-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathsolution_11.py
27 lines (20 loc) · 1.13 KB
/
solution_11.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from bisect import bisect_left as bisect
def coding_problem_11(strings, prefix):
"""
Implement an autocomplete system. That is, given a query string s and a dictionary of all possible query strings,
return all strings in the dictionary that have s as a prefix. Hint: Try pre-processing the dictionary into a more
efficient data structure to speed up queries.
Example:
>>> words = ['able', 'abode', 'about', 'above', 'abuse', 'syzygy']
>>> coding_problem_11(words, 'abo')
['abode', 'about', 'above']
Note: the complexity of the code below is already logarithmic. Faster speed are possible with hierarchical
dictionaries or hashing scheme, if we are willing to pay a space complexity trade-off. Using more sophisticated
approaches must be justified over actual requirements, overkill here.
"""
dictionary = [s.lower() for s in sorted(strings)]
next_prefix = prefix + 'a' if prefix[-1] == 'z' else prefix[:-1] + chr(ord(prefix[-1]) + 1)
return dictionary[bisect(dictionary, prefix):bisect(dictionary, next_prefix)]
if __name__ == '__main__':
import doctest
doctest.testmod(verbose=True)