Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Problem in chapter 5 : Master Spark with R #91

Open
FluffyPanda0310 opened this issue Jul 3, 2020 · 1 comment
Open

Problem in chapter 5 : Master Spark with R #91

FluffyPanda0310 opened this issue Jul 3, 2020 · 1 comment

Comments

@FluffyPanda0310
Copy link

Hi,
In chapter 5 : Master Spark with R, when I try to run these code, it worked

okc_train %>%
ft_string_indexer(input_col = "sex", output_col = "sex_indexed") %>%
ft_string_indexer(input_col = "drinks", output_col = "drinks_indexed") %>%
ft_string_indexer(input_col = "drugs", output_col = "drugs_indexed") %>%
select(age, sex_indexed, drinks_indexed, drugs_indexed, essay_length) %>%
ft_one_hot_encoder_estimator(
input_cols = c("sex_indexed", "drinks_indexed", "drugs_indexed"),
output_cols = c("sex_encoded", "drinks_encoded", "drugs_encoded")
)

But the original one :

pipeline <- ml_pipeline(sc) %>%
ft_string_indexer(input_col = "sex", output_col = "sex_indexed") %>%
ft_string_indexer(input_col = "drinks", output_col = "drinks_indexed") %>%
ft_string_indexer(input_col = "drugs", output_col = "drugs_indexed") %>%
ft_one_hot_encoder_estimator(
input_cols = c("sex_indexed", "drinks_indexed", "drugs_indexed"),
output_cols = c("sex_encoded", "drinks_encoded", "drugs_encoded"))
pipeline_model <- ml_fit(pipeline, okc_train)

gave out the error :

Error in as.character(call[[1]]) :
cannot coerce type 'closure' to vector of type 'character'

I don't know where the error comes from, since the vectors are all in numeric not in character.

@problemxsolutions
Copy link

> traceback()
17: spark_require_version(spark_connection(jobj), "3.0.0")
16: (function (jobj) 
    {
        spark_require_version(spark_connection(jobj), "3.0.0")
        new_ml_transformer(jobj, category_size = invoke(jobj, "categorySize"), 
            class = "ml_one_hot_encoder_model")
    })(jobj = <environment>)
15: do.call(ml_get_constructor(jobj), list(jobj = jobj))
14: FUN(X[[i]], ...)
13: lapply(stages, ml_call_constructor)
12: (function (jobj, ..., class = character()) 
    {
        stages <- tryCatch({
            jobj %>% invoke("stages")
        }, error = function(e) {
            NULL
        })
        if (!rlang::is_na(stages)) {
            stages <- lapply(stages, ml_call_constructor)
        }
        new_ml_transformer(jobj, stages = stages, stage_uids = if (rlang::is_null(stages)) {
            NULL
        }
        else {
            sapply(stages, function(x) {
                x$uid
            })
        }, ..., class = c(class, "ml_pipeline_model"))
    })(jobj = <environment>)
11: do.call(ml_get_constructor(jobj), list(jobj = jobj))
10: ml_call_constructor(invoke(jobj, "bestModel"))
9: structure(list(uid = invoke(jobj, "uid"), param_map = ml_get_param_map(jobj), 
       ..., .jobj = jobj), class = c(class, "ml_pipeline_stage"))
8: new_ml_pipeline_stage(jobj, ..., class = c(class, "ml_transformer"))
7: new_ml_transformer(jobj, estimator = invoke(jobj, "getEstimator") %>% 
       ml_call_constructor(), evaluator = invoke(jobj, "getEvaluator") %>% 
       ml_call_constructor(), estimator_param_maps = ml_get_estimator_param_maps(jobj), 
       best_model = ml_call_constructor(invoke(jobj, "bestModel")), 
       ..., class = c(class, "ml_tuning_model"))
6: new_ml_tuning_model(jobj, num_folds = invoke(jobj, "getNumFolds"), 
       metric_name = metric_name, avg_metrics = avg_metrics, avg_metrics_df = ml_get_estimator_param_maps(jobj) %>% 
           param_maps_to_df() %>% dplyr::mutate(`:=`(!!metric_name, 
           avg_metrics)) %>% dplyr::select(!!metric_name, dplyr::everything()), 
       sub_models = possibly_null(~jobj %>% invoke("subModels") %>% 
           purrr::map(~purrr::map(.x, ml_call_constructor))), class = "ml_cross_validator_model")
5: (function (jobj) 
   {
       avg_metrics <- invoke(jobj, "avgMetrics")
       metric_name <- jobj %>% invoke("getEvaluator") %>% invoke("getMetricName") %>% 
           rlang::sym()
       new_ml_tuning_model(jobj, num_folds = invoke(jobj, "getNumFolds"), 
           metric_name = metric_name, avg_metrics = avg_metrics, 
           avg_metrics_df = ml_get_estimator_param_maps(jobj) %>% 
               param_maps_to_df() %>% dplyr::mutate(`:=`(!!metric_name, 
               avg_metrics)) %>% dplyr::select(!!metric_name, dplyr::everything()), 
           sub_models = possibly_null(~jobj %>% invoke("subModels") %>% 
               purrr::map(~purrr::map(.x, ml_call_constructor))), 
           class = "ml_cross_validator_model")
   })(jobj = <environment>)
4: do.call(ml_get_constructor(jobj), list(jobj = jobj))
3: ml_call_constructor(.)
2: spark_jobj(x) %>% invoke("fit", spark_dataframe(dataset)) %>% 
       ml_call_constructor()
1: ml_fit(x = cv, dataset = okc_train)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants