3.7731838840375404`*^9},
3.7731839404154196`*^9, {3.7731839918961782`*^9, 3.773183999445385*^9},
3.7731877135679474`*^9, {3.773187834905012*^9, 3.773187845481941*^9}, {
3.773188037408971*^9, 3.7731880752556167`*^9}, 3.7736734038265653`*^9,
3.7743552809379835`*^9, {3.7743632067945614`*^9, 3.7743632374676275`*^9}, {
3.774364008725354*^9, 3.7743640139226894`*^9}, 3.774364122340399*^9},
CellLabel->
"Out[143]=",ExpressionUUID->"f74916f8-08a8-4708-8e7f-a37c1214e391"],
Cell[BoxData[
TemplateBox[{TagBox[
GraphicsBox[{{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[
NCache[
Rational[1, 180], 0.005555555555555556]],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJxV23VYVM3bB3C6GxZYcgMVERE7AOcWOx8bRWzFQFDsFgULsVHEQkpKkQ4J
SVFQpBuphaUREKTEd5/He37X9fKPFwJnz8xnvufM3GcOe9fhtXtFhISEWkSF
hP799/9//SDn1EIX1511IYuF3re5/u7C791JvHXNWeP+LhKnd7VtTdxLMnpA
WZnfQn/uR0RdvwYml3WRp57/fgURRWX1grg0+vuhZG/Mg7CqgC7Svubf/wkn
htLjB6fcoH8fRU58lu/K3N1FZEp9j1jIxJJbnNU7vOfQ48UTrd4a7wK5LjLe
5m5an2EiUbmodGt/RSceP5kcl/E8csy3k/gJ/rrUN4XcH8PQF9/fiZ+XStxt
JYpNDTvJ1P++0klS4mZzWV4Hfn4GEbtwdHfwsw6S3mco+IRMMtYtKXrMPx14
Pllku/G33kej7WTtfx/4iWzXUZjACG7H8/tM7lR3vkle007qzv57wGyyTSdN
/F1fG57vF+K3hdkr+riNOP57eke+Eo+xmZurprTh+ecSt8lHzDZ9aSV/HfKI
fndFyJNdrdiePKKzNiHzQ18LWfLfB+QT3uYFXj+utmD78onK481z/1FtIf9+
ms3dArJy21E3oZfN2N5Cclxi8jKjsc3kv+aUFhKz2REivSF8bH8ReZzzZPTy
JD7R//d09IrJwSMVM/6ENWF/FBOJz2sWPzRtIvts//0qIZt2a+3cF9qI/VNK
zixJMPc3aiT/Hk0ttJTs+2Ygd8qfh/1VRuROXTskqc8j/f8erq+MTPEQ3nTZ
owH7r5w4ZFpoKCk2kLn/HbCC1BU2TKm5Wo/9WUFYm8X2ao3Ukf9O72ol4cc4
uHY41mH/VpEPT38/dOHXkq9f/v2qInq/qk/Jbq3F/q4mjq3BC238awjjvxP8
Tuo/aBWa3v+O/f+d9Mnl9rZdqCb/Hc6mhkQZJD3h2VWhRy1JuC0ywXFLJban
lrhMHXDgr6hAn1pyXfPuvudQju2rJe7z22bzZpShVx3pcF2prGJaiu2tI0cz
14ueNi5BvzryIcfrp61xMba/nlg+KL9gYlqEnvXEw2lWvs6sQuyPeiIjevbV
xQUF6NtApMfvFvXakI/900CGfuZuy7LLQ+8Gkuzr/+SiwjfsLx5ZXisi7rn6
K/rzyOFxgef2vszB/uORfctd1u8b+IzjoZGcIrrPdLd/wv5sJANr/HkihR9x
fDSSJwNPxt1en4n920TaS3rcJ/LScbw0kXJd0WOrr6RhfzcR2fz+QZtJqTh+
+EStavqeg6UfsP/5pPrd1wC7w0k4nvgk7kX4ukPjEtCjmZTN3NqsKBSPHs1k
Uqfki87BGPRoJiHyH0weMaLRo5kM7rCPdFkXiR4tZMGNmiNTosLRo4U8TCuI
lZwVhh4t5KfQ9GvpyW/Ro5XwbL9N524IIff+82glkz+dHIidGoQerSRkE/Nm
j3UAerSR3zfWpBvl+KNHG1FI8bvl5eKHHm0kccmSlJPXfdGjnaTrOk5JKvRB
j3bSs8E00PaAD3q0kwTxyqaVS3zQo4MsuzKYOe2ID3p0kM1Sscsyan3Qo4Nc
qM/KcfP0RY9OYrokXlfiqR96dJIl/zzLulvnjx6d5J8jPcTxcAB6dBHxFZWT
KyyD0KOLSD5ckl1vHYIeXWTQBOTdYt4Set94InWBucMoDNvzgyyauOPa+Kfh
6PODHOiPmSVsFInt+0F8OiI2mZVHodcPws/vuMEOiMH2/iCZua/G9T6IQ78f
pH/5poeNz95j+7tJm4/cMYPURPTsJn4114QLhD9gf3STk5+H3zqHpqBvN4la
W3CgtTkV+6ebKEosZXtPSkfvbiKv7xI+7koG9lcP2TK2Q22oJhP9e8ijZa/v
31uShf3XQ3bLzW3ZnvAJ89lDnMof3CyfmY392UMGPxUn2yXl4PjoIdbLnjVd
Xv4V+7eXGM9t9nWpy8Xx0kscc9Rk7Eke9ncvMR1/ReSYMs1zL/kYdIJxtSkf
+7+XcCZNM16XXIDjqZfUvBTZ4vakED1+kqk9O35/P16EHj+Jt+qVgoG1xejx
k7hn9jOvTylBj59EJuly2AzVUvQQ/FxOdmLUz1L0+EnkewJ/h5SUocdPclgl
yiU7rhw9+oizUfX0xKcV6NFHfMznRE48X4kefeTVgnmtOTZV6NFHyp1fmy4w
r0aPPmJ2SW3nAq3v6NFHakojf53t/44e/aR2xhkTj7wa9OgnG754uBmsr0WP
fmIR+rT2VXItevQT9nLHV57j6tCjn/R4LT7cfKcOPfrJBNEnD/f9rEOPX6R0
GYj1WNWjxy+ydcbmE7vj69HjF7kYnbPniWYDevwid5K8xjqcaECPX4R9Qqg7
7VsDevwijk+6+SfG8dBjgKirRRjuO89DjwEysSur6FQuvT8OkJbEcB1X3Ub0
GCCr2mYvu3ygET0GyAHb/dnzIhrRY4A8G6c4M/xXI3oMkDa7zu0xs5vQY5Cw
j9ivm326CT0Gye1oni03sgk9BsnowMm521ub0GOQNE84WVSmy0ePQbKSv8bp
wko+egySsAG532Zn+OgxRKYXzjws5s1HjyGyrMz+4KcMPnoMkabH6/rP8vh4
vRwiucvVHioJrtt/PYbIQ82tFpc0mtFjiKx8VOSYbNSMHsOk4Ja8adZsOn8Z
JqKVvSMPFzSjxzAxexvBYy1vRo9hUmitet5uZTN6DBPLy+vrji6n851hUiJ2
JnHmwmb0GCGZdQokcU4zeoyQjbX2XDHjZvQYIcP2DiFqzGb0GCFJcp4vfwo3
o8cIedqfu/hNEx89RsiR9ENHF2bx0WOEhMs22+b40vnUb3LJtKVp2Xk+evwm
Zl71hgWr+ejxm4SojCs8wuajx2+y28mpf2YnnX/9JnluS6XmxDahx28S4ypb
5Xq+CT1GieQM3+dkbhN6jJKHVzozHEYa0WOUVAlJaJrGNqLHKBm5LOb53KER
PUZJRs72K7mcRvQYJbCu2LyukIcef8gFZueG7ss89PhDwlt0TupM5KHHH+K8
5ezGy8U0H3+Iki4nhpyj+fhDVo6f/s9pPZqPP+R0qEvOig/16CEEOtda4mq2
1mN7hKDYfMWF9UN0ficEV9J3LvvmXoftE4LaEZbyiYl16CUEPsf6jttl1JL/
mmsrBPOfRSaXba5FPyFwMXz9MquyBq8PQrButMlgv3ANegqB7dCOunoDOh8U
gvXaD51vLKpGX8Hvyy28EGxbhf0jBDt5lk1PBfPQv95CMHNX9fY3vhXYX8Ig
bTdrYHIqvT4Kg8UrR/lL38uw/4Th5I9AU/5wKY4HYYhX6pNKZpZifwrDx8KV
M6xmleD4EAY5q5PTJDYVY/8Kg9GfHxZ6Z4pwvAhD/SzJST3PCrG/hWFpZ+f+
opQCHD/C8MtdI1q9OR/7Xxg+vQ00lFHJx/EkDJXnzaT+zM1DDxFQ3RJpdfN7
LnqIQM+w+8e1i76ihwj84B+O/hmdgx4iMGfk4B8Jk2z0EAHPG7u+6r37hONP
BA7ejNiZOzsLPURAyG6I55ebiR4icL69baqJQwZ6iMCHnTNCezTT0UMECid7
SZz6looeIuArsUnN/EEKeojAzZMLl19IT0YPEcib6x/QeT4RPURh9r7j4VFr
6PxBFIQlDXNCLePQQxT4V1v6I1bHoIcobPIMdL19Pgo9RKHO5ARfKCsCPUQh
YNmcaZmm4eghCkbODTOVTrxDD1H4OZqrV/75DXqIgk7UfAZjZzB6iMLhrRKJ
1WaB6CEKs+4c7p++5TV6iILJHlE36RQ/9BAD0brGfGM7Op8TfN+/1MZmqw96
iMFnj/5Ycw9v9BCD8INDE6yZ3ughBq8LfJ0Nea/QQwzSNufVigy8Qg8xeOvm
+3jCBm/0EINNtyPkvgx7o4cYrIsNDf7Z5oMegu9zH395PsYPPcQge+GxDz6B
/ughBkvne33MOR6AHmKQqflifMbNIPQQB77Q0WX6/BD0EIf7UlcyrNxC0UMc
vil0f96XGIYe4rA38ianeUMEeohDuqzb44UqUeghDgOP+UVy3dHoIQ5RuRCd
3B2LHuJwbMuCHXmq79FDHKx3DJ4L2ZiIHuLwRkrMJjQ+GT3EQVGOp6X+MgU9
xOHmH+M3MZ2p6CEBrGxGlNWqdPSQgDmTTL89SMxADwlwl6y4OjLrI3pIQMpK
h8MG6VnoIQHXNQytHll/Rg8JsBMP2VU8mo0eEjDKNphj++4LekhAsFff5Ey7
XPSQgLo3Xe+jmXnoIQFOH7K1+CL56CEBU8dtOTCpOx89JEAkSPLGQl4BekjA
Tjll7++VheghCbd/20FoaRF6SMJhGSN729Ji9JCEDu0D6bEVJeghCVe9U+6s
qaPXK0n4eIrbWNdahh6SIGQ/MY3xqxw9JMFHr5DjKV6JHpKQ/PUgW0O9Cj0k
IdJXTGWOIZ0PSkJsjpRXiNl39JCEhQHKTWqra9BDEhqNzi+7O6UWPaTArNTF
eVZSLXpIQX698eSKxfT+IQUPRR5bLymg9w8p+NkZIW1lU48eUjBJUti6orEe
PaRAdZ7F9dcODeghBe27FUfu9jfg/VMK6txf77C7wEMPKVhjbhkkL0rvp1Iw
cYOPwYrrdL4mBQEW1q4j0k3oIQVKE4Sl+1yb0EMKSg6brZcTrIP/ekhDSI5H
BPM6nT9Iww5Vc9k+YTofkgb+NZvek2eb0UMajiw4k3D6B50fScP3jVvPF+1u
QQ9p+N1Xwd1b1IIe0hDgA5clLFvRQxrm866sefSmFT2kodpZfXmXaht6SIPK
3FPje0+1oYc0/PizMc6prA09pGFaveP309Pb0UMGnkwVDUy6044eMrBarGz1
FF47esiAzsfhlQnTO9BDBs7HDG+c69yBHjIwoSPJwedLB3rIQKNcS9s35U70
kIGi9+VOYWs70UMG7hty50+6S+t/MrCO8yRiVhatD8rAmbkVH94PdaKHDOR2
HyrwG9+FHjKw5MyyXP66LvSQgZTwAc2TZ2g9UhZ2jNF5Of9pF3rIQlPS9cKF
MV3oIQurkrISj33tQg9Z8Moc25lZ04UesiDXNuHujI4u9JCFoP57Nql9Xegh
C6UmYUG7B2m9Uxaqxx/YqTPQhR6yYGxzXqK9uws9ZMFp/tbIoqYu9JCFkrnn
mBUltL4qC2FrhJ2E07rQQw7ezpVPWxPYhR5yMMVj24rCm7SeKgeR1y5q3bPt
Qg85+Lx+Z+TDuV3oIQdXUq+MaVPuQg85aL5zUcS/lnrIQXLsWOv8YOohByJC
zOjLR6iHHIhFFyt8nkw95MDPe/O3hM4O9JCDW7stMg4HdKCHHKw9ZcMc2dKB
HnLAOy+x5owcrcfKQ511kplwfDt6yEOIknNX6M529JCH5Anvk19KtKOHPPwz
/MykM6ANPeTBNWVxR8JCWo+VB31zh6xxta3oIQ8L9V68WHuK5kMeyoYmbt4m
S/MhDxHXq2rtn7eghzxEi0rJ+xu1oIc8xH/yfWYY04we8pCtW8nVI3T9oQD6
Vw5Jv8mk6ykFUIpPOTy4lI8eCuA8mmps8oXO5xVAvuJUwtEVTeihAOasQyY/
sun8XgH+pFSz8xbT9aMClKl9fGuezkMPBUjZH221w4JerxTgrMctMduYBvRQ
AB1X5dbTJg3ooQA2V087ZfjT+qsC3DDNOHZcpx49FKByucGjqAd0/awINorz
v4RJ1aGHItybfFvq0cVa9FAEE6PuPVotNeihCM/MXsx2Lf6OHorgbj3alpdW
jR6KMMdZ5NjC8Cr0UIQnNm6Wc73p/UMRNqTcMFF+WIEeitA83mKV6vVy9FCE
E5/Lap5cKEMPRShtWGPcd7IUPRRhibSn3dljJeihBDHuE4LOHCvG9igBN0Uh
yPJUEfooQfJp86/cS4XYPiXwGXAdPnCrAL2U4PawhsuO5/nYXiU4RkBqTUQe
+imB9kOrDIln37D9SgBnOpnnqr6ipxLs8RHTvj7+C/aHEjx+WhIbeiUb1zNK
MDr94jPHZlp/VYLipGzh5VvofFoJTtl63QmvzMT+UoIjWY1jNQ5m4PxBCWzu
sHOaJdKx/5TAVSni2J2IVBwPStCY+7XzoH0K9qcSCOVec4o9nIzjQwl0ghkS
Rw3ofEkJ9rrt8gwejMfxogSdZmvHDHfFYn8rQeQqBW6PZAyOHyWYdPvgIRXL
KOx/JXDxWaBS+DICx5MSJMm1z/DSC0cPZRBPtigPcX6HHsoQLr3S1F35LXoo
w4v75u9c+MHooQyhfaUV3eJB6KEM1rMbts20p/VYZbjPHf7pofsaPZTh+5uh
dRYa/uihDBW+reNmWfuhhzI4Jl9QcWryRQ9lmGyvGdWb4It5UwazvB1Jmyp8
0UMZ7JavlraZ54ceynB4ddKH+z/80EMZ6mTXOJ3g+6OHMmh8Ln90cEwAeihD
j2jz5MSgQPRQhulLvMNeHAtGD2U4NCecZ3TlDXoow+C6uXb7i0LRQxkUPOpF
faLC0EMZdlpUO2frR6CHMnx91LxRISQSPZShsmD72vQN0eihDMuMQxOn6cei
h+D4ab23fSXi0UMFPuYZRS2STUAPFdj+Ktp6uXESeqhAm4/59OL9H9BDBfLs
6mz/1KSghwqY5be2HtJMQw8VWKWwLWnm1nT0UAHG8QXbat9moIcKuC8e2N0g
/RE9VED0866g+CNZ6KECl8ZcuFBWR9eXgp9LiBWF22SjhwpMGFpxKqo2Bz1U
wMjP2GyF/Vf0UAGlsVWm9cLf0EMFHgs12XeuykMPwfmzgqauZuWjhwoUZtxz
yPpJ668q0D3GzETsSwF6qEDzq97AaP9C9FCBFyP1Vq6Xi9BD8PlKF1VNtxej
hwrkSow3XT+3BD0E7T8i/sxXj16fVCBxVl1/9p9S9BC0x8c8/mRdGXqoQtL8
rYvXpZejhypI6u5RlfevQA9VWJtqE7/6WiV6qMIZPzOdHNsq9FCFXU9Tr4xf
VI0eqlDnNSeKafAdPVThmJoCY5kQvV6rQpanevqBihr0UIXeH5Wb1DbXoocq
fLEtqn+WTuuxqrBz/LTTfsZ16KEK6XVB/pLudeihCjEeRp5eg/R5nips26I0
afHWevRQhU+tw6PlyfXooQqsluP7p+k1oIcqXFq3wGvq/+pLqmA26BIbXUzv
Z6qwumhvuOdEHnqowk2zpy4frvDQQxW0RI9PkCrmoYcqLEj2fbvBgNa/VOHo
0WdGt440oocqPDO51+AWT+utqlCuobEQ/jSihxpEe1v/uDWvCT3U4O1nXrqV
E63PqUHyuuEGtwRan1UDhQm30hi9Tegh+P1Jr8Z+H8tHDzWwa7CdWriR1lfV
IO1OtEPDFVo/VAM1b62s0WA+eqiB/mwHT/VvfPRQg6AOXrRuF63HqkGGps8e
Kdlm9FCDVsanA184tL6pBsflxaV3zqD1VDUQ13gm9WFhM3qowazA+sja1c3o
oQbTjy+qTrWi9VA1OCwfV7PdmtZf1WBm9nOv+E203qsGd55OufVtbTN6qMGv
N4ee+i5pRg81uNqxeNXsObReqwZWTz3ePRpH68OC7zcuW/lBic6n1GDTGsM5
yX203qoGSitkZZ6X8NGDARcP3s/dHUnXUwxQ+LVcleNG51sM8NttV87bQddX
DOgTa32QMJnOvxgQbjJTN3a0CT0YYO6yJ6Eli87HGFBzrlRx321aX2fAfovL
jAX/0PkZA+5P9NL0kG9CDwawfSXenfpE52sMaLUdfTd6qRE9BOeTHThh0TQ6
f2PApYXCuw408tCDAdlvj8S7POShh+DvFw9HRc/loQcD1krJtWrxaT4Y8P5a
bV+hG80HA6zneR4VNqX5YMDmH91tGXn16MEAyPAvhMP16MGAn67OJ57I1qMH
A8Z8m97W5U+fnzBAgpOueGhuHXoIPq8k++iU4lr0YIDV3SvLDxyk63N1GNbt
KXEYqUEPddgZs3DXDTZ9Hq8OoncO/nRY8B091GHBhKAJx/ZWo4c6TPs+1b7J
pQo91MGF1/ZJy7cSPdThz9GWql0p9PmTOrzfmxenXF2OHupgeHA45exgGXqo
Q6XL9fvdjDL0UIfq6qV1n6eUooc6nMqJ32O1mj4fU4er8uVhHQ60/qoOVrMN
9Grv0Ofz6pCx+FHI5bBC9FAHr5lpdQZFBeihDkZv2THaQ/T+oQ5TbC85xHLy
0UMdHP8JdlkiuP/89VAHrYYcNYuhXPRQh9SgNdpK27+ihzrM+7hryC+HPl9U
h+Pb+rTcIRs91OFR8TTzY8mf0EMd3m7jkOKFWeihAQ3Gxr1LSzPRQwN2dXxp
2HqMPv/UALXiBeOeaqWjhwa4Trlg4vI1FT004KbUuMcv3FLQQwNyfZf2ZIUl
o4cGbJr88ob3Lvp8VgPCjRdpREx6jx4asHxqUWqFZhx6aMDtwm9WvXox6KEB
yslmUtmWtL6nAWujt2tyr0aghwaoHO96EdcUhh6C4y1aeeZ4Xih6aEDttbpc
T7U36KEBnNN7lzGeBaGHBuyVfhQhtjcAPTRg6uQw/cPH6PNwDdg+O/3Zgixf
9NAA40cfs7fupM/jNcAoK+rpOUtv9NAAC0bE8CK7V+ihAdvmJIN3nBd6aIDY
cJkb29gLPTRgSEFCMXeyF3powkQ1zt5p2V7ooQmyx10nlp19hR6aMO3V65rp
1t7ooQnLk7kGk5xp/VdTkAf3zNd9vuihCey6xMu24f7ooQknpPoY+jEB6KEJ
nAU66/eLBqOHJqhlSELqkzfooQn8bLvp9068Qw9NMGJo3rq/Ihw9NKHp7r0U
K2H6PF8TtlqcuBFUFoUemhA04psvXRCD609N6PcYX9TVHocemoJ8t5pnGSag
hybwdplv/eFC93toQtnHqZN2CKWghya0ep5JTFlJn99rgmd2hcfs4DT00IS4
+4sW72VkoIcmzGm1mlF+JxM9NCGx37x8jHoWemiC88a1+SXBNB+aEC5vq3ps
RTZ6MMFQ7ZHihaEc9GBCtkxMxdGor+jBhBuM+Ztzz3xDDybcNKqIFvHPQw8m
RI/qKix8QNeDTDCe32q716UAPZjAvLZkBvNcIXowITXp7j9qJ4vQgwkSDdEj
UieK0YMJJ06P1ww8VYIeTHhqbjTO+wK9XjHhE+PJcZ9rZejBBCf2JOPND2j9
lQl7g8eddHxVgR5MiPU2ffg4jK6nmTCTmzBwNK0KPZjQtOe2fVhxNXowQWfn
w7EDLfT5GBPgaENDz2gNejBBy6X/moEr3X/FhMaM3Qfy1erQgwkTE3LY673o
/YMJFnV/4pzG16MHExQSsxdNiKT1BSY4fPYXMjRvQA8t+H7XdsnyjAb00AKH
vOr3B5bz0EML2E27527K56GHFgRsX6ncvqERPbSgrMWybKisET20QPfNqTfW
1vR+rgX6lvHj68vp/VwLqlzXn99vRedXWmDknu2QWUDnV1pgNrL6VP7yZvTQ
AnkTZubeNDq/0oLawc0rbWa0oIcW9GpqlN0NoPVXQXvm+8hVMVrRQwsanudf
0L1M601aoLKYHz25he7/0wKezljLXyvb0EMLLj1RTF75ju4f1IIczcXfGfLt
6KEF2wvUz03e144eWrC25MFT56R29NCCFckbz/5QpPU2Lfj8puLJ1m0d6KEF
D0/aJIcH0vqbFuxr3yxe3NmBHtrwaY9nfZhpJ3poQ2hWkrGpQyd6aIOB224u
CehED23wm5NxIqeyEz20QWfy9yUZsrR+qg1F7noWWjNp/VEbzJ1uHfuwldZT
taHi3aEHAZdoPVIbbjEcP2c9p/VVbchs/adYPZrWJ7XhnThP5PYnWm/VhtZd
KZMNSul+U234LWJRUlpL66/asO3g8JBfYxd6CI43t36eayOtxwp+/vYu77rg
9/96aMPYo5ZRXiW0PqsNYa6zmcVZdL+rNrzKclWeGEXrtdpwyP/IpNBnXeih
DWwhJY8dF2n9Vhs+7IgZXmlD69HacK78/vPL02k9Vxvm3GoAKRlan9aG6+zQ
qT/KO9FDB7wT6+Yu9aceOpDbKfHa4BD10IHnzw6yHplQDx2wiPtSENregR46
YKjkvuT66w700IGM7TcPTbeh9XkdEJqrczlfvgM9dCDsxDTNEwl0P6wOSD15
IGO2tx09dCAnJs2ByLajhw5EWvvd9XpL6606cLHTtf7Mijb00IHKocGRDj6t
v+pAQpiQq44TzYcO8LfPIuMYNB86IPHsQL6pIE9/PQTf11c2/5u3vx46wPm2
jpGXRtcfOqBQlZ76bgVdf+jA1/bIcZwiun9DB0zbdluu2sxHD8H55L1N3VJF
n9foQK1HyMjRrXT/hQ689RzDS6yi60EdaBz++nOXNV0P6gKnZOX4uyV0/4Qu
SBQattutodcrXbildl7aIKcBPQS/P+PFq/r5DeihCy//eckoTKD7kXThLC9B
hD21Hj104UhU/PiBoDr00IUVe6fudWHR/RCCvxdr8ux+TNfnurB7x68AO3m6
PteF/sNOceZSNeihCzbXzdMP9lejhy5MYL3eE9dI66+6sHppi8r5kkr00IWk
/JZA2c8V6KELG3beXJqYVI4egvZ5m8yvjypDD124wfbozQstRQ9d4F37HVIR
UoIeuuB88cWj1W+K0UMXfqa8fHwlrAg9dMHA+sjMD3F0/6suDMx7cWNdZgF6
6II3myt9qyQfPQTn93vd7XftdD+DHvgtWD5WWioPPfRgj+lv1cQ1dH+DHjwv
5/3ivfyCHnowKW2avfJANnroQdbP8uDUrZ/RQw/Yu/dccszLQg89WDQwzvDJ
6o/ooQcXznaND/yegR564OiyaoLiuXT00IPDG73ypo9NQw89yA6M87xUm4Ie
epBpmHvl0foP6KEHTeoHLWolk9BDDyY4aShdq3yPHnrwaLf9EU4enV/pwcIe
/4MLm+h+WD04eWHvsWN60eihB5ssz1iMOROJHnrwzuL5w6z+cPTQg/KSVTMS
PGg9UQ+6nT3PBcWFooceSC/YKBR/8w166MGtzlW/dHyD0UMP7OS3uk4TD0IP
PSDf5vUvDAtAD31wk4w8fdHvNXroQ5RX96KeOn/00Ifls9rdnu/3Rw99WJTQ
cXz7LH/00IfutKKZYmv80UNfMN/4Ot0sgs539WGqynWN51teo4fg8/IKfvmv
CEAPfUifHfjog0sgeujDlJtH78wUzIf/eujD4BTPVwuyQtBDH4onGPWL571F
D30o4H5MmKdA1x/68P2UgmrphnD0EBy/cQUxTY5AD31Yq/vU8d0iut9VH4KG
3SXedFIPfYj7Wp12NDqWxP/noQ8nnk9QXfQ0Hj30oexg4z/bnieghz5MVjEU
a32fhB6C/rBkzVLo+4Ae+uDv8s/2XoNU9NCH08p8y/k2aeihDy7Gx/uGvdLR
gwWfXQ/deNmV8bc94iyIfFegE7jsI/qw4FU6UX4QlvV3faXIghftUyYXsD6j
FwvuNT5qrHia/be9TBYwjQR3YT2aJxYMBzh2/An6+rf9XBbYX2e0dlvQ/egs
0PLp13pzKO9vf5iwwELE1D/Hgs6fWbCMdz5BSgXrrbNY4No41021hc6nWeDo
8c/+Z2lYf7VkwfhDY2tWvSxCfxawH8ytrDyH15cVLLgxGpHcZV2C44EFUC7h
NNOs9G9/WrHg0z6lrO06tF7AAuu7I9KM0bK//buTBVaDO4JFa8vx+QwL+uvX
qpSlVvztbzsWTH15On+uL93/KjjfXNn3POeqv/1/ggUZ9mm/T+6m11sW6Ia7
L/Od9/2vhxMLRHo28DX0anB8scAsRz3PeQDrJ64s6LXmHli+n+53ZQnu/wuL
hApx/4M7C1gnObJm5nU4/lgw9Hnz5UJffD73kgVGdlVL/aTrcTyyoPKzqsEN
+/q/HoEseK+ce8P6Wz2OT0F/2rfE/DJp+OsRyYL26e8/mLvRehILSgvGPZTk
4/sbSSw4qHdediah9VfB+S6uGwh25/31yGJB5zxX4wV8Wo9lgXbLZWfejMa/
HvkskJui2+3g3IjjmwUqn+RuZn1p/OtRxYLXwTI3C1Xo/ZkFaWdYu85saPrr
0cQCJ0vn1Ffu9H7NgqB0Yc8pebj/9QcLzi4WGceUovVDFpzbID9KzPF9mCEW
rHhdL+t+iNYT2SDZyXgl6snHfLChc+bkoxdTaX2RDaLvrQP6GvmYDzbcnXy+
dItEM+aDDW9FW5X9OVg/ZbKh0fVG3cc5zZgPNlwb47A6bhXWU7lsqMwUanPc
RvenssGt93ZaxwGsr5qwYY+1zeFxjnQ/CBtKJs1Q0TmO851ZbFBstduQfbQZ
88GGDR2r7KfY4/zHkg0nJQ00N+6m+0fYIJF4+8WsDViPXcEGz0cOX79b0v2w
bGBXzR9dZYz1WSs2HLQclLmvTPebsGHHohmrQ3v4mA82yEwZGxT+jdaf2VBd
kmAXEIj7ie3YMHvp0T0vLtD9r4L+UnbL91mFHifY0H60YOsnbfp+EhvGPyjR
YjU2YT4En3cy5mxScBPmgw3RovuXRh/C+rsrG4bM3Px1JzRhPtjQNPvrgHxT
I+aDDWIun7tevmjEfLBh09m7jq1rGjEfbCDZIY9lRen+azY4/frqpReO+7cD
2bDVRKIdbHiYDzYciPHqvCeG+2Mj2bDs0jMDk2CaD8HPd+RKz15J88GGoI+v
5Qs7aP2VDf4BL67rudVjPgTtD90YMteQ1mPZoBd77LxVGs7v8tlwJl4/7bY1
XV+zIfbUhiGJbpzvVbFBxbxpRcvVWswHG6ayFl7cwsT5XxMb/qTPyJC2ovup
2LD6/fpnWme+Yz7YYBv8R3WOZzXmgw0j90Tc4mOrMB9s2GX0WqmtqBLzwYEu
F7Bkd1dgPjgw/PLuzHdydD8sBy5WN+9oHleO+eBAyZzFdqz5ZZgPDszXtuSG
bMP3o5gc+Bjbb1V1tgTzwYF3Gp1Jkk+KMR8c8HwoXeAUQ99v4MCSskuJT0tw
/6sJB7hbfk4NHKDvR3HglVHkjmEdev/gwO2fWimN8/MxHxzoViNScfZYf7Xk
wL2Mxxou0+nzeg6wE2zN/R9/xXxwIPn1oR8Of3IwHxwY/9Z59tkj2ZgPDvjm
njq/tfUT5oMDpRXnlryxz8J8cKBe6yH311Am5oMDfduFNuU8yMB8CM63Iict
Yno65oMDj8KO+E7lpWI+ODC2J+1Q3ssUzAcHCqeYmyh+ScZ8cOBNQCn/9fFE
zAcHZqUaiK+f9R7zwYFbfhG3BzXiMB8cCJd9Pc9RLQbzwYGHk8JX3DKJwnxw
wHHO8hH5fRGYDw4s8oEz0clhmA/B+Zw/IL3vUCjmgwNPFlk5bntO3xfiQKjD
nic3FYIwHxzQnnM0RibjNeaDA/s+2e3pSPLDfHBAf8pss7G/6ftMHNgqcvXs
gyvemA8OCI8cjf216hXmgwNh2Z/GSn58ifkQeLz72Pf44gvMBwdOXvMof/Lp
OeaDAxfGuT0s9nuO+eBA9M8lm3iqLzAfHJhtuuuekfpLzAcHqgJ+BFWGeGE+
OHDli8eF862vMB8cyN+rURm4BN/fGuJApuK3k/N++GI+uPDs56bi4Vp8H0yc
C6sK5FyPawViPrgwuGV07aTnwZgPLmi7n7Dw2Ev3O3Ah+snBA3/mhGE+uFCp
/WPs6qZwzAcXDO+ObV8VFYn54MKC30uanfyiMR9cCJnUcmt7TCzmgwsbDrVG
bmqJx3xwYbWnY1mueSLmgwtOg+8J83/1fC6MzNmlZemdgvngwp/hqleBg6mY
Dy4M60rFVu5Ix3xwAa7rpDiW0PUPF14ctmePbP6I+eCCpNZ7W8k2+jyfC3Vk
/H7tm58xH1wIXVPnmDA1B/PBBW8jU3vb1i+YDy68XjJN1uNNLuaDC/PvnB+o
M8/DfHDheeK5nneG+ZgPLgzs6Bs9xCzAfAg+7+yJllyFQswHF374bS25KVWE
+eDCplV6NqslijEfXKjZMPi8ULIE88GFswsX7kyXo+9zcqFwmeGUXLUyzAcX
0kpTj3vr0/UwF5ix8VdbjCswH1xwnTWheI15JeaDC7uG6kWursTnW5FcIMmN
Q8Y7qjEfgvN5NEOl9xg+n0/iwlW/Aq7TDVp/FYyv1e0bk1fVYj648I1x4NSS
clqP5cJeF9fLEbvp/UPQ/2OYl/M66P2DC+PeTbtz8hS+71TFhW3XZapOCzVg
PrjgO8UlK+RGA+aDC4rpzY0NijzMh2D8zT+k2v+Ih/ngQr1p4OVYLVof4cIl
5kDm7xf4fHOIC0qno/kv9fF+LmQA2qMrHRy9msj/AVsJBgo=
"]]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[
NCache[
Rational[1, 180], 0.005555555555555556]],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJxd23VclMvXAHC6OxaWWDbkAmJ3gHMwMLEVsVDEVlBUwELETgQsFFRKBKS7
u2spA1EkRERFSlLwx72cef94+ed+uLi7z5zvnOc5c2aWY2W7fq+QgIDAN2EB
gX//+/9/zqqELW04c5lsmhJbrj9Lg4z9fp/s3B73cHD6PJLAuvJ9XcIzMvLP
LO899mb4d3/y/p+8CYsMt5Innv/+BBHjtrdzoo5Y478PIxdnBLpb7DpKfqz7
9/9Ektf2Vh5lvSfw9TGEdzRE67zEGSL11u+YsVQ8WcwQyfA87ozvl0h+b1ES
2LTwMjHY7pr1Wz+FdO99uM/w1HV8/zSioH/kWLzEHeI/+uq3fhkkOJebkjh8
Dz8vk9i6m2l/DPAg0//7ySaBq/Sjms4+xM/PIWFq7ap1Tp4k+7f+6CfkEmbs
zsHcUC+8nnzyIWMhKRR+Qdb/94EFxG7l7CXuuT54fYVk2+GaR6+e+pGGM/++
YREJEDYRP3YlAK+3hBxZ/K5+iUsgOf7v5R0rJds2mHIuugXh9ZeRt4Lx8XZR
IWRMgU92q6nH720OxfHwiaDQ+JI1yhFk2X8fUEHs3OYYTTGKxPFVkHjxjNfH
j0SRfz9tu2sliT3tMy3cLxrHW0U23k1+fLEhhvw3nLdV5EtptcsF3TgcfzXp
8SBuxrbxROffy2HVENGLhldWpyVgPGpIoMLjvYuUksj+ff/+vCG30z/4hxxK
xvi8JRf/RJmq5qeQf99NJewtMekoFJPVS8N4vSMpw9EXWDfTSe+/b/f7HfGv
4xi0OWRg/N6Tkf4n/9QZZpIF/71hLVHWcysK+pyJ8awlMZ3r9qk9zCL/Xd6V
D2S5wmbWt5XZGN86slj/9EijYA4pLfn3p45sGZwjVxifg/H+SLLUfltbHs0l
qv9d4CcSYqS/4BA3D+P/iWQfvS8b9iaP/Pd22+uJ1vBWj1838tHjM1F9MfCr
e34BjuczWVakm+D8owB9PpNnty9IbH9aiOP7TDyWqHquWlaEXg2k80Ikn9ld
hONtID22P97eelqMfg2k1X0w5LBJCY6/kfTJTJt6qbkEPRuJ/GlY4n25FOPR
SCSHpCqucMrQt4kcdJ5WK5lchvFpIpeMZt3vW1uO3k3E/s6k46ymcoxXM3lq
JusZOIeP/s3kgceOodDzfIxfM2E/OPPP7Qw+zocvpOvSh+cTBCswnl9Iu19o
1BlSgfPjC7kxmGlvdbYC49tCfvXOeMuPqcD50kLa+KWPo0fn6Vi8W4jLKeVd
AzqVOH++krROlXi3dZUY/69k7t4mpaPOlTifvpIPvsnvzr2uRI9WIpj+0Sq6
phI9Wklmq4KoyJ9K9Ggl3WKVCnt0qtCjlZiGG77PJVXo8Y2cNpwVx91RhR7f
yNmdCySOO1Shxzfy4LT7vKC7VejRRnTcunNzfKvIvf882sipBSHT0qKr0KON
iHov1nDLrEKP78RBvlV/XkkVenwnM7dasOKrqtDjO6lJf1Qm9q4KPX6Q4h86
XIP3Vejxgyx/Xq6qM5qnYx4/SK364aS2iir0+Elqr+ZMdy2sQo+fJCj8SrxC
WhV6/CT167xunQyvQo92MpS1XCTTuwo92sn6M28uDl+vQo92Irup7ei041Xo
8YtwnG7OObi5Cj1+kWGRtI2v51Shxy9StrJ2hrh6FXp0kDQPR9OrPZU4ng6i
IMNon1VGfTrInS+WLnoBlTi+DvJKYuLS/aepVwc5pa93QGxlJY539HcJ3W5V
jUr06yCCLbMrA1sqcPydpETeJrcsogI9O8lV/qrtzxzp/OwkrG/Cv8YvqEDf
TrK7Y/ujG4J0vnaSVuGDBvwsPnp3khlmvwxVXfgYry7i0f2Mb0v46N9FxFbL
vfv1uxzj10XKpCJqbx0sx/zsItO2fgr58r4M49lFQrL37p6ytAznRxdxPHVe
6UVkKca3m/SmFOYeZJbifOkmKbmyltlOJRjvbvKn0f12U0Mxzp9uEpW1MkZw
UTHGv5usGEn8vMm3COdTNxG97xWqLlCEHj2kovnojEvbC9Gjh/Q1x/eXxdP7
Vw/5PHdJ9UylAvToIYqys5o6D+ejRw/xsv5ra5ybhx495OD7bfXrWXno0UNS
rs3wOuKQix6/iabGDeFcfg56/CZHSnesfTie3n9/k4Wr4q5pXMlGj99k8Tx/
61ufs9DjN7lgcmwx1zgLPX6TzEPNSupPM9Gjl6Q5pc0KGMxAj17SyFrnJLg9
Az16SfmRGPUCp3T06CWzX4y/KbYiDT16yW8PtoOBRip69JKP99wWPPlFn199
ZIb11I0ZRUno0UcMcn5pCb5ORI8+krJwWkm6RwJ69JHHEXyTHS7x6NFHZN3r
W2c7xqFHH7k6vOFRyKlY9OgnRd23bBTPxqBHP5Hqyk1Jvx6NHv3EbKJ7veTz
KPToJz2uS/UgLRI9+knD3KvJ4S0R6NFP+F/5zr7qEejRT4xu3x5JfRWGHgPk
iK/og7UzQtFjgOwW3F9ztjoEPQaIETfrTvyNYPQYIFNf97JPbgxCjwHygG2+
S2PmK/QYINaBrfulJwSixyB5O3nF+RdzX6LHICmavLpz/M4A9BgkV63WifR4
+uP9cpCMdJuXGv30Q49Bsu3RAG/BFlovDZJvMuPu6H/wRY8hUvsyafw4e1/0
GCIDO9XD1hr4oscQeaNy2iy3xwc9hsjVW2Yp9975oMcQWZF57p/Eah/0GCK7
59yfZPTNBz3+kJlFX9vlGL7o8YdsevJiWHubL3r8IVnpiSfMEnzR4w+5P6+1
13GiH3r8IYeKDuWdSPJDj9HfF6QWSVj6o8cf8uKdwatBjQD0GCae1tOqhdsD
0GOY3AksDH3z9iV6DBP/2o2Ptd8FoscwOfr9MPNs+yv0GCbctasHbmgEo8cw
OW4muO/jthD0GCEnAqSZglGv0WOEMDMzL5zWCkOPEbL5skpL9pNw9Bghhopt
6wwfRqDHCNmUYPhy7YFI9BghB6PmH7u6KAo9/hKB8n2CTnq0nvxLzkgpPfqi
HIMeo38PFHQ4IBGLHn9JY02ATLhIHHr8JcXfrMQtJeLR4y/xjyw6ramcgB4C
cHFlysDlcYk4HgGYZGOZOdcoCX0EoOLTL36NRTKOTwC6nMwUu8+loJcAnNVe
4mAQkEr+G+4+AZj1+4qefGUa+glAVvZTMy/BDLw/CIDrSzcrLa8M9BSAnoyo
p2vnZGI8BOCDYsk4wTeZ6CsAbddjn/8+mYXxEQC+VNns3yrZ6C0AKakvYvNi
szFegnCy6bX7FPMc9BeE2WeXyw7052D8BMGh1tuo5UkuzgdBsN/3alyaEa0/
BSHbbVWR6ac8nB+C4E92LzW9kI/xFYSFYQmfXHQKcL4IQoKUpkJ2WgHGWxDS
3k54XTp6/x+bP4JgunFe68GBQoy/ILzRaDhueb8I59Po9Ri5udhPLEYPIRDV
r+9yyClGDyF4lf7cbKJFCXoIQYtcQeOu77ReFYJBA6naj2dK0UMInKv1lxwT
L8P5JwTLXg1N/XKvDD2EgHlHO0VKjT4/hUDhBGFFeJajhxCMC7/dsF6Gjx5C
EDUwEPxpOa1PhWDlUatv1lf46DF6vXN+FJWn8dFDCPIjL86U6uWjhzDkXjMs
+zue1g/CUJBqIOC9owI9hGG6aqFw+R1aTwgD42JX86XkCvQQhtP77G4Et9D6
QhiOOP+OmyZfiR7CELElUV12ZiV6CAN/V/tiwy20fhWGIn5h5gXHSvQQBuU7
S6RGHlSihzD8PHbb/UlEJXoIg4KDYsmKAlrvioCJ+VoD0Y+V6CECjmazOJnt
tN4SAe+6qdMchivRQwQWOrU2syWr0EMEms3cyhIUaf0nAnPru93nqdF6UwS6
bku1+DKr0EME7ocuvfNrtL4b8xCBxPnnd+mo0npRBLjP962YJkfrUxHw3FO9
zECE1sMisLb49BGxPlq/icDFFdvflbTQel8UNjO/ZDhXVaKHKISPf3BIL7US
PURh6+9t+vl+leghCl5ebhb7r9H1gSgc+OfBfoUDleghClNuyWcXL6EeoqB2
q+6zH5t6iMLJDU9m+fdXoIcouGs3zHpfSutBUXgpO85s7YsK9BAFpXij92rH
KtBDFLLzfccT4wr0EAOr0+vOvhGn6x0xeOyyva29nI8eYnDBcpb9kwe0fhSD
4Iag3u9b+OghBuOUbzD6mHz0EIPnPL0nLyLL0UMMACaGMQ1pfohBi4u75ZUX
ZeghBgu9S5UUlWi9KQYhMqq3vl8oRQ8xELL2rl3cVoIeYtDAtF6/el0JeojB
1p23j8+LLUYPcTj3fEO1EaMYPcRB9aYf9+bJIvQQh50nlo6Y8wvRQxx2zS3u
qDMoRA9xCMiVtFh7sQA9xEHE8fiWtjf0fiUO72pFMprG56OHOPgwWMOnzueh
hzgcjRoS/VCWix7i4Em0Tc10ctFDHEx87G+K2+aghzjovXb+uTgtGz0k4Fjb
xGyQzUYPCXDcVHR51vYs9JCAzIaSlN0htL8gAabJPl3Do/XkmIcEuDNOPjRd
SetJCUj89ef9zznp6CEByb78Xo+Pqfj8lIBVwbYtPZdT0EMC/F+kGl2ZnIwe
EpARW/kw4WMiekgAY0HwCcF7CeghAamVk2UrTOPRQwJszBKmPhKKQw9JsM3o
1s7KjkEPSbi2Z6952k36/JUE50U213rNo9BDEh6t7NtcZRiJHpKwUD5/RbJY
BHpIglY/y0S3MhQ9JOFvupOF/csQ9JCE4Temdvq3gtBDEsL/ySnocQ5ED0nw
KksScb0egB6SkLtResjf1w89JGGXyWq7T+W0vpKC53ZnvtUpvEAPKdC13pBp
X+KFHlLQ8klrmZaPJ3pIQeZ+i2m5Lx6ihxSc3liu5VTigR5S8OBaK3OJrht6
SIHMR6FYpS130EMKIjqc4jdlX0cPKUicy5jRc+cyekjBrtuu7raJzughBcef
XV++/u4Z9JACqe5JFtnHTqKHFJhdzopummODHtKg63xZLfafveghDW6DIZ9r
t29DD2nQiVFPrlu5Bj2k4XDUlDdesUboIQ1Juy+dILY66CENPYtCL5+Mj1kw
5iENX4yy3c57qqKHNLQ+Hel1qJyNHtIwv9fn9viQleghDRMj5qQmD25BD2no
sHJ09orYgx7SkM708XB1OYIeMhB30OfvVscT6CEDj/pYIULnTqOHDDiBaew8
XWf0kAH599d5VR2X0EMG1CPfRfjqXEcPGSiLPrVtV8Rt9JABvfKpCyr499BD
Bk4dTn/+y9EDPWRglZSRR9yah+ghA5fmLyk22eiJHjKwXGBngvcVL/SQgaMH
59XmNz5HDxlIcZa9ZR7rgx6ycHirrKTGXT/0kAUPnVdFKmcD0EMWnIzW2Qef
DUQPWZj0kjF+tmsQeshCRvaNKIVYuh6Shdm8kuyrP2h+yIL7is1PjmtEoIcs
LF7/WTvWNBI9ZKG3bJp56Jko9JCFty2F7L7YaPSQBZ2OWS0T+mPQQxbKvs/L
a4E49JCDLxNfxSa5xqOHHNRZ/vU1ak5Aj9G/pyQ/GTFOQg85EJy38Mc9r2T0
kAMl8f1rXP6moIccLAo9J7VrH6135WBbbb16HD8dPeRAf9fAK/HntN6Vg8N7
jQsGN9N6Vw6e+xv87JfPQg85eFswfXFeIa135SDM5UT8P5dpvSsHBq8qhT4t
yEEPeThyf1VB+ACtd+Wh9OtMf8uYXPSQhw3ZV0wibfLQY/T3p0ybA/r56CEP
n9J+TFrekI8e8iAfZ1St5lmAHvJg/cxD1nNNIXrIw5/4yGE3kSL0kAehnWtW
F8QXoYc8mMdHLBI6WIwe8hB2SoQvpl6CHvLwU/HaS++cEvRQgOsi1qtdbWh/
RgFuua2eGaBahj4KkPimODMosQzHpwC7v+rtPbCV9lMV4HKdfGhoXzmOVwFE
ju0N9ltGn/8KEDpRzNDFg4/jV4DugtfnttbRekABFt8ZsVPl0XpTAZr2Zj72
2l+B6xkF+H102+zaIFp/KoChq+LOxG8V6K0AvklC33T1aP2jAOk7Pl6TsarE
+kEBBEpX5Wx9QushBRB21JL4W077bwoQViHn1ypE+3sKML17L198Oq33FKCP
qZVitov2FxXAxqjo2uubtP5TgIVy89eoRdH+pgJYfX01weUNrQcVIEsnwKix
j/ZXFeDL3UCfiYxqnE8KEDe0+Nq2qdXooQjv9kvrWi+vRg9FaAPhTNhZjR6K
MPFFdeR322r0UISFDa67djlVo8fo6/vUVzy9UY0eijBTZqbAE7dq9FCEEtF5
47c9rEYPRbheYnnl06Nq9FCEQr3o5nGjfx/zUIS7i4KnTBl9/Vi+KcI8kW37
hEfff8xDEYaPbXjoe74aPRQBvFWalEavb8xDEdZ6TrmwdUc1eijCRiWZEOdl
1eihCJ0HFkfdmVKNHopgMy659aZqNXooQlPB0kCXPuqhCLenKy5zfkM9FOFJ
uiv3XhT1UAQnj7nX0m9Rj39/r03SsqIeimDg4dkZN5N6jF7PudfLn4nRfrki
rDdKzW2qpusPJXhhLbjU8wWt35XgyBWxaxUH6XpECVysZiq+mELreSXwNZIz
Yv6uQA8lOHmBzV0fT9dbSmCyIOPJLocK9FCCdSNnp22bSddfSlC1ZxPPopPm
hxIcO5y+yi6Ejx5KwGm3NkzfQ+tnJfhEkvhbNPjooQRynokxkc9oPa0Ez5Zf
q4wSLUcPJbglfH1q28Ey9FACa6/3bXeKS9FDCa5HOX6tHl+KHkoQlryvtPda
CXooQdsUtx+GTcXooQTyls6GoUbF6KEEH05Vd0ePrq/HPJRgp8sj1pnvdP2t
BC9lDn+ea1KIHkrQyn4cO/FhAXooAcNDYvW9tnz0UIL9m6ac9lpA96OUoSv1
p+Id9zz0UIbtXvvbvFro/pYyeP39FS82n/ZnlSHsZteIyL0c9FAG2em/Ryq+
ZKOHMmgaRz0LNMpGD2VoN1m/Jf1+Fnoow/O/Jbrr2zPRQxk0AhyOPl6eiR7K
YEPy2wtf0vpZGTremoVri2WghzIUuXSWe5TT55MyrOme8EX8cSp6KMPlzxtt
BfaloIcy3Mk1mNs8Nxk9lOF4mUGzmkoSeihD1uxNecM9CeihDP2+aQW/6+LR
QxmCSrtMd5TEoYcySGcu/HU3OxY9lCF77ZBfYxbdD1UG7933d4QWRaOHMojr
NcqafIhCD2WwHLf+8o+eSPRQBqnDxhuG1CLRQwUK9S3iYhdHoIcKbD/n1ZPR
G4YeKpC/QaD4tGMoeqjAz32MxYryr9FDBfY9F1o/lBSMHirg5/t+h/+5IPRQ
gTNShHd84yv0UAHnmld30xYGoocKbHLe8Kxh6Uv0UIEN5p1L9KxpP1YFTnmy
NlU/8kcPFbil6rdLt8kPPVTgbM/1sNWmfuihAueOyOuey/RFDxWYxbpgVLHR
Fz1U4MOn5u4DAr7ooQJzE+IKNuXQ/qsK9DbsjfR54YMeKnDfuV5j9QMf9FAB
9+9/Wjf4+qDHaHwWNp32y6f9WhXYwlj3epyoL3qMXs+Xt61xW33RQwViZo9M
nFrgix4qoMAw1bEy80MPVSgPVVJTaPNDD1VIa9k3f8DbHz1UYXbOqQdVB2h/
VhUsD/4xNFvxEj1UoTVsO1tmNL5jHqrwdr5NWdiaV+ihCsenDrUX2wWhhyoc
uFKX0hUcjB6qwF0ZpBXSF4IeqmAO3/NObQlFD1X4qFV0sqQkDD1UoXacq7ji
+Aj0UAX5Qz9tO3sj0EMV2so/WSWVRKKHKsyS0YjVDIlCD1VQ7IwwynKLRg9V
mMjTbDd3jkEPVRCYv2Dwkn0seqjC5cEDP9tO0PxQhbw/s8onOcajhyp4t6xb
9MslAT1UIeKzSEihRyJ6qMLuiodLLYKT0EMVHty13DE7Lxk9VMF55Jb5UEsK
ejDAteHyj3kyaejBAJGC7wtvzkxHDwbcy7onvWBqBnowYM0z/461hRnowYDv
Lh+Hc60y0YMBCo4/mq2H6XqeAWW3vH71PKb3KwY0hN1SNp6ZjR4M2OEtICZS
mY0eDHARf7tGwTYHPRiwWffsbn2ZXPRgQPjbny+VgnLRgwFKF4qePliShx4M
yPVdWu/QkIceDEh1M1zmfI72NxiwkBvWf4pBzwcwwCsV7NjhtD/LgK+dM4OW
mhaiBwMG803UYz7Qfi0DLk0uqZpkS58fDJCul/O+KEDrWQZMYvb32LsWowcD
PD8UT6rVpPUtA1qUz7s4BNB+DwPe30lgaU0oRQ81cD74dN7DcFrvqkGqqLxe
7GRa76pBwoEcy+Wvab2rBufXFT4dp0vrXTVoXRj5kfmE1rtqsP7cy0wnUVrv
qgHr+Kngyvm03lUD8WjZFT229HmuBk9+DIjwfejzXA0s/fZKbaigz3M18NGN
23p4hD7P1aAk7UOpuAGtd9XASdSCqb6uAj3UwGvKSM1t+wr0UAPlM5uvmHvS
/V81MI7MfXgosQI91IA/d+ORxDe0H6gGHeV6lnM66fkENZh4NTC7ToL2a9Wg
9N7yn17adH9aDQ7clpx2bDLt36rBL7mrP1cvqEQPNXhwNOfStBW0n6sG37I8
96huoP1QNYjdmSDRvYXWV+og1rprOH8bra/UodAz7oPbNlpfqUMoN271mi20
vlKHl+VlSgLraf9XHQ4Vavf6L6P9U3WYbLbyHTGi/WB1qG+VDK6aQPup6tDc
OPuItQbdn1eHfobfpD4R2l9Vh3/CbeXcf9DzG+pwZSF3hlEFXX+Mvl5gdcVw
FPVQh9vRX7U/u1GP0X/vuGDTz6MVuP5UhzDyNGrKUuqhDm6G14/GaVMPdZDX
yIy9NVrvjXmMjjeqLCwti/b/1UH/jNnhnW589FAHJ5fGr2d20P0AdXhrUy+q
q8dHD3XYPG+y9Me6cvRQh5gsvkD1vnL0UIeoyB85m36UoYc6fP+1qODm0TL0
YIKJ8mEx7zaaH0w49tW7L35PKXowYcdaeReJ9yXowYTwa0ltKSvo/ggTVtcl
5YokFqMHE8RXTW5RGFeMHkxQsQ03U75NzwcxQXObuSbpLEQPJiyHY2cKNtD+
KhPWBiffa44uQA8mPDi8/0ihIu23MsFta0Rn6NF89GCO3mzmFRTm0/sVE2bb
c5dtYuehBxMSF77Zd8MhFz2YcIgb7ve8NAc9mPCmy7KngpuDHkzwVpgdudUh
Gz2YcEbA+OLJYrp/zwQds1mmW3Vo/4AJNgddJZaeyEQPJtTYzm06lZ+BHkx4
+dzpF0crAz2Y8PNn8G6ZpjT0YMJOTzvBZNdU9NCAZfdZv3MWpKCHBqguMi5/
1pGEHhrwOHTJ5pSARPTQAJuy4e33dtJ+igZ46U55elszHj00QH0g9SrnYyx6
aEDiTc2JaX4x6KEB/UcXyfJt6f68BnzqndiVZRKFHhrg+/h9qYBGJHpoQIRv
g0FTZzh6aEC99oxZvamh6KEB5MxQvaBnCHpowMhXrTMFl4LQQwPKWoyXiV+g
+78aYB/va2x/KwA9NKD2Wk1qfpAfemjAesEJlq9qaX2lAY8WQXga6wV6aMAT
s6auTT+90EMDXn8S1JHL80QPDfB8E6tfUvAQPTQg3WKp+6teD/TQgA/heomh
a93QYzT+/o1dYeF30EMTls158lpX4wZ6aEL6ttjVZxsvo4cmzHh07OEqqYvo
oQnxm5XPT/znLHpoQohdZdfRPyfRQxOs25zfBU63RQ9NWPzmTuZEwX3ooQlx
hdt3hBVtRw9N2LPuS4ls/lr0GH0/XcczqT0EPTRhSf5Vs5g7PPTQBLLvlNVZ
ZvOCMQ9NkNzntLxrqhJ6aILXmfig864z0UMTKlbtiXSpWY4emjB5wl+HoThz
9NCE3S+3RG9uskIPTUg0th9/7NZh9NCEsrL0voZWO/TQhHlWJys+v3dED02Y
JEIy9R5dQA9N0JTKeGfnegk9NOHgjr+/XeKvoYcmHFi42+rxwtvooQkuhq2M
6Ef30EMLiv7K7SALPNBDCz74STPHqzxEDy2INM2+4qXuiR5acEx+aHnECtqP
14IXHKEc26Dn6KEFR/Ysmfjd0wc9tOBB/MqDB076oYcWBM+aXPNsTwB6aEFs
o0tK775A9NCC+6a3girOB6GHFuwcyvK8GUj7rVogO+XxDPsmmh9a8NBC3+W4
Oq13teDbQ+d3t5dGoocWHOVnPgtzovWu1mj9P8HvVCqtd7UgyWISx0k4Fj20
YGbH88bda+PQY/T1GhW7E/zi0UMLBGytfjCGE9BDC26o1OYpbE9CDy1Qq/62
dnZGMnpowYlKi/EaBqnooQWlNre2LH1I71da8CtnUVyAcAZ6aMO4oNzqd6kZ
6KENkUbCDJfT9DyTNsSUOUnsm5WFHtqwNqehbFkP3a/ShsEvw9Pbo+j6XBu8
7/1IY9rloIc26PYuzr87lZ4f0IYrHlY3FDpz0UMbhvpj5llF0PME2iAiqMRa
apuPHtpQdE/4sctE+vwYvd4RyUXv2uh5MG0Qml8iLBNYiB7aMK19knbj7iL0
0AatlysX62gWo4c2/LA0ibleWYwe2qD3+q1J8//1S7QhJ+enTf+8UvTQhj9/
ws7f/l6KHtoQInH10gHPMvTQBt/XBWc3LabnV7Vhu4vqVu0f9Hk+Gs+iSXeX
LKPn97Qh/ONym9jHdP9fGzKrhjsWf+WjBws+2khafJhegR4s2Nl49d4uJ7p/
ywJH384pqXn0fAALfmZ03KyVofUVC05Obwr1XUvrKxasPWloK+BO6ysWDIrO
OV7Pp/UVCzzsTcdPkKX77yyQePKprcqUnqdkgV2BcHPOebofzwIFSY2J7ZH0
PCcLXMafLyRNdH+eBepf8kODFWk/kQV+xoU5bONq9GDB9PP/9NzfS/uJLCg0
fMUeukn7iSzgP50ybVko7SeywDV8q5pdSTV6sIDnk15g21qNHixgRzWunCtY
gx4s+FyQGZvPqEEPFrixpCaqGtSgBwtkFnZ815pTgx4sSOEHm3xYVIMeLJh3
yNXDbFUNeuhArFPFDrt1NeihA89TG6cv31CDHjqwWfhURuXo38c8dGBGqXau
glkNeujAhg1PmWJLatBDBzxuJwfHza1BDx2wvPjFUc+wBj1G3+/okoc7mTXo
oQMvN3mN2yNSgx46cLw6er3xD9rf1YF7Q/YWvXza39WB7WsiHR9H0f6uDoT0
neye5EY9dGDWPgOZvCPUQwfkihcJHF5CPXRAqjJYeIIm9dCBuvn589Xbab9d
B3zEFyWRtCqS+J+HDlztdXSIvkX7uzrA3fRw1ZXNtL+rAybSx3/ms2h/Vwfa
5VQa7zbT9YcOfD8u4tweSNcfOqCzyaRp6ABdf+jAD33BryV6dP3Bhr+xk1iO
zVi/i7LhhvOrYpXnNF/YMG3Cktokc1xfybNB0ut5tYsczR82aHmH1l3J5o+N
l8mG5AGe30d7en6cDWmtwTv99flj4+exgRdVfOVbJF1PssF9k197lXz5WDwm
seFxS78mOUzPt7NBrHt6j1UO3j/msKHepEPGUbMUvdngIx36KP5YyVi8FrLh
2eTlq7flFKM/G07IbLD0ZhSPxW8VGw7GTduasL8I5wMbzq2bqfk1Hvuz5mzY
vM053lqc1t9sUM3sPnBkc8FYfHezQeWJ4Jm5Afm4P8MGl0MuU8V78sbifZgN
6mW30xQW0fNbbEg9aj7OzT13LP6n2PCEMeGf7MYcnE9sEObbTW+YnjPm4cyG
iMQPG3SvZuP8YoO/fZhy4fusMY+bbODXLjkmOjkL17ts6L6UlqN0FZ8v99lg
3fEpTr+efr+CDYOPyDinedhfecaGjs92Ou5T0nE+sqFuz0LW+c7UMY9XbBjS
D7HTTaDf52CDw2Izg87LyWMe0WwYmT1HevGWJLx/sIHxzOTchWmJYx6pbBin
N3WrkAr9/ggbrLRK6/SH48Y88tkw1ajSflU77ceyYe7NhvjsrzFjHhVs+LDI
ZnLjN7qfOhqP+ti1/T1Yf9ex4aR3sfkGySic72w4zc+YbKwXOebRwgbTV10W
f1ZH4Pxng3mKdGigINbnHWzY6TxFS+xMKOYDGww3WJ6+Jf56zGOQDe85H5ID
g4MxPzjQlqg5M3tPEOYHB07dsbFZMP0V5gcHwqaYStoxAzE/OHBn8SLfMMZL
zA8OWD0RiDcyDMD84MC9XSF3t5v7Y35wgDvPVtf0KZ4v5XHgmEGqhkEfPZ/K
gQfGJ3wnHPbF/ODAuO5vjrZ9PpgfHHg8//t7cS9cD8zhwDLdh2eELWj9xoFi
lalX90/C/utCDlRe/e49RcsH84MDImtcP6znYj92FQcsFrHfJoIP5sfo5604
EL7MAfuz5hyoTzyiWpvrg/nBgTkChVthAvZrd3NA9vI3lyXBvng/5UBTOts8
hOB5kcMcEHRzPW/4ww/zgwMyBe/cHcLx/OwpDozIPTKdeyMA84MDvqa3ziid
fon5MTree47W3k6BmB8ciNzgG3XEEz1ucsDuaX2UdGEQ5gcHnm+edW5EBs/L
3ueAv3qHRpb1a8wPDsyayEwvKcf+/DMOCHVb/LxjFo75wYF3NTIW8TYRmB8c
SLh35PsBQs8DcODwnvcyN9WjMD84sMLTfnreQBTmBwdYKqZSeY3RmB8csH73
xXVyVQzmBwe2ycyZ9bIoFvODA/0324SKC+IwPzgQXFMZYVQaj/nBgbIOpcpH
b2l/lgPeR4a67L/iefW60fE/e5Zq9ycJ84MDDaUSLC4Dzwu0cODGF4X9GjNo
PcsBjmCsw69NaZgfo68X7P08/Sz9vhYHlDyUrqasy8D8GJ0PJsURel9pvcuF
IJea2X7nMzE/uHBpo9KNXhW8X0lxQTXgQ0nra7xfyXPB27R5AJbQ81pcWPxI
/1vuR/x+AJMLV4W/HVxgT88TcCHvWuCm43K5mB9cuL6B46/7MhfzgwsfI4wv
cI3xPNkkLrRt+b55clUe5gcXLKy+9CgfyMf84MJ3AYt7j4fyMT+4YLZhb8OV
OwWYH1xQd7OZEaBNz7txwajH+HxGSCHmBxciCr8e9J1Nnx9cUJ58/BQjE7+P
Yc6FnSqTB1uXFmN+cOHnlHeLvhZjv3Y3F8LjF/nUryrB/ODC/siyUz5F2L89
zIUKIasVw4tLMT+4oLJE+VNOcinmBxfEE7fOKp5Ez9NyITD7XVizN/avnLkw
5VqAxFcJut/JhfaNuqeDbMsxP7jArd+eIFJJzxdyQYe169o3Nfz+y30uGI/M
n+q4GJ/nnlzYXC/N9bbB5/kzLgj27Bpe+hCf535cGNCtXXowGc8/vuJCcYvX
ka6PtJ/HhUhPp6yaYT7mBxeOl9fdE9Ok/VYuXHnFVTk9E/eDU7ngVTpwkWtG
z2dyof62ruzAbtwfzufC9jyxb90nKjA/uHDANn+V9KUKzI/R+fVggv0cV3qe
kwuvv8i+PvUYz1fUccGp9jikPavA/ODCnvdm7nK+2O9sGY2f9zc5a196/pML
Nie/TEt9jv3PDi4c7mm8yXxSgfnBhZTm8ujTbtgPHeSC7ZKqrfVX6HlRHqSf
qDMyc6D1FQ9OuVbr5u+l9RUPSq3tfq1bR+srHsxYEHmhey6tr3hgx/6eF6WD
/VMmD5RVHqU+EqLrFR4kL3i9O6SR1lc8CAoNju5Lp+dReRDIXxF97Ql6TBr9
vLzqbfvt0GM6Dxjx7Bd+S7HfOocH69xN9q3QoP18Hhw9FC9aU12O+cEDvb/r
DugdK8f84IH/uC1zQ8XKMT948EjI4OyNx2WYHzxQywxp+KxbhvnBg3mWX3Pf
h5VifvDAwUmC6TUdv9+4mwdvb73fvC6G5gcPypsjHcZNpfnBg+C0zw0mwcWY
Hzz4UPB461udYswPHsSG7u5Vdi/C/Bh9faqKpL4gfj/KmQc75h9SXXKUrm95
MLNeK8X7TQHmBw/kLIKC9xoXYH7wIC44/EaFTz7mBw82WP1pY4jQ/R4emFSS
2Ues8zA/eLDi8umnEtl4v/LjgeICVi+PjferVzyYI/Y3u/cs7a/yoCusTybp
Da73o3kgdfbw2sAptN/Kg/4bD4/338jC/OBBVkaS39fGTMwPHszunbQ5fH4m
5gcPDCaZs2/ez8D84ME3J+a2vR/SMT9G59/ZwXX5d9MwP3gQoiy3IXxRKuYH
D36XzZjvPkj7Hzwo+73Spjkav//bMjqfFAzDmccSMT948O5pVZ//5ATMDx4c
uPx5XX9XHOYHDyxHFoZfTorF/ODBXfWt2YlXYzA/xoHqbrs60S3R5H8RTLg0
"]]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[
NCache[
Rational[1, 180], 0.005555555555555556]],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJxd23k8lN37B3D7vu8GYxaV0q4FLedKq1aKtC/SopRKWpQnKiktUhQVZQmp
KIpCyb4zxjIoCqFIVLYS/eZ5XOf7x88/vabGzH2f97nuc87nnNgOLqt3iomI
iHwRFxH598///3NSI25xo/s54qN2hTVzBoOMvA4g4zxeC0ynWZCXTO8Om5eh
JC6l43TP0RX475HkdeJWeePxG8jt4H9/HpI0fXK8YL8jvj+OlJkOLr7rsJ98
tfn3b56Rf/5JWtA64Iq//5zI7c0mSgruRE4QcXCOXDKpndy178gRT/y8V2SO
T4PPk0XnyNhNfpm9xmlkW3zigfMnL+DnvyFR6i0Dz1WvkEjhbwsi3pLHmZoP
Pov74/dlkGKZICOTuBvE9L+fLHKl9JhK+fmb+P3ZZOzkyp2Dl4NJVq+x8Bty
yLCK/5rX6XfxevLIlZc+C5SU75PV/31hPlkSEZ99oSIMr6+AXLHeLZr9OII0
uv/7gYUkfOqmwEm3H+D1FhOl16+Upt+JJof+vbyDJeRVF4ttFv8Qr7+UxDVf
rb1Z9YiMKPDIoXRW5UPFOLwfHjHZV27uYPKULPnvC8qJjpLzFca6Z3h/5UQd
EhPDLyeQf79tkx+fTGGMmxmSn4j3W0Fex4t4xMq/IP/djqCCbL2d/WmPXRLe
fyVZdzLl85EHycTw38thVpH77lVznQZfYntUEZeb8343rE0hu3f9+1NNWLvc
nuxPTsX2EZAFWemXH+m/Jv9+mkacgJhFLvSfcP4NtlcNMVrueNfnZzrp+/fj
emvI9y8vVoxOeIvtV0tsB/h20s4ZZO5/H1hHNjusvDdpTCa2Zx3Rfrn03u7m
TPLf5Xm/I+XiwcHH7mdh+74npxZoJ47Zkk1Kiv/9eU/eTdSSAP0cbO964j+Y
HnuhLodo/neBDeSblHt9QVAutn8DuS43a6hobR757+M2fSD2aWXR9hr56PGR
bI6ULpxeno/385E4SWQ/m3SlAH0+kpcvmgyVlxTi/X0kLzqH14eKFqFXI7Fs
F50d86oI77eRmAV6WA24FKNfI3lmWfRmg1EJ3n8T8c34HHa3ugQ9m0iyglLF
pfOl2B5NpFm8T7/ftAx9m8moJ5UL4hrKsH2aycXS3wrz5vPQu5nE3v/HMjyQ
h+31iTzq2bHMsZWH/p8IK+fgskPTy7H9PhHFp/kyz8+UY39oIY7rUn5ol5Zj
e7aQscqrjS9q87F/tJCwq/H/9GzhY/u2ktgofZ/FkXzsL61kcVlTwME2PrZ3
KznwuD5zi3EF9p82cv5B/oDo7gps/zbiX7Cwe2lEBfanNtKw+q65SX0Fenwm
itMmQKBGJXp8Jn1T7648ZVWJHp9JwsTH1ytPVqLHZ2JqVcK68agSPb6QP7kb
+5/UVKLHF+J8/aqovngVenwh6c4ajKpxVejRTj53b1Hkr6oi1/7zaCeqsbfv
KByuQo928un2GvfT/lXo0UF643PsRsdVoUcHCUisKR/Kq0KPDjLrWJ6v+Icq
9PhKksUOa874WYUeX0l80oa/ARLV6PGV3Ny/spSlXo0enUQqM/lvHbMaPTpJ
VHqIdO6YavToJN+3rlzVMqEaPb4RJZsXpnOmVKPHN3IsbKt4hfD1iMc3Uis9
4c/jSdXo0UWsbscv4Y+rRo8uEt5sMbSUW40eXcTLIUKDpVuNHt1k0814540K
1Xg/3cT//axM6aEq9OkmK46pPZncQe+vmyw3PXGnqboKvbpJqMXRknFvq/B+
u8mW1JJV2tFV6NdNRNgpfUmXqvD+v5NHydvW6R6oQs/vRCVaIm/lyipsj+9E
2ur30j3jq9D3O2ns3XT3mEwVts93Msntor5fUyV6fyfqa7eWZaRUYnv9IE+9
l9ly/SvR/wdJu8z8kLezEtvvBxn49nRytlkl1ucPImu+zm+CXCW25w9Saz8p
XbeuAvvHD7KjZdrv0Bja33+Sr1zLzxVuFdhffpKaA/U3y+bR/v+T8H+2H3yo
UIH95ye5emPujBPVfGz/n+Q6X/Xn2nt87E8/iUHJtv4Nu/no0UN6jaeUhkzk
o0cP2S6dO82stxw9eoivSLbq/NRy9Oghn6YvcRZ4lqNHDym/2uugtIg+D3rI
tWmDHFH5cvToITU7tT/kl/HQo5dsSg3O/SeAhx69ZLB3959Z63no0UsMXWSu
6jJ56NFLSs7urdqWW4YevST6n77nU23K0KOXJLuXtde+L0WPPpIScG26j1Mp
evSR9mvDvL39JejRR1bWfXR8fp4+L/vIVFOVnuvaJejRR2Z+fVs0LbYYPfrI
eQcl17y5xejRT1wOltw+VlWEHv1ki8MjxUMHitCjn6xpC73fIFuEHv3EeP1T
bnt0IXr0E6dg5po04fN/xKOfhN1vyT/1tQA9BkhN6qNvNjcK0GOAjLdhdG+b
U4AeA0T3Q9STkvZ89BggnzJ58Sl38tFjgJwfX8Owss5HjwFSduJHeJBMPnoM
kDlyIl552Xno8YssPpC3+8e5PPT4RYwfvjoxzSoPPX6Rz3LzSbRqHnr8Igt+
PwpxaMhFj1/kEv9y6an4XPT4RS4UCOzlvHPR4zcxu3NSgrk1Fz1+k/bzYfX5
c3LR4zdh/bxgxGDn4vPyN2msFlthKEvH299ElH91oLk3Bz1+k62Rej8OteWg
xyBx8XAeV16fgx6D5ISj0Qvp2hz0GCSxb4/n6gpfj3gMkp+ll57JNuSgxyBZ
d9ulTSD8vBGPQbKDV953pi8HPf6QlBvWl6XlctHjDwmactx1GycXPf4Q5h6n
oPMkFz2E748fI3doey56/CG73l4d0riQix5/iPKab7ydibno8Yd0fVqqYtec
ix5DJFXe0p2vTT2GyJL4a5LF1tRjiMguMW+bcJV6DJEkmSXBTWV56DFEYiKn
NvE189FjiByaWP6+ZWs+egwTC7tOEdG4fPQYJkaaO8fLiBSgxzDZm1L/uN6u
AD2GyftW8aUO8QXoMUyCdOys3RQK0WOY+Im43O1xLkSPv0S76GNUGq8QPf6S
5JXu12Jm0vr4S9rbNSZdD6P18ZcIXpQzVisVo8dfIn0oPzXdoxg9/pLjAZx1
z7qK0UMElO+GcP7sKMH7EQHXUBerI3Ul6CMCHPWLkp2raf2LwMUrE2PNSkrR
SwRkNVqeG1uVkf9ud5cIlIY8qr8ifL6M+InAS/U36nc5PHw+iIDhRp/jJx14
6CkCkQu+nikO52F7iEAV/7790WYe+orA672SzVuNyrF9RKBQpavRZSd9Hgqv
/6NX++WocmwvUTjzjOEW0kbnT6Jw6dOCFh9jPrafKKhMf3V9qhMf+4Mo8C84
8M8+5GN7ioLb7Z1/t3/hY/8QBSsn43OJxnQ8EIXg1WubtwjnSyP9RRR2pdW/
XfqAzpdE4Zf5p/bNTRXYf0QhRyvO4TSzEttfFDbNPLrz5no6/olC4iJTN98b
leghBq7jFm+fX0zHQzHYmKm56qE4na+IAWfodGakOZ0fiUGvPUQxD9DxXgym
to2yFQmrwv4nBv1qJiGmfDr+i8HuOTvLw0Wr0UMMntwszDMTzj9GPMTg3cGi
lo8b6PxEDOJc00b7nKPzITHQ4yhzdR5Xo4fw+qau1fYqr0YPMchcrt4R30Pn
M+IQVb1s5g1NAXqIQ8yZpuWMaQL0EIexRxItplsL0EMcLgkOVlQ6CdBDHGza
5iS2ewrQQxxOO0stdAoUoIc4kIZrefOjBeghDp5brFYfSBKghzh8bsuqrc8U
oIc4TGT0mF4oFqCHOGwer6vvWCFAD3HY8GDTDCeBAD0kwC6Qo36tRoAeEmAz
Wm4qv1qAHhKQ4RoiMY4vQA8JYCTFd18vFKCHBHz8sme17FsBekiA/YxhD98E
AXpIwLkjWhka4QL0kICpa+p2RF8VoIcE3H8W/9DyuAA9JOBb273yti0C9JAA
Lm+PVrClAD0k4LunWdx6rgA9JKAtT71wgqgAPSRh7pW2AMZ7Op+VBG+nhVNH
P69GD0nwKy9Ks79YjR6S8Ge9xYLkjXQ+KgnmT6cWrTCh819J+CgevWDUAJ1v
S8LopL5rSzLp/E8S5lmmuGddrEIPSch1JonhK+l8UBJCmpJKf6rQ+bnw8y5p
QA6P1ockPOmOsB19ldaHFEw2Xj1pjBWtDymY0RyXVSNaiR5SMHNOFG/5ywr0
kIISzd66QOcK9JCC/pL1Y/KYFeghBanrzz7vKeWjhxRkxb2dZurBRw8psHhy
WDpoLB89pKDxheVU88py9BB+vilrwwQPOl+TgtIj0mmX/ve8kgLGnIBRzoU8
9JCCJYEOna0HeOghDUMO0KGhRudz0vC32vEjcw9dX0rDscbQUx8flqKHNCxe
+lkk4ksJekiDhfeDs3fGlKCHNEjNyCz8u6MYPaRBTNHaQuoeXf9KA8z8ltlS
Q+dP0pC25m9ZlWohekjDli+J05WWFqCHNBQe6GLmedHxTxpU/igOmr3KQw8Z
mFV6bd/dbjo/kYGCguQp44zp+C4D6lOV9PW25aCHDBSXdP+MDspGDxkwSVLf
J8vPQg8Z4CgoyR5XyEIPGXha8l1n/JJMHD+F3yfWd3OzdwZ6yMDkA+bMBdlv
0UMG3HojqrUk36KHDFTerM3RufYGPWQgS/RWyAvGa/SQgdetib8PxNI8RRZa
2RsmxZEU9BC+DrHtr6t7iR6y8GQeWbvxVDJ6yILzwsVHbxgloYcsuI/z8Wmp
eI4esjBsL3v/mW8ieshCy7hTd+2sEtBDFmqkwkUnqDxDD1lIOKL8mp0ejx6y
UOWltTXe5Ql6yAJr3YlzsVMfoYcslK1fOO2FzEP0kIO5jYLH+35EoYccOKwd
P8WxOxI95GBB+uiaieIR6CEHkyd3bLYzCUMPOWh8GvHtBT8UPeRAxlZx1fGT
d9BDDjLzcibV2wShhxzUDOl9ylgbiB5ycPJky/Fe3+voIQeCJTafDjb4oYcc
HOiw0Dshcwk95MA2baqGVeB59JADueU/2qTPn0EPeRhTvafuZLIHesjDatWi
opiJx9BDHrZP2Lh/nOsh9JCH69PjImIVnNBDHoxev39/ir8NPeRhlBOP23HY
Fj3kgXyvqPsltxA95EHbd7e/bPdE9JCHrmanh8ypf+eOeMjDYf+2jMNLBuaO
eMjDpGzJOTVLx6OHPLy//HTz2Zb56KEAs8yPfY4IXoMeCnCi62tPzOxt6KEA
R1cvFigv2oMeCrBz5tSM2h8H0UMBMo7PPtl06Sh6KMDJrMbVQx2n0EMBRlf4
ejjKnEEPBXhjnWlROeiNHsLXN8OHGlf6oocCmMec+SMhQj2E13f1lnSx1HX0
UIAByz+GnSkB6KEAM7f/Tjh25xZ6KIK2haHjwejb6KEIq52HPpXWh6CHIiwt
ShmTHnofPRRhy7BaZpxDOHooQrnLwVxDi0j0UITw/rOiR42i0EMRDn2vTFNm
x6CHIiyRvde7cFIseijCXivnQOeVj7E+hNczdt1jvkcc1ocijKpzXbt9y1P0
UIQ/5s9s53k/Qw8lmH1jmdW4xAT0UIKPxwZnpbYloocSSF4/7ujPeYEeSnAk
NW3Zkh1J6KEEg128zhMPk9FDCS6G6Lx/0/MSPZQgMFJ5W9yCFPRQAmNzl9CG
oFT0EH5e3JOUT91p6KEEJ/RLftsuf4MeStD/zLkjMzYdPZTA3Uwm86P3W/RQ
AkfPggeHZmaghzKUBm+YW/8lAz2UQWLv1sCvdzPRQxm+Gqkl7rHOQg9lMFh9
/SlDIhs9lOFv8djCouRs9FCGI1e8Di3cR9d3yiAm93arDTMXPZTBT/lS9Cte
Lnoow7Tu1twlZ+h6SRlWDn99WTA1Hz2UoXf5GmmZJjp+KENEQfq7Mj+6PlcB
15KPKt9m0fWOCiRtWjh/cmsh+qiAyPauRserRXh/KiAHt+dunFaMXirwYdXT
kGZBMd6vCnS9/bKw7DjNc1VgQpKfX7cWHT9VQHTHlp+MBLp+UYFHxqK63KVl
2B4qICjhtjQ00PWMCkyU9c1SM6N5igpknOnPbPuH5rcq4CaI3fUui4ftpQKF
2/ib3kmV4/xBBWpDq1SrF5dj+6lApvS3Fynnad6jAqZuJy1PZJVje6qA1i61
02LDdH6hAre2W0otmUHzXhUYblZbOtuZj/1FBQ7ZTg/i/y+PUoFrIe0Gf3l8
7D8qMN7gTkfSXz62vwpceWU40GVSgf1JBfZIpnLD7Gi+qwp+xzMsMk/RvEwV
frzv6l8WVoEeqrBvgouUWVYFeqhC7lxvcS/hemfEQxUYD7+f5vyl+ZoqjD/b
J6KrS/M8VSgJVRB1mEzzYFVwUZvfPbiA5smqEDFgNa11bSV6qMLsfcbG7F00
/1MFr/oQvbjDleihCuc1Jq32O1WJHqrgqvdBNP9sJXqoQt+jAJtNF2heqAoT
wsfb2/jS/FkV7k+w0HxykebXqqBz1e340fOV6KEKnYvqbF940nxRFQ6Xujkc
Pl6JHqqg9K7NPHl/JXqoQujFQOur2+h6TxWuJV7rEbOpRA9V+Ppp2hI2ofNb
VVh+6uScvnE0L1eFuzdl/P006HxXDQLO/MgeHKQeasC6slBvaSP1UIPZaouu
+WZTDzXI5x2uLHlAPdTAI8hq0Shv6qEGK07xOsId6PxYDVwKWvatn1uBHmpw
UWO99CYdOl9WgxvZZf5vuun6WA2Grx3bG5hH9xfUYJzHxSO9d+l6WQ3avtxT
7jlI59NqsNixSTl6Ph891GDvF9kkI006v1aD3w4QfbaF1ocaJI1v+FT3nNaH
Gpw/LZM97yytDzUY9dC0pcya1ocaKIhcNgkxKEcPNeHza8nzjC80P1AD9/3t
JXYv6H6MGvh83dd1yJOHHmog7+IQP3EZDz3UYMY0rdRITTpfF96Pyug7tell
6KEO0X+cVhDbMvRQhzFX9kg8/kzzUuHrf3YZ2HiUooc6XAqLKNiqVooe6qCw
8/ofmZgS9FCHSYtGb/CYS59X6mCyhozqrCpGD3XYU2I28cKBYvRQB/Uf9zM8
ZIrRQx2+tRje+hNRhB7qEBZ74+3UeUXooQ6GfbuCV3wsRA91yH5inHTCqxA9
1EErwamyyagQPdRhh19rYWJhAXqog9gVMXctV7rfpg427sFppswC9FAHyeMT
1psW56OHOpg3uv2c5ZGPHupQbW07fHgKzU/VoSx8Wtyfz3nooQ4bH7zvGIzI
Qw/h7ys/XXzdIQ891GEye3/nB6M89FAH7+m7gsQ7ctFDA5Zbz77AeJGLHhpg
eYd5FM7S9YgGKPtc9/Wzo3mgBtix8tewxtP1iQbc+u6RJiudix4aIBl2THx7
K12vaEA08U00L8xBDw34rjLv7oOEHPTQgMUbDYqe36P5qAbwQly93fxz0EMD
zK0/W/b40P1QDQg1uBoz62wOemhAx6roc7Zn6XirAdmd8kULL+Sghwbo86Zf
17iegx4akJn+UyX7fg56aMCMA9l37Z7T/FUD5rfWxuQX56CHBlyqyslhtOeg
hwbsqi4NW6xA81MN8I/5JmtlmoseGrBd/kSH1tZc9NCA+sS9a6P9aB6tAVmh
Wz2/ZdO8VQMKsiflNwxTD01Q+Ds5Zc+cPPTQBMun+ponPfPQQxNs/G6VieXT
vFwT3JPXMzvU89FDE9519rgbOOajhyZIls945PWS5quaEH7MqGBIpQA9NKEs
7/Kyo/tpnq8JJpETlUtLCtBDE9ZVuGxrnVKIHsL324VJ3gsuRA9NuPG0xKpa
ogg9NOHzaUUZJ1eap2qC/IktyVNbitBDEyZUDhxV3FCMHprwppOpxy8vRg9N
+JXhYLFueQl6aMKd9E2zjhbQ/RBN0F9Q5iBqVYoemrD3x5SmksJS9NCEiM57
rXEry9BDExKauDFHK8vQQxOs18TNHpxAn1fC9r2Usu/0Yfq80gTVpmmv45N5
6KEF8w8VJbgO0bxBC4J3LjiVML8cPbTAOV5CZI0vzUu14NiMhOZZ5eXooQVt
od8C1ujQ/FQLjkaMWe25lY8eWmAq6m4aE0XzVC3Y2xFh+qyTjx5a4D4gbu41
je6vaUGQaxhz2J3mL1rQ8MfitWJGBXpoQf2mdT2BUnQ814JDrpsSTy2j47kW
tHADxGL86HiuBUdGE4VhPh3PtWBslN+onZp0f1MLZgWGCLLW0vxJC7qil34W
uVWFHloQ+Fl9h3g1zaO0oLehJCxBneadWqC+fIld36pq9NCChLPVV5J8af6p
BRZur7LeZVWjhxYs99rzYeUgzUO1oMIyad6vyTRP1AZNz9KibEeax2lDwFm5
tjs3ab6oDdnjgy875dK8VBssNQeW6/bQvFEb6sxm2d8yrEEPbdgdyvLkLalB
D23Y5d+5JMGlBj20oVRJvXVcQA16aMNP3VsLxybVoIc2OGeDZkhVDXpow7yc
c/lHf9SghzboBU4OjVaoRQ9tUNThP2Ab1aKHNvT11mYLzGrRQxvE3x1Nfb20
Fj20wePbmLH562vRQxt0OiT8v+6sRQ9t+L0+ZTPbpRY9tGH/ZbOWzW616KEN
GfIazreP16KHNsDKm8Y84esRD23YfM9j4S/h+0c8tGHCvH2fVA7Wooc2eLYP
G6rvrkUPbfBrDFUc2lCLHjrwVOnrm+JlteihA10ejZZe5rXooQNBraFRDOH9
jnjoQMnn+t5g+Vr00IFzPNVZot3UQwf2FEw5vaaceuiA9ZUJBQHx1EP4fc8U
DAp9qYcO+Ne+dP/lQD10wMrY9f1YM+qhAzluvdN2yFEPHTCpI/vjaml+rANh
VuoOmlE0D9eBXGVGY7iLANefOhDHSH/gMIPm4zowZPDCbvtvmvfrwPzEiR6P
U+n5Ah2wTM73Xe1O838duDPXuMhhBj3foANJgSscO7voeQEd8K4NsRaPpvmt
DpzmRa5P2kjPZ+hAecY1NV0ler5DB5jcvfy5b+h8VwdsZGXjZjnT+a4u3HQo
PGSkU4keujBZXfqOUiad7+pCi9EqG5W9dL6rC/kr9m0FFTrf1YUuozHjk57T
55UulB9sTbhoT59Xwn+XkzlVMVCOHrowtU0n8HEQ3Z/Xhbfvay9MnFmOHrpg
Xs+wd63koYcupNkfcA48SNeDuhDklxwcL0/Xg7rAOzlBO2UZPQ+kC61v9p09
/E8peuiC0cwf8m/jS9BDF2KPmOTVfaDjhy7MsB41e/B/+3e6cF1/n/WGOUXo
oQu7GOnTp+yjea0unLR7Zf8qqAA9dCFHd7XV+Fy6/taFL6ZbErJ+0vmVLhTP
Ep/zik3nV8LrZY87u8iajue68AT6BiNP0/1aBtiPX/xF8Wk2ejBg28llC1Ma
s9CDAc9fjXvapJGFHgyoSCjenG6ViR4MkDDNFr/gmYEeDLiydkee66u36MEA
qB22P/wlHT0YkF1SKaa/k55fY8Djg6serGxNQw8GCL5mPzy8PxU9GND+1fbJ
t9+v0EP4Wu3PljF+NI9hQPrrZVtPj0tGDwbs+cVj2Ze8QA/h66nTCxSOP0cP
BsxU4ar/GZeIHgx4c+3X5H9aaT7LANVZ9k+/xD5FDwZYfFV8bfQ9Dj0YMP9y
/Mbr9x6jBwP0UnkzX26PRQ8GFC9omDLeLAY9GLCpTvGjBzcKPRiQ16ayfYZR
JHowYHdr1+Qai3D00IOnt/RFPuy+jx56sOWZv+5p+xD00APzJoOhUkWaz+lB
pUjXBfefN9FDD2zu89qJbAB66MFJE8Vdpav80UP4fqn1sy/7XUEPPVhSc6rE
pfkCeujBRyuvyUvvnkMPPThQvLlyOMUTPfRg3SsjqwhPd/TQg2ED58iS9UfQ
Qw9+me4MlZM8gB56kM4bc3tUvyN66MEiTUPfX5ob0UMPOlJWNJ6WWIUeevB9
bnPSj+LZ6KEHmicv6+wGNnroweHtEfrLEvsxr9WDfkX2lIdWBuihB0MWzHWr
tCzQQ3i/HieVkmqXo4ceXDexP3Xr3Hr00INDb/bK/mnagR56sLpoY/PtAGf0
0If0sIdRO51c0UMfZriaTNu0/AR66MPSwVt3L3WfRg99MExqMfJ9eBY99KHm
yM/CAy990EMfkn6ecl3GvYwe+hC13WrmxCPX0EMfrPY/j2wUu4Ee+iDlGpaa
lRaIHvqwWOGUV9H9IPTQF64X9kQ2P7mDHvrQe2je+/amUPTQh7sdb8ZsMAxD
D33gB/0YEv8Yjh768DD9sH95QiR66IPJwReb9G9FoYc+NJ240Gl2OQY99CFg
xXzWMf9Y9NAHhSqPTZwomtfqw/OjMyu8CuLQQx/Oeozf6uzxFD30oZ332jrx
7jP00AfO3a4c08wE9NCHPtu0Cb6dieihDycUvTxtmC/QwwB8Y90duLZJ6GEA
Km6PFwVdTUYPA1BgG11fXPISPQzgwRy/9DzlFPQwgLEdmmfj7FLRwwAqgw98
uxaahh4G0HaWGSje/ho9DGCeT93T2zPT0cMAbgwOcdzmv0UPA9h3apib1fEW
PQxg53D/Fq+ADPQwAPXewz9PzMlEDwP4bKU36VgrPW9rANL+Zffm+2WhhwFs
UwkcFTszGz0M4IDHXomjH7LRwwA8HH/2Hj5P14MGcNa0z2L/eHr+xwCcBqIe
Tymn540M4PT3lyVXjuShhwH8NZrybpUWHT8MYNTinveLkvLRwwDm2sglWdoW
oIcB9Cy8Pk2juwA9DGDBi23sKxcL0YMJC1Lnr/JkFaEHE2YtanuY8bwIPZgQ
cdd2wehFxejBhHpzmd3nKmm+y4RVc4JDErfSvIQJAUWdWZfbaF7ChKiufrX2
fTTfZYLWo77x0V9pvssEV/WZY8OcaL7LBIGPzb2kpjL0YIJ3cFdNswkdz5lQ
wFqtsNGRjudMGPVUMzDhNs13hd8XufvH+1IeejDh3uNbJ0tEaH7FhCITKcfj
k2l+xQQRp5w3/M00vxK2h/VXL/4Fml8xAeKCLx54RvMrJsi3Rt0OFdD9ZCbU
zZHduXGwHD2YsPb3R+9QfZrvMkEtdPpFh1k032XCh7QtHeHC+c6Ih/B+vusw
Nh2i5xMN4XLYIrdLF/joYQjN1ptWTQqh54cNYeXh452L4vnoYQjKcaN9+G/o
eUZDUM8oXVhRROdXhmA8sWz+smo6vzKEYcaCS3Ma6HrQEGYVCf9sputBQzi0
Qi07rJXmiYZQIVm4h9lG80RDWN00/HJcC80TDaFar2ZV6UeaJxrCKx+jWNU6